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Abstract
Background  Patients with bipolar disorder (BD) and major depressive disorder (MDD) exhibit depressive episodes 
with similar symptoms despite having different and poorly understood underlying neurobiology, often leading to 
misdiagnosis and improper treatment. This exploratory study examined whole-brain functional connectivity (FC) 
using FC multivariate pattern analysis (fc-MVPA) to identify the FC patterns with the greatest ability to distinguish 
between currently depressed patients with BD type I (BD I) and those with MDD.

Methodology  In a cross-sectional design, 41 BD I, 40 MDD patients and 63 control participants completed resting 
state functional magnetic resonance imaging scans. Data-driven fc-MVPA, as implemented in the CONN toolbox, was 
used to identify clusters with differential FC patterns between BD patients and MDD patients. The identified cluster 
was used as a seed in a post hoc seed-based analysis (SBA) to reveal associated connectivity patterns, followed by a 
secondary ROI-to-ROI analysis to characterize differences in connectivity between these patterns among BD I patients, 
MDD patients and controls.

Results  FC-MVPA identified one cluster located in the right frontal pole (RFP). The subsequent SBA revealed greater 
FC between the RFP and posterior cingulate cortex (PCC) and between the RFP and the left inferior/middle temporal 
gyrus (LI/MTG) and lower FC between the RFP and the left precentral gyrus (LPCG), left lingual gyrus/occipital cortex 
(LLG/OCC) and right occipital cortex (ROCC) in MDD patients than in BD patients. Compared with the controls, ROI-
to-ROI analysis revealed lower FC between the RFP and the PCC and greater FC between the RFP and the LPCG, LLG/
OCC and ROCC in BD patients; in MDD patients, the analysis revealed lower FC between the RFP and the LLG/OCC 
and ROCC and greater FC between the RFP and the LI/MTG.

Conclusions  Differences in the RFP FC patterns between currently depressed patients with BD and those with MDD 
suggest potential neuroimaging markers that should be further examined. Specifically, BD patients exhibit increased 
FC between the RFP and the motor and visual networks, which is associated with psychomotor symptoms and 
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Introduction
Depressive episodes (DEs) are clinical features shared 
by two closely related yet neurobiologically distinct 
mood disorders, major depressive disorder (MDD) and 
bipolar disorder (BD); the similarities in these episodes 
frequently result in diagnostic challenges (1]. MDD 
is defined by one DE or recurring DEs characterized 
by sadness, anhedonia, decreased energy, social with-
drawal, low self-esteem and sleep disturbances [2] and 
has a twelve-month prevalence in Europe between 3% 
and 10%[3]. BD, with a twelve-month prevalence of 1% 
[4], includes BD type I (BD I), defined by the presence 
of mania, and BD type II (BD II), defined by the pres-
ence of hypomania and DEs [2]. Although (hypo)mania 
defines BD, DEs are more frequent, last longer, and dis-
proportionately account for morbidity and mortality in 
BD patients [5–11]. Moreover, since DEs are predomi-
nantly present at the onset of the illness, up to 40–60% of 
BD patients are misdiagnosed with MDD, and only 20% 
receive the correct diagnosis within the first year [12–
14]. The repercussions of misdiagnosis include the risk of 
inappropriate drug prescription and switching to manic 
episodes, prolonged illness duration, risk of recurrence, 
suicide and overall poorer treatment response [15–19]. 
Thus, it is imperative to discern the differing neurobio-
logical mechanisms underlying DEs in MDD patients and 
BD patients to refine diagnostic procedures and thera-
peutic interventions.

Manifestations of psychiatric disorders are associ-
ated with disturbances within and between networks of 
interacting regions in the brain [20]. One neuroimaging 
method used to assess these networks is resting-state 
functional magnetic resonance imaging (rs-fMRI), which 
examines low-frequency spontaneous fluctuations in 
blood oxygen level-dependent (BOLD) signals among 
voxels in the brain at rest [21, 22]. Temporally correlated 
voxels in brain regions are presumed to be functionally 
connected (i.e., communicating) and to form intrinsic 
functional networks [23]. Within this network perspec-
tive, three consistently identified networks and their sub-
regions [24] have been related to symptoms of depression 
[25] and compared between BD and MDD patients [26, 
27].

First, the task-free default mode network (DMN), 
anchored in the medial prefrontal and parietal corti-
ces, is associated with internally focused, self-referential 
thought; “mind wandering”; and social cognition [24, 28]. 
Compared to BD patients, MDD patients have exhibited 

inconsistently increased, reduced or similar functional 
connectivity (FC) within the DMN across studies [29–
36]. However, increased FC within the DMN was found 
to be associated with depression severity and rumination 
in MDD patients [36, 37]. The variability of these findings 
may be related to clinical heterogeneity, i.e., depression 
severity [36, 38], responsiveness to treatment [39], and 
length of the episode [40].

