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Background
Understanding the brain mechanism of aging progres-
sion has been a major concern in successful aging. As a 
living dynamic system, the human brain processes infor-
mation with high complexity. However, we still know lit-
tle about this complexity and its aging patterns. Entropy 
is a concept that ranges from thermodynamics to com-
plexity of a physical dynamic system. Higher entropy 
indicates a more complex system with more irregularity 
[1] or uncertainty [2] of its dynamics. Unlike increasing 
monotonically over time in a closed system (e.g., the uni-
verse), entropy remains relatively low in a biological sys-
tem by continually exchanging energy with environment 
to maintain its own orderliness. In other words, a living 
organism feeds upon extracting ‘order’ from the environ-
ment, a stream of ‘negative entropy (NE)’, to compensate 
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Abstract
Background Entropy trajectories remain unclear for the aging process of human brain system due to the lacking of 
longitudinal neuroimaging resource.

Results We used open data from an accelerated longitudinal cohort (PREVENT-AD) that included 24 healthy aging 
participants followed by 4 years with 5 visits per participant to establish cortical entropy aging curves and distinguish 
with the effects of age and cohort. This reveals that global cortical entropy decreased with aging, while a significant 
cohort effect was detectable that people who were born earlier showed higher cortical entropy. Such entropy 
reductions were also evident for large-scale cortical networks, although with different rates of reduction for different 
networks. Specifically, the primary and intermediate networks reduce their entropy faster than the higher-order 
association networks.

Conclusions Our study confirmed that cortical entropy decreases continually in the aging process, both globally and 
regionally, and we conclude two specific characteristics of the entropy of the human cortex with aging: the shift of 
the complexity hierarchy and the diversity of complexity strengthen.
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for the increases of intrinsic entropy for maintaining 
its organization [3]. The human brain, as a complex liv-
ing system, thus should operate on the same pattern. Its 
function becomes more ordered and predictable with the 
accumulation of more experience and knowledge. The 
entropy of the human resting state brain has been found 
to be negatively correlated with education [4, 5] and task 
performance [4] and, more directly, reduced due to peri-
odic participation in tasks [6].

Aging is normally associated with greater predictability 
or less complexity of neurophysiological processes [7–9]. 
In line with the NE pattern, we propose a hypothesis that 
the aging progression of human brain function is marked 
by entropy reduction during normal aging. Interestingly, 
modern neuroimaging studies did not converge into this 
prediction while demonstrating that entropy decreases 
[7, 10–15], increases [5, 11], or does not change [6] with 
age. These inconsistent observations may reflect the 
cross-sectional nature of the experimental design in pre-
vious studies. The cross-sectional method has been well 
developed for investigations of individual differences. 
Cross-sectional changes related to age have been vali-
dated as related to interindividual differences in early life 
factors but not to longitudinal brain change [16], that is, 
aging progression. A direct examination of longitudinal 
entropy changes in the proposed hypothesis of aging pro-
gression is missing, while the other assessments of aging 
progression on human brain function are also very rare 
due to limited longitudinal data and imaging methodol-
ogy (see an exception in [17]).

Functional magnetic resonance imaging (fMRI) can 
detect signals dependent on the blood oxygen level 
(BOLD) in vivo to measure spontaneous brain activity 
during the resting state [18–20], and thus makes large-
scale longitudinal data collection convenient. The sample 
entropy (SampEn) is a nonparametric entropy metric to 
measure the complexity of fMRI and other physiologi-
cal signals [21, 22]. The lower SampEn indicates more 
predictable or less complex brain dynamics, while the 
higher SampEn indicates less predictable or more com-
plex brain dynamics. This entropy metric has been vali-
dated as a reliable measure of temporal brain dynamics 
[4, 6] and exhibited promising prediction validity in dis-
covering entropy of brain functions [10, 23–28]. Here, 
we used longitudinal fMRI data from the PREVENT-
AD (PResymptomatic EValuation of Experimental or 
Novel Treatments for AD) database [29, 30] to chart the 
entropy trajectories of the human brain cortex during 
the progression of aging using SampEn. We expect our 
hypothesis that entropy reduces during aging to be con-
firmed for both whole cortex and large-scale networks, 
while such NE pattern is differentiable across different 
networks according to their hierarchical orders of func-
tional organization.