Second, the frontoparietal network (FPN), or central 
executive network, is associated with externally focused, 
goal-directed tasks and cognitive regulation; the core net-
work regions include the lateral prefrontal and parietal 
cortices [24, 41]. Compared to MDD patients, increased 
within-network FC in the FPN was found in BD patients 
[42–44]. This was linked to compensatory attempts to 
navigate away from or to dampen distracting inner states 
and thoughts originating in the affective and salience 
networks [45, 46], increased depression severity [26], 
and disease progression in BD patients [47]. In contrast, 
reduced within-network FC in the FPN in MDD patients 
can be linked to cognitive symptoms.

Finally, the salience network (SN), which partially over-
laps with the reward and affective networks, monitors 
and integrates internal and external sensory information 
while also eliciting FPN or DMN responses in associa-
tion with internal experience and external environmental 
demands [24, 41, 48]. Compared to MDD patients, BD 
patients displayed increased connectivity among the key 
regions of the SN—the anterior cingulate, thalamus, stri-
atum and insula [42, 49–55]. In addition, relative to MDD 
patients, BD patients exhibited reduced connectivity 
between the insula and the FPN and DMN [50, 56, 57], 
while other components of the SN displayed increased 
connectivity with the FPN and DMN [49, 54, 55]. These 
findings may be associated with emotional dysregulation 
and impaired emotional, reward and interoceptive input 
in regulating the FPN and DMN in BD patients [26].

The methods used to examine functional networks 
in rs-fMRI studies include seed-based analysis (SBA), 
region-of-interest (ROI)-to-ROI analysis and indepen-
dent component analysis (ICA) [58, 59]. While SBA 
involves selecting specific seed regions and estimat-
ing their FC throughout the brain, ROI-to-ROI analysis 
investigates FC between predefined brain regions (ROIs), 
and ICA identifies spatially independent components 
reflecting distinct networks. However, each of these 
methods carries inherent limitations: SBA and ROI-to-
ROI analysis overlook FC beyond the prespecified seeds 

heightened compensatory frontoparietal FC to counter distractibility. In contrast, MDD patients exhibit increased FC 
between the RFP and the default mode network, corresponding to sustained self-focus and rumination.
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and ROIs, while ICA tends to converge on large-scale 
networks, potentially overlooking finer-scale functional 
organizations. FC multivariate pattern analysis (fc-
MVPA) offers an alternative approach that can be used to 
estimate the entire FC pattern for each voxel in the brain 
[60, 61]. If used in a contrast setting, such as comparing 
two distinct groups, it can identify clusters of voxels with 
the most differential between-group FC patterns at the 
whole-brain level [61, 62]. This approach has not yet been 
used for the comparison of BD and MDD patients, it is 
data driven and exploratory and has the ability to find 
the most differential FC patterns that may not have been 
identified previously.

While comparisons of FC between currently depressed 
BD patients and MDD patients converge mainly on the 
three aforementioned networks [26, 27], there is marked 
heterogeneity in the rs-fMRI FC results. The reasons for 
this heterogeneity may include the patient’s current clini-
cal state, demographics, medication, and disorder sub-
type (BD I and II), all of which are likely related to the 
underlying neurobiological mechanism and result in het-
erogeneous FC findings.

The aim of this exploratory study was to identify the 
FC patterns with the greatest ability to differentiate 
between MDD patients and BD patients at the whole-
brain level using the novel, data-driven fc-MVPA. To 
reduce commonly occurring clinical heterogeneity bias, 
we compared participants who were currently depressed; 
matched for age, sex, and depression severity; nonpsy-
chotic; diagnosed with BD I and MDD; and, with the 
exception of participants who were treated with mood 
stabilizing agents, medication-free.

Methods
Participants
One hundred forty-six participants (42 BD I patients, 40 
MDD patients, and 64 controls) were initially recruited 
for the study. Recruitment, inclusion and MRI scan-
ning were performed at the National Institute of Mental 
Health, Klecany, between 2016 and 2020 by trained psy-
chiatrists and radiologists. The included MDD and BD 
patients participated in two separate intervention studies 
with comparable inclusion criteria focused on the treat-
ment of DEs with neurostimulation (EudraCT number 
2015–001639-19 and ISRCTN77188420). MRI scans 
used in this study were baseline scans obtained after (1) 
a period of two weeks of medication washout (MDD, BD) 
excluding stabilizing agents (mood stabilizers or anti-
psychotics, BD) and (2) before therapeutic intervention. 
Control participants were recruited separately for this 
study via internet advertisement.

The inclusion criteria for the patients were age 18–70 
years, met the DSM-IV (2) criteria for BD I or MDD, 
current DEs without psychosis as determined by the 

Mini-International Neuropsychiatric Interview (M.I.N.I.) 
[63], duration of current DE more than 1 month, Mont-
gomery and Åsberg Depression Rating Scale (MADRS) 
score ≥ 20 [64] and Young Mania Rating Scale (YMRS) 
score < 12 in BD patients [65], the ability to provide 
informed written consent, and right handedness. The 
exclusion criteria were a history of any DSM-IV Axis 
I diagnosis other than BD I or MDD (excluding anxiety 
disorders) in the last year; personality disorders; a history 
of substance dependence in the last year except nicotine; 
pregnancy or breastfeeding; severe somatic disorders 
(cardiovascular disease, neoplasms, endocrine disorders, 
etc.) that could be associated with depression; contra-
indications for MRI (metal device in the head, applied 
pacemaker or other electronic stimulation devices, etc.); 
and treatment with electroconvulsive therapy less than 
3 months before enrolment. The inclusion and exclusion 
criteria for the control subjects were identical, with the 
additional exclusion criterion of the presence of any psy-
chiatric diagnosis, symptoms or medication use in their 
medical history.