Methods
Participants
All participant data included in this study were down-
loaded from the PREVENT-AD database. It is an open 
science resource composed of older cognitively unim-
paired individuals with a parental or multiple siblings 
history of AD. The majority of the participants are Cau-
casian from the greater Montreal area in Québec, Can-
ada. There are 24 participants in the observational group 
(8 males and 16 females, baseline age range: 58–77). They 
completed the baseline visit and 4 years of follow-up 
annually (5 visits each apart from 1 year). During each 
visit, a standardized cognitive evaluation and MRI scan-
ning session were performed. All participants were cog-
nitively unimpaired during the 4 years follow-up, except 
one participant who was suspected of probable mild cog-
nitive impairment (MCI) at the last annual visit and this 
participant is also the one who did not complete all the 
five Repeatable Battery for Assessment of Neuropsycho-
logical Status (RBANS) measurements. The individual 
changing pattern of cortical entropy for this participant is 
shown in Figure S1.

Imaging parameters
All participants were scanned using a Siemens TIM Trio 
3 Tesla MRI scanner with a Siemens standard 12 channel 
coil (Siemens Medical Solutions, Erlangen, Germany) at 
the Brain Imaging Centre of the Douglas Mental Health 
University Institute. During each visit, a structural MRI 
and two rsfMRI scans were acquired. Structural MRI 
images were acquired using a T1-weighted magnetiza-
tion prepared gradient echo (MPRAGE) sequence (3D 
sagittal view, TR = 2300ms, TE = 2.98ms, TI = 900ms, flip 
angle 9°, FOV = 256 × 240 × 176mm, phase encode A-P, 
BW = 240Hz/px, GRAPPA 2, Resolution = 1 × 1 × 1mm3, 
Scan time = 5.12min). RsfMRI data were acquired with 
an echo-planar imaging (EPI) sequence (with following 
parameters: 2D axial view, TR = 2000ms; TE = 30ms; flip 
angle = 90°, FOV = 256 × 256mm, 32 slices, phase encode 
A-P, BW = 2442/px, resolution = 4 × 4 × 4mm3, scan 
time = 5.04min).

Cognitive evaluation
Cognitive performance was assessed using the RBANS at 
baseline and each subsequent follow-up visit. The battery 
consists of 12 subtests and yields 5 index scores (imme-
diate memory, delayed memory, language, attention and 
visuospatial capacities) as well as a total score. It is avail-
able in both French and English in 4 equivalent versions 
to reduce practice effects in longitudinal assessment. For 
these participants, the versions were administered in 
chronologic order A, B, C, D. The data were scored fol-
lowing the RBANS manual, with two versions of scores 
provided. One is the age-adjusted index scores, the other 
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scored all participants using norms specified for individ-
uals aged 60–69 years which allows detection of poten-
tial changes with advancing age. In our study, we used the 
60–69 age norm scores.

Image data preprocessing
Anatomical T1 images were visually inspected and then 
uploaded to the volBrain pipeline (http://volbrain.upv.es) 
[31] for noise removal, bias correction, intensity normal-
ization, and brain extraction. All brain extractions under-
went visual inspection to ensure tissue integrity. After 
initial quality checks, the T1 images were passed into the 
Connectome Computation System  (   h t  t p s  : / / g  i t  h u b . c o m / z 
u o x i n i a n / C C S     ) [32] for surface-based analyses.

RsfMRI data were preprocessed following steps: (1) 
dropping the first 10s (five TRs) for the equilibrium of 
the magnetic field; (2) head motion correction; (3) slicing 
timing; (4) de-spiking the time series; (5) estimating head 
motion parameters; (6) registering functional images to 
high resolution T1 images using boundary-based reg-
istration; (7) mitigating nuisance effects such as ICA-
AROMA-derived [33], CSF and white matter signals; (8) 
removing linear and quadratic trends of the time series; 
(9) projecting volumetric time series to both native sur-
face space and fsaverage5 surface space. All preprocess-
ing scripts of the above steps are available on github  (   h t  t p 
s  : / / g  i t  h u b . c o m / z u o x i n i a n / C C S / t r e e / m a s t e r / H 1     ) [34].