The patients were age- and sex-matched. One BD 
patient and one control participant were excluded after 
rs-fMRI preprocessing and quality control assessment, 
resulting in a total of 144 (41 BD I patients, 40 MDD 
patients, and 63 controls) participants included in the 
analysis.

Data acquisition
All participants were scanned with the same protocols in 
a 3T Siemens Prisma MRI scanner. For anatomical ref-
erence, high-resolution 3D T1-weighted magnetization 
prepared by rapid acquisition gradient echo (MPRAGE) 
images of the whole brain were acquired with a 64-chan-
nel head/neck coil (repetition time (TR) 2400 ms, inver-
sion time (TI) 1000 ms, echo time (TE) 2.34 ms, flip angle 
8, slice thickness 0.7, acquisition matrix 320 × 320, voxel 
size 1 × 1 × 1 mm). Functional resting-state images cover-
ing the whole brain were obtained using a T2*-weighted 
2D multiband echo planar imaging sequence with a mul-
tiband factor of 4 (MB4 EPI) with BOLD contrast (TE 30 
ms, TR 700 ms, flip angle 52, slice thickness 3, acquisition 
matrix 74 × 74, voxel size 3 × 3 × 3  mm, 700 volumes per 
subject). The total resting scan duration per participant 
was 8.2 min.

Data preparation and statistical analysis
Preprocessing, denoising and data analysis of the neu-
roimaging data included in this manuscript were per-
formed using CONN release 22.a [66, 67] and SPM 
release 12.7771 [68] using the default settings with author 
recommendations. Calculations of demographic and 
clinical variables were performed in IBM SPSS [69].
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Data preprocessing
Default preprocessing was performed as recom-
mended in the CONN toolbox [62]. Functional data 
were realigned using the SPM realign and unwarp pro-
cedure, where all scans were coregistered to a reference 
image (first scan of the first session) using a least squares 
approach and a 6-parameter (rigid body) transforma-
tion and resampled using b-spline interpolation to cor-
rect for motion and magnetic susceptibility interactions. 
Temporal misalignment between different slices of the 
functional data was corrected following SPM slice-timing 
correction procedure, using sinc temporal interpolation 
to resample each slice BOLD time-series to a common 
mid-acquisition time. Potential outlier scans, defined as 
acquisitions with framewise displacement (FD) above 
0.5 mm or global BOLD signal changes above 3 standard 
deviations, were identified using ART (https://www.nitrc.
org/projects/artifact_detect/), and a reference BOLD 
image was computed for each subject by averaging all 
scans excluding outliers. Functional and anatomical data 
were coregistered and normalized into standard MNI 
space; segmented into grey matter, white matter, and CSF 
tissue classes; and resampled to 2  mm isotropic voxels 
following an indirect normalization procedure using the 
SPM unified segmentation and normalization algorithm 
with the default IXI-549 tissue probability map template. 
Finally, functional data were smoothed using spatial con-
volution with a Gaussian kernel of 6  mm full width at 
half-maximum (FWHM).

Denoising
Functional data were denoised using a standard denois-
ing pipeline [62], including the regression of potential 
confounding effects characterized by white matter time 
series (5 CompCor noise components), CSF time series 
(5 CompCor noise components), motion parameters and 
their first-order derivatives (12 factors), outlier scans, 
session effects and their first-order derivatives (2 factors), 
and linear trends (2 factors) within each functional run, 
followed by bandpass frequency filtering of the BOLD 
time series between 0.008  Hz and 0.09  Hz. The Comp-
Cor noise components within white matter and CSF were 
estimated by computing the average BOLD signal as well 
as the largest principal components orthogonal to the 
BOLD average, motion parameters, and outlier scans 
within each subject’s eroded segmentation masks. From 
the number of noise terms included in this denoising 
strategy, the effective degrees of freedom of the BOLD 
signal after denoising were estimated to be satisfac-
tory, ranging from 35.4 to 77.4 (average 73.7) across all 
subjects.

Quality control assessment
Quality control of the T1 and MB4 EPI data was per-
formed according to previously described methods [70]. 
The structural data did not exhibit any artefacts. The 
coregistration of T1 images to the MNI template was 
performed with > 80% accuracy. After visual inspection 
of the raw, preprocessed and denoised functional data, 
we excluded one BD participant after finding a system-
atic artefact in the right dorsal frontal area visible in all 
700 scans and one HC participant due to the low num-
ber of obtained functional scans. After the ART excluded 
outlier scans with excessive motion and global signal 
changes, we evaluated the functional data using quality 
control measures to identify outlier participants to be 
excluded from the analysis (these measures are described 
in Supplement Fig.  1). No further participants were 
excluded. The quality control plots created in CONN 
confirmed satisfactory final preprocessing and denoising 
results (details in Supplement Figs. 2 and 3, and 4).