Entropy calculation
Cortical entropy has been reported to be significantly 
lower than that of white matter and subcortical struc-
tures [4, 6]. Thus, we focus solely on the cerebral cortex. 
The entropy value was calculated at each vertex based 
on the preprocessed rsfMRI time series with BENtbx 
(https://cfn.upenn.edu/~zewang/BENtbx.php) by using 
an approximate entropy measurement (SampEn) with 
the parameters recommended in [6]. This measure is 
an improved metric of approximate entropy [35]. Sam-
pEn is based on the entropy of measured hemodynamic 
states, which considers dependency over time using tem-
poral embedding. In other words, it reflects the statisti-
cal dependencies or order implicit in itinerant dynamics 
expressed over extended periods of time. Specifically, 
for the preprocessed BOLD time series at one vertex, 
denoted by x = [x1, x2, . . . xN ], where N  is the num-
ber of time points. With a predefined dimension m  and 
a distance threshold r  (we use m = 3 and r  is the 0.6 
times the standard deviation of x ), we extracted a series 
of embedded vectors from x , each with m  consecutive 
points: ui = [xi, xi + 1, . . . , xi +m− 1], where i = 1 to 
N −m + 1 . Bm

i (r) counts the number of uj(j = 1 to 
N −m , and j �= i) whose Chebyshev distance to ui  is 
less than r , as does Bm+1

i (r) for the dimension of m + 1

. By averaging across all possible vectors, we have (as 
shown in [6]):

 
Bm (r) =

1

(N −m) (N −m− 1)

∑
N−m
i=1 Bm

i (r)
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1
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i (r)

SampEn is calculated as:

 
SampEn (m, r,N, x) = −ln

[
Am (r)

Bm (r)

]

The global entropy was calculated based on the data in 
native surface space. For each processed rsfMRI data, 
the mean entropy of the whole cerebral cortex was cal-
culated. Since each participant underwent two rsfMRI 
scans at each visit, we averaged the two mean entropy 
values to obtain the global entropy for each visit, used 
for further analysis. We also calculated the mean entropy 
values of fifteen networks and three hierarchies as docu-
mented in [36]. Specifically, the three-level hierarchy is 
primary, intermediate, and association. Each of them 
consist of five networks: primary networks include VIS-
C, VIS-P, SMOT-A, SMOT-B and AUD; intermediate 
networks include PM-PPr, CG-OP, dATN-A, dATN-B 
and SAL-PMN; association networks include LANG, 
FPN-A, FPN-B, DN-A and DN-B.

Statistical modeling
We use GAMM to estimate the global entropy trajec-
tory and the mean entropy values of 15 networks and 
three hierarchies separately during aging and distinguish 
the effects of age and cohort. We modeled the effects 
of age on entropy with smooth functions constructed 
as weighted sums of k  basis functions. In this study, 
we employed cubic regression splines and chose k = 5 
as large enough to allow a wide range of nonlinear pat-
terns to be estimated, while small enough to minimize 
overfitting and allow computational efficiency. Random 
effect was included for longitudinal data with repeated 
measurements. The linear age-independent cohort effect 
was modeled by including the birth date. Since educa-
tion [4, 5] and sex effects of resting brain entropy have 
been reported in previous studies [4], we also took these 
factors into account in GAMM. Additionally, the gene 
effect was taken into account in our model, not only the 
main effect but also its interaction with age estimated by 
smooth functions. This is due to the fact that the APOE∈
4 allele is a well-known risk genotype for AD and our 
data have a parental or multiple-sibling history of AD. 
The specific model was constructed on the basis of the 
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recommendation in [37] using the gamm4 package  (   h t  t p s  
: / / C  R A  N . R - p r o j e c t . o r g / p a c k a g e = g a m m 4     ) .  