Data analysis
Primary analysis
Multivariate pattern analysis  We performed fc-MVPA 
using CONN following the default procedure [61, 62]. 
Only BD and MDD participants were included in this part 
of the analysis, because including controls might shift the 
results towards the largest differences between the control 
group and the two possibly more similar clinical groups.

FC multivariate pattern analyses were performed to 
estimate the first 8 eigenpatterns (components) charac-
terizing the principal axes of heterogeneity in FC across 
subjects. The number of components was determined by 
a convention ratio of 10:1 (number of BD and MDD par-
ticipants: number of components), as recommended by 
the authors of the CONN toolbox [61, 66, 67]. From these 
eigenpatterns, 8 associated eigenpattern score images 
were derived for each individual subject, characterizing 
their brain-wide functional connectome state. Eigenpat-
terns and eigenpattern scores were computed separately 
for each individual seed voxel as left and right singular 
vectors, respectively, from a group-level singular value 
decomposition (SVD) of the matrix of FC values between 
this seed voxel and the rest of the brain (a matrix with 
one row per target voxel and one column per subject). 
Individual FC values were computed from the matrices of 
bivariate correlation coefficients between the BOLD time 
series from each pair of voxels, estimated using a singu-
lar value decomposition of the z score-normalized BOLD 
signal (subject-level SVD) with 64 components separately 
for each subject. The aforementioned 8 components were 
retained for group-level analysis.

Group-level analyses were performed for each individ-
ual voxel, with first-level connectivity measures at each 

https://www.nitrc.org/projects/artifact_detect/
https://www.nitrc.org/projects/artifact_detect/
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voxel as the dependent variables and groups as the inde-
pendent variables. Voxel-level hypotheses were evalu-
ated using multivariate parametric statistics with random 
effects across subjects and sample covariance estimation 
across multiple measurements. Inferences were per-
formed at the level of individual clusters (groups of con-
tiguous voxels). We used the F test (ANCOVA) across all 
eight MVPA components to test for group differences 
(MDD > BD) in whole-brain connectivity, comparing 
the component scores between the two groups for each 
voxel. The results were thresholded using a combination 
of a cluster-forming p < 0.001 voxel-level threshold and 
a familywise corrected p-FWE < 0.05 cluster-size thresh-
old and adjusted for age, sex and subject motion (FD) as 
covariates.

Seed-based analysis  To characterize the FC patterns 
between the fc-MVPA clusters and the rest of the brain, 
post hoc SBA using the fc-MVPA clusters as seeds was 
performed [61]. FC strength was represented by Fisher-
transformed bivariate correlation coefficients estimated 
for the seed region and each target voxel. Group-level 
analysis was performed using a GLM, in which a separate 
GLM was estimated for each voxel, with first-level con-
nectivity at this voxel as the dependent variable, group 
(MDD, BD) as the independent variable, and age, sex and 
FD as covariates. Cluster-level inferences were based on 
parametric statistics from Gaussian random field theory, 
and the results were thresholded using a combination of a 
cluster-forming p < 0.001 voxel-level threshold and a fam-
ilywise-corrected p-FWE < 0.05 cluster-size threshold. 
The regions identified in the fc-MVPA and subsequent 
SBA were assigned to specific networks using the atlases 

included in the CONN toolbox (Harvard-Oxford corti-
cal atlas, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases; Yeo 
7-network parcellation atlas [71]).

Secondary analysis
The secondary analysis explored how the differences 
between BD patients and MDD patients identified in 
the fc-MVPA and subsequent SBA represent abnormal 
neural functioning compared to the controls, represent-
ing the neurotypical population. In a series of ROI-to-
ROI analyses compared with controls, the FC values 
of patients with MDD and BD were compared between 
clusters identified by fc-MVPA and clusters identified 
by the subsequent SBA. FC strength was represented by 
Fisher-transformed bivariate correlation coefficients esti-
mated separately for each pair of ROIs. The groups were 
compared pairwise and controlled for age, sex, and FD. 
The results were considered significant if p < 0.05 and 
if they survived an FDR < 0.05 correction for multiple 
comparisons.

Results
Participants
Demographic and clinical characteristics are displayed 
in Table 1. MDD patients and BD I patients did not dif-
fer in age, sex, FD, current episode duration (weeks) or 
depression severity (MADRS score). BD I participants 
had a younger age of illness onset, longer illness dura-
tion, more DEs, more overall episodes, and greater illness 
severity (defined as episode/illness duration) than MDD 
participants. The control participants were significantly 
younger and had lower FD than did the MDD and BD I 
participants.

Table 1  Demographics and clinical characteristics
BD (n = 41) MDD (n = 40) CON (n = 63) p Value

Age (± SD) 44.09 (± 14) 47.03 (± 12.7) 33.55 (± 9.3) BD vs. MDD < 0.32
BD vs. CON < 0.001* MDD vs. CON < 0.001*

Sex, no. of Females (%) 24 (57%) 25 (62%) 41 (64%) BD vs. MDD vs. CON < 0.77
MADRS (Mean ± SD) 26.6 (± 4.58) 27.77 (± 2.97) - 0.179
YMRS (Mean ± SD) 1.56 (± 2.58) - - -
Age of onset (Mean ± SD) 27.92 (± 10.84) 38.1 (± 10.62) - 0.001*
Illness duration (years) (Mean ± SD) 16.16(± 9.65) 8.49 (± 6.87) - 0.001*
NO all episodes (Mean ± SD) 10.87 (± 7.47) 2.92 (± 1.74) - 0.001*
NO depressive episodes (Mean ± SD) 7.73(± 5.59} 2.92(± 1.74) - 0.001*
Current episode in weeks (Mean ± SD) 22.42 (± 16.93) 27.95 (± 24.1) - 0.239
Illness severity (all episodes / illness duration) (Mean ± SD) 0.91 (± 0.84) 0.57(± 0.38) - 0.024*
Framewise displacement (Mean ± SD) 0.21 (± 0.10) 0.17(± 0.09) 0.13 (± 0.05) BD vs. MDD < 0.091 BD vs. CON < 0.001*

MDD vs. CON < 0.104
MS (count) 35 1 - -
AP (count) 30 1 - -
AD (count) 25 39 - -
Abbreviations: AD antidepressants, AP antipsychotics, BD bipolar disorder, CON controls, MADRS Montgomery–Åsberg Depression Rating Scale, MDD major 
depressive disorder, MS mood stabilizers, NO number of, SD standard deviation, YMRS Young Mania Rating Scale. * significant result (t-test, Mann- Whitney U test, 
ANOVA or the post hoc Tukey’s HSD) Note: medication report is pre-washout.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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Primary analysis
The fc-MVPA revealed one cluster located in the right 
frontal pole (RFP) with significantly different connec-
tivity patterns between BD patients and MDD patients 
(Fig.  1; Table  2). A post hoc analysis explored the asso-
ciations of demographic and clinical variables with the fc-
MVPA results. None of the correlations between any of 
the eight components extracted from the fc-MVPA and 
clinical or demographic variables were significant (details 
in Supplement Table 1).

SBA revealed significantly lower FC between the RFP 
and the left lingual gyrus/occipital cortex (LLG/OCC) 
(t(76)=-6.8, p-FWE < 0.0001, d = 1.51), right occipital cor-
tex (ROCC)(t(76)=-5.7, p-FWE < 0.0001, d = 1.27), and left 
precentral gyrus (LPCG) (t(76)=-4.97, p-FWE = 0.0421, 
d = 1.11) and greater FC between the RFP and the left 
posterior inferior/middle temporal gyrus (LI/MTG) 
(t(76) = 5.26, p-FWE = 0.0238, d = 1.17) and posterior 

cingulate cortex (PCC) (t(76) = 5.17, p-FWE = 0.0013, 
d = 1.15) in MDD patients than in BD patients (Table  3; 
Fig. 2).

Secondary analysis
ROI-to-ROI analysis compared the FC between the RFP 
and the clusters found in the SBA among BD patients, 
MDD patients and controls. The MDD vs. BD compari-
son results were corresponding to the SBA results and are 
displayed for illustrative purposes (Figs. 3 and 4). Relative 
to BD patients, controls exhibited increased FC between 
the RFP and the PCC (t(99) = 2.88, p-FDR = 0.0081, 
d = 0.58) and decreased FC between the RFP and the 
LLG/OCC (t(99)=-2.97, p-FDR = 0.0093, d = 0.60), ROCC 
(t(99)=-2.47, p-FDR = 0.0189, d = 0.50) and LPCG (t(99)=-
3.21, p-FDR = 0.009, d = 0.65). Conversely, relative to 
MDD patients, controls exhibited increased FC between 
the RFP and the LLG/OCC (t(98) = 2.67, p-FDR = 0.0448, 

Table 2  Resulting cluster from fc-MVPA using MDD > BD contrast
Cluster (MNI x, y,z) size size p-FWE size p-FDR HO and AAL atlas Brodmann Network
40 52 − 12 31 0.01488 0.00486 Frontal pole right Anterior prefrontal cortex - BA 47 FPN
Abbreviations: AAL automated anatomic labelling, BD bipolar disorder, FPN frontoparietal network, HO Harward-Oxford, MDD major depressive disorder

Table 3  Seed-based analysis results using right frontal Pole as seed
Contrast Cluster (MNI 

x, y,z)
size size 

p-FWE
size 
p-FDR

HO and AAL 
atlas

Brodmann area Network

BD > MDD -4 -72 -8 1174 0.0000 0.0000 L LG/OCC L Primary/secondary/associative cortex - BA 17, 18, 19 FPN/DMN/
Visual

+ 30–98 + 14 505 0.0000 0.0000 R OCC R Primary/secondary/associative cortex - BA 17, 18, 19 Visual
-54 + 02 + 48 92 0.0420 0.0135 L PCG L Primary motor/premotor cortex - BA 4, 6 SMN/FPN

MDD > BD + 04–38 + 34 170 0.0013 0.0007 PCC Dorsal Posterior Cingulate - BA 31 DMN
-68 -42 -20 104 0.0238 0.0095 L ITG/MTG L Inferior temporal gyrus/Fusiform gyrus - BA 20, 37, FPN/DMN

Abbreviations: AAL automated anatomic labelling, BD bipolar disorder, DMN default mode network, FPN frontoparietal network, HO Harvard-Oxford, I/MTG 
inferior/middle temporal gyrus, L left, LG lingual gyrus, MDD major depressive disorder, OCC occipital cortex, PCG precentral gyrus, PCC posterior cingulate cortex, 
SMN somatosensory network, Visual visual network.