Although the integrity of cognition of our participants 
was confirmed by the Montreal Cognitive Assessment 
[38] and the Clinical Dementia Rating Scale [39] at the 
eligibility visit and by RBANS at each visit, the effect of 
age on the performance of RBANS was evaluated to find 
out whether there are cognitive declines during aging. 
The total score and the five index scores were estimated 
using a model similar to that mentioned previously. One 
participant who didn’t complete all the five cognitive 
tests was excluded from the analysis. This participant was 
also suspected of probable MCI at his last annual visit. 
Furthermore, the pattern of longitudinal changes of the 
RBANS scores with entropy during aging was explored. 
Because both variables have the same effects of sex, gen-
otype and education years, so in this model, despite using 
the smooth functions to model the effect of entropy, we 
only considered the fixed effect of the age at initial visit 
and the random effect.

Results
The PREVENT-AD sample
We used an accelerated longitudinal sample from the 
PREVENT-AD cohort. It consists of 24 Canadian partici-
pants who received 5 annual visits, including 1 baseline 
visit and 4 follow-up visits (the 12, 24, 36, 48 months after 
the baseline visit). These individuals without cognitive 
impairment were recruited from families with a history 
of AD in their parents or multiple siblings (16 females, 
age range at the baseline visit: 58–77 years old, age cover 
with the full sample: 58–82 years old). The frequency of 
APOE-∈ 4 in this sample is 12.5%, which is comparable 
to the frequency of typical Caucasian populations (15%) 
[40]. All participants completed structural magnetic 
resonance imaging (MRI) and fMRI, as well as cognitive 
tests, which are documented in detail by [29].

Global entropy reduction
Following our hypothesis, the global cortical SampEn 
decreased during the aging progression. This aging effect 
was contaminated with a cohort effect while gene, sex 
and education had no effects on the global entropy. Spe-
cifically, the generalized additive mixed model (GAMM) 
revealed an adjusted R2 of 16.9%, explaining the data 
variability by both the aging and the cohort effect. In 
Fig.  1, each segment of the heavy blue line depicts the 
aging curve of individuals from a specific age cohort, 
indicating consistent linear reduction patterns in differ-
ent cohorts (p = 0.0073). The cross-sectional age tra-
jectory showing slight U-shaped changes in SampEn 
concealed this aging process at the population level (the 
heavy blue dashed line) with the cohort effect (p = 0.0263

, the red dashed line), which showed that the earlier-born 

cohorts exhibited significantly higher cortical SampEn 
relative to the later-born cohorts.

Network Entropy reduction
The fifteen functional networks of the human cerebral 
cortex are used to examine the entropy aging patterns at 
network level: Visual-Central (VIS-C), Visual-Peripheral 
(VIS-P), Somatomotor-A (SMOT-A), Somatomotor-B 
(SMOT-B), Auditory (AUD), Premotor-Posterior Parietal 
Rostral (PM-PPr), Cingulo-Opercular (CG-OP), Dorsal 
Attention-A (dATN-A), Dorsal Attention-B (dATN-B), 
Salience/Parietal Memory Network (SAL/PMN), Lan-
guage (LANG), Frontoparietal Network-A (FPN-A), 
Frontoparietal Network-B (FPN-B), Default Network-A 
(DN-A) and Default Network-B (DN-B) [36]. These net-
works can be organized into a three-level architecture: 
primary networks (VIS-C, VIS-P, SMOT-A, SMOT-B 
and AUD), intermediate networks (PM-PPr, CG-OP, 
dATN-A, dATN-B and SAL-PMN) and association 
networks (LANG, FPN-A, FPN-B, DN-A and DN-B). 
All cortical entropy aging models at the network level 
showed decreasing trajectories similar to the global corti-
cal entropy, as shown in Fig. 2.