Fig. 1  Resulting cluster from fc-MVPA analysis - right frontal pole. Lateral and anterior view. Voxel level p < 0.001, cluster level p-FWE < 0.05
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d = 0.54) and ROCC (t(98) = 2.53, p-FDR = 0.0328, d = 0.51) 
and decreased FC between the RFP and the LI/MTG 
(t(98)=-2.37, p-FDR = 0.0325, d = 0.48). The comparisons 
are displayed in Figs. 3 and 4, and the correlation matri-
ces are shown in Supplement Table 2.

Discussion
The aim of this study was to explore resting-state FC dif-
ferences between currently depressed BD patients and 
MDD patients using the data-driven fc-MVPA method. 
The main finding suggested that the connectivity patterns 

between the right frontal pole and associated brain 
regions were significantly different between the two 
groups, indicating that different FC patterns of the RFP 
in BD and MDD patients should be further investigated 
as potential neuroimaging markers.

The frontal pole is typically divided into three subparts, 
and the cluster found in our study in the right ventral/lat-
eral frontal pole is associated with the processing of goals 
and action plans and the processing of information about 
stimuli, values and emotions [72]. A lesion study linked 
the frontal pole to the ability to disengage executive 

Fig. 3  ROI-to-ROI connectivity analyses results. MDD vs. BD comparisons of FC between FP and Left PCG, Left ITG/MTG, PCC, Left LG/OCC and Right OCC. 
CON vs. BD comparisons of FC between FP and Left PCG, PCC, Left LG/OCC and Right OCC. CON vs. MDD comparisons of FC between FP and Left ITG/
MTG, Left LG/OCC and Right OCC. Results represent significant differences in correlation (p < 0.05, FDR < 0.05). Red colour - higher functional connectivity, 
blue colour - lower functional connectivity. Abbreviations: BD bipolar disorder, CON control participants, FP frontal pole, ITG/MTG inferior temporal gyrus/
middle temporal gyrus, L left, LG lingual gyrus, MDD major depressive disorder, OCC occipital cortex, PCG precentral gyrus, PCC posterior cingulate cortex, 
R right, ROI region of interest

 

Fig. 2  Resulting clusters from seed-based analysis using the right frontal pole as seed. Red colour - higher connectivity between seed and cluster in 
MDD > BD. Blue colour - higher connectivity between seed and cluster in BD > MDD. Voxel level p < 0.001, cluster level p-FWE < 0.05. Abbreviations: L left, 
LI/MTG left inferior/middle temporal gyrus, LLG/OCC left lingual gyrus/occipital cortex, LPCG left precentral gyrus, PCC posterior cingulate cortex, R right, 
ROCC right occipital cortex

 



Page 8 of 13Pastrnak et al. BMC Neuroscience           (2024) 25:46 

control from the current task and redistribute it to novel 
sources of rewards [73]. In addition, the lateral frontal 
pole integrates affective information into cognitive con-
trol representations originating in the anterior cingulate 
cortex [74] and is functionally connected with the FPN 
[75]. Some functional connectivity studies considered 
this region part of the DMN, while others considered 
it part of the FPN [75, 76]. The lateral frontal pole is a 
highly interconnected regulatory relay that acts between 
several neural networks and functions and likely plays a 
role in mood disorders. Specific differences in the FC pat-
terns of the RFP among BD patients, MDD patients, and 
controls are discussed below.

We found decreased connectivity between the RFP 
and the PCC in BD patients compared to MDD patients 
and controls. The PCC, as a core hub of the DMN [77], 
is mostly associated with self-referential thoughts, mind 
wandering [78], and rumination during depression [79, 
80]. It also has a lesser-known role in regulating the focus 
of attention (internal vs. external) [81, 82], its activity var-
ies with arousal state [83], and its interactions with other 
brain networks may be important in conscious awareness 
[84]. The link between the PCC and the frontal pole is 
less evident, although its functional link has been estab-
lished [83, 85]. Contrary to common understanding, the 
FPN, including the frontal pole, is also activated when 
attention is directed inwards [86]. Reduced connectivity 
between the RFP and PCC might indicate an impaired or 
decreased ability to balance attention between external 

stimuli and internal states in patients with BD. On the 
other hand, the difference between the MDD and con-
trols was not significant, although there was a clear trend 
towards an increase in MDD patients (Fig. 4), suggesting 
increased self-focus and rumination.

Next, we found increased connectivity between the 
RFP and the LI/MTG in the MDD group compared to 
the BD and controls. The LI/MTG is connected to the 
frontal pole both anatomically via the arcuate fasciculus 
and functionally [87]. The inferior temporal gyrus is asso-
ciated with visual object recognition, decision making, 
and impulsivity control and is also a component of the 
FPN and the ventral visual pathway [88–90]. The middle 
temporal gyrus is associated with memory, emotion reg-
ulation, and multimodal sensory integration and is con-
sidered a hub of the posterior DMN [91–93]. Increased 
connectivity between the RFP and the LI/MTG in RD 
MDD patients may correspond to complex and sustained 
rumination, i.e., the retrieval of memories and imagery 
with a corresponding, likely negative, affect. The signifi-
cantly lower connectivity in BD patients compared to 
that in MDD patients and the trend compared to that in 
controls may be associated with impaired concentration, 
irritability, and impaired automatic emotion regulation.

The LPCG, the LLG/OCC, and the ROCC displayed 
negative, anticorrelated connectivity with the RFP in 
the MDD patients and controls and positive connectiv-
ity in the BD patients (Fig. 4). Anticorrelation in rs-fMRI 
is a debated concept, but it has been assumed to be 

Fig. 4  Frontal pole connectivity differences between BD, MDD and CON in ROI-to-ROI analyses. Abbreviations: BD bipolar disorder, CON control par-
ticipants, FP frontal pole, LI/MTG left inferior/middle temporal gyrus, LLG/OCC left lingual gyrus/occipital cortex, LPCG left precentral gyrus, MDD major 
depressive disorder. PCC posterior cingulate cortex, ROCC right occipital cortex. * p-FDR < 0.05
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associated with inefficient synchronization in function-
ally connected brain regions [94]. Another study sug-
gested that the anticorrelation between brain regions is 
a result of synchronized neuronal activity with hetero-
geneous (blood flow vs. blood volume) haemodynamic 
responses [95]. Therefore, we interpreted our findings 
as a decrease in FC coupling between functionally con-
nected regions.

Increased connectivity between the RFP and LPCG in 
BD patients can be interpreted from more perspectives. 
The specific LPCG cluster found in our study is a part of 
the motor network (MN) and is associated with motor 
planning, i.e., the elaboration of information into a pre-
movement plan, which can be suppressed and detached 
from action [29, 96]. The frontal pole mediates predict-
able event sequences and is involved in planning and 
controlling intentional motor acts [97, 98]. Increased 
FC between the RFP and LPCG may have a compensa-
tory nature and account for psychomotor disturbances, 
most likely at the premovement planning phase [29]; soft 
neurological symptoms [99]; and typical BD symptoms 
such as psychomotor agitation, tension, and inability to 
relax. Consistent with this result, movement in the scan-
ner, represented quantitatively as FD (Table 1), was sig-
nificantly greater in the BD patients than in the controls 
and approached the significance threshold compared 
to that in the MDD patients. In addition, as the frontal 
pole and LPCG are parts of the FPN, increased FC cor-
responds to previous findings of overactivity in the FPN 
as a compensatory mechanism aimed at restoring the 
function of other disrupted networks [26, 45, 100]. On 
the other hand, lower connectivity/anticorrelation in 
MDD patients and controls might correspond to disen-
gagement between the motor network (MV) and fron-
tal pole and possibly to the ability to relax movements. 
Speculatively, the trend of significantly lower FC in MDD 
patients than in controls may suggest psychomotor slow-
ness or delayed motor reactions.

Patients with BD had increased FC between the RFP 
and the left LLG/OCC and ROCC. Both regions are part 
of the visual network (VN) and fronto-occipital network 
and are connected to the prefrontal cortex anatomically 
and functionally [72, 75, 101]. While both regions are 
functionally associated with visual processing, the lingual 
gyrus is also associated with visual attention [89], facial 
emotion/empathy processing (102), visual memory and 
emotion [103], and even control of negative emotions 
associated with painful events [104]. As BD is character-
ized by overactivity within the SN resulting in increased 
input from visceral and sensory regions, causing emo-
tional dysregulation and distractibility, increased FC 
between the RFP and the lingual gyrus and OCC in BD 
patients may have a compensatory function. This finding 
is also consistent with increased connectivity within the 

FPN in BD patients [26]. Another explanation may be the 
reported bias of BD patients towards external negative 
stimuli [35, 105]. On the other hand, lower connectivity 
in MDD patients than in both BD patients and controls 
may indicate visual attentional deficits, lower respon-
siveness to external stimuli, and an inability to disengage 
from internal focus.

Interestingly, two distinct patterns of RFP FC distri-
butions among the three groups emerged, as shown in 
Fig. 4: between the RFP and the PCC and LI/MTG and 
between the RFP and the LPCG, LLG/OCC and ROCC. 
This broader view suggests a pattern in which MDD 
patients, compared to BD patients and controls, have 
increased FC between the RFP (FPN) and the DMN. This 
increased connectivity can be associated with increased 
self-focus, sustained depressive rumination, and difficulty 
detaching from internally focused processing. On the 
other hand, BD patients displayed increased connectivity 
between the RFP and the LPCG, LLG/OCC and ROCC, 
which indicates increased connectivity between the FPN 
and the MN and VN. This pattern can be associated with 
persisting psychomotor symptoms and compensatory 
attempts against distractibility, which are characteristic 
of BD.