All primary and intermediate networks and LANG 
(association network) showed a significant (p < 0.05

) age effect (Table  1). The VIS-C, SMOT-B, PM-PPr, 
CG-OP, dATN-A and LANG networks showed a sig-
nificant cohort effect (p < 0.05) while the other primary 
networks (VIS-P and AUD) and intermediate networks 
(dATN-B and SAL-PMN) only approached the threshold 
of significance. Higher-order association networks did 
not show a significant age effect or cohort effect except 
LANG, but their patterns are similar to the others. For 
the three-level hierarchy, this aging pattern is clearer: Pri-
mary and intermediate areas showed significant effects 
on age and cohort (p < 0.05). The speed of decreasing 
entropy in primary and intermediate networks is faster 
than in association networks. That leads to a more inter-
esting observation that the spatial distribution of entropy 
(the rank of complexity) changes during aging. Specifi-
cally, in the early old age, the primary and intermediate 
networks have a higher entropy than the association net-
works, but during aging, the default and frontoparietal 
networks are not significantly affected by aging and the 
speed of decreasing entropy is much slower, so that in 
the late old age the association networks have a higher 
entropy (Fig.  2). The diversity among networks also 
increases with the deepening of aging (Fig. 2). This pat-
tern is even clearer within the three-level hierarchy as 
Fig. 3 shows.

Cognitive changes with entropy reduction
We evaluated the longitudinal effect on the performance 
of the RBANS [41] to determine whether there are 
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cognitive changes during aging. As shown in Table 2, the 
total score (p = 0.035) and the index scores of immedi-
ate memory (p = 0.010) and language (p = 0.014) exhib-
ited a significant effect on education. This implies that a 
longer education year is linked to a better test score. No 
significant effects on age, cohort, genotype, or sex were 
detectable.

The longitudinal change pattern of the RBANS 
scores with aging cortical entropy was also esti-
mated. For the total score, we detected significant 
entropy effects in the VIS-C (p = 0.0463, R2 = 0.097
), SMOT-A (p = 0.0262, R2 = 0.112), SMOT-B 
(p = 0.0274, R2 = 0.096), PM-PPr (p = 0.0240, R2 = 0.107
) and dATN-B (p = 0.0440, R2 = 0.094) networks. This 
indicated that lower entropy values in these networks 
lead to higher performance (see Table S1). For the delay 
memory index, we found significant entropy effects 

in the SMOT-A (p = 0.0065, R2 = 0.151), SMOT-B 
(p = 0.0051, R2 = 0.149), PM-PPr (p = 0.0099, R2 = 0.142
) and CG-OP (p = 0.0342, R2 = 0.126) and DN-B 
(p = 0.0123, R2 = 0.144) networks. We also observed 
significant age effects at baseline. This means that the 
younger the test participants, the better performance they 
had (see Table S4). The three-level hierarchy of the human 
cortex converged into similar results: significant entropy 
effects in the primary cortex (p = 0.0259, R2 = 0.107
, Table S7) for the total score and significant entropy 
effects in the primary cortex (p = 0.0161, R2 = 0.133), 
the intermediate cortex (p = 0.0392, R2 = 0.122) and the 
global cortex (p = 0.0226, R2 = 0.132, see Table S10). We 
also observed some significant entropy effects on other 
index scores; but the adjusted R2s of these models were 
too low, indicating a poor model fit.

Fig. 1 Aging pattern of global entropy in the human cerebral cortex. Five repeated measures of the global SampEn for each participant are connected 
into individual background blue thin lines. Model fitted by GAMM generated the heavy blue dash line and blue line segments. These line segments 
extending from the blue dash line indicate the within-subject changes from five different age cohorts (58, 62, 66, 70, and 74 years of age at baseline), 
the aging curves. The dashed blue curve represents age-related changes of global entropy while the dashed red segment indicates the cohort effect
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Discussion
The present work established cortical entropy trajecto-
ries in the human brain during aging and distinguished 
the effects of age and cohort. Our findings confirmed 
that cerebral cortex entropy continuously decreases in 

the aging process both globally and regionally, accord-
ing to longitudinal data. The entropy of the whole cere-
bral cortex and most large-scale networks showed such 
aging effects. These results are consistent with most fMRI 
studies based on cross-sectional data, as well as studies 

Fig. 2 Aging pattern of network entropy in the human cerebral cortex. The fifteen large-scale networks of the cerebral cortex are employed to extract 
their mean entropy values (i.e., cortical network entropy) for trajectory modeling. Samples of each network entropy were separately fitted by GAMM, 
which estimated the aging curves for individual networks as indicated in the corresponding colors in the DU15NET cortical network parcellation. Accord-
ingly, the