This study did not replicate the most common find-
ings in BD and MDD comparisons, namely, differences 
in SN FC [26]. One reason for this discrepancy may be 
the way in which the fc-MVPA calculates the differences 
in FC patterns, in which the differences in the SN may 
not be among the largest. Another possible reason, with 
a broader range of consequences, may lie in the clinical 
group, i.e., in the possible treatment resistance in MDD 
patients. All 40 MDD participants had at least one failed 
treatment attempt with an adequate dose and duration 
(first-stage treatment resistance according to Thase and 
Rush [106]); 20 patients had two failed attempts, and 
another 12 also had two failed attempts if neurostimula-
tion was considered an adequate treatment [107]. Com-
pared with BD, treatment-resistant MDD (TRD) is a 
poorly studied subtype of MDD, although differences in 
FC between TRD and MDD patients have been estab-
lished mostly in the DMN [108] and may explain the het-
erogeneous findings in the DMN in previous studies. One 
branch of research suggests that TRD may fall between 
BD and MDD and may even be more similar to BD than 
to MDD from the bipolar diathesis perspective [109, 110]. 
Only one prior study compared currently depressed TRD 
patients with euthymic BD patients and euthymic MDD 
patients; surprisingly, this study also found differences in 
the FC of the frontal pole between BD patients and TRD 
patients [76]. If our MDD group is considered as having 
TRD, our findings may suggest similarities in the within- 
and between-network FC of the SN between patients 
with BD and patients with TRD. Increased FC within 
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the SN, which has typically been found in BD patients in 
previous studies, is associated with emotional dysregula-
tion and impaired emotional, reward, somatosensory and 
interoceptive input for appropriate switching between 
the DMN and FPN. We propose that in this respect, BD 
and TRD are similar. This similarity may correspond with 
the variability of symptoms observed in both disorders, 
such as dysregulation of emotional control, inner tension 
and fearfulness, feelings of inhibition, heaviness, tired-
ness of the body, and slower thinking [111–113].

In addition, our findings correspond with the close to 
“normal” connectivity in the DMN in TRD patients com-
pared to controls and lower connectivity in TRD patients 
compared to MDD patients. This finding is also consis-
tent with studies indicating lower connectivity within the 
DMN and between the DMN and other brain regions in 
individuals with TRD than in those with MDD [108].

However, this study was not designed to assess TRD a 
priori, and this interpretation must be considered with 
caution. Moreover, there are several treatment resistance 
criteria, and a clear consensus is still being reached [114].

The study has several limitations related to the analysed 
samples. The sample sizes of the BD and MDD groups 
were too small to draw broader conclusions.

Next, the MDD and BD participants differed in sev-
eral characteristics that might have affected the results, 
but these characteristics are difficult to control. While 
the clinical groups were well matched for sex, age, and 
depression severity, participants in the BD group had a 
younger age of onset, more episodes, longer illness dura-
tion, and greater illness severity and displayed a trend 
towards greater movement in the scanner. Additionally, 
participants in the control group, which was larger in size 
than the clinical groups, were younger and displayed sig-
nificantly less in-scanner movement.

Another limitation is the selection process of the clini-
cal groups. Since the rs-fMRI data were derived from 
subjects participating in two separate randomized con-
trolled trials (RCTs), selection criteria were not defined 
prospectively. Both RCTs applied very similar inclusion 
and exclusion criteria, enhancing the comparability of 
participants and the robustness of the findings. How-
ever, while the good comparability of the clinical samples 
enhanced internal validity, it also introduced poten-
tial limitations in external validity. Specifically, the use 
of identical criteria may limit the generalizability of the 
results to a broader clinical population, as the selected 
participants might not fully represent the diversity seen 
in real-world settings. Additionally, the retrospective def-
inition of the clinical groups could lead to selection bias, 
potentially impacting the applicability of the findings 
to wider clinical and community samples. These con-
siderations are essential for interpreting the results and 

designing future studies to ensure a more inclusive and 
representative sample.

Another limitation to be considered is the effect of dif-
ferent medications on MDD and BD patients. While both 
groups underwent medication washout prior to scan-
ning, participants from the BD group were still on mood-
stabilizing agents (AP or MS) for medical reasons.

In conclusion, this exploratory study revealed that 
FC patterns of the right frontal pole differed between 
patients with BD and patients with MDD using fc-
MVPA. The emerging patterns suggested that compared 
to MDD patients, BD patients had greater FC between 
the RFP and the MN and VN, which is likely associ-
ated with psychomotor symptoms and a compensatory 
function against increased distractibility from the inner 
states. Conversely, MDD patients displayed greater FC 
between the RFP and the DMN, which corresponds to 
sustained inner self-focus and depressive rumination. 
This study suggested that the RFP and its FC patterns 
should be further examined and possibly utilized as tar-
gets of treatment for depression. Given the exploratory 
nature of this study and considering its limitations, future 
studies are needed to confirm the findings in larger and 
more heterogeneous samples with prospectively defined 
study groups.
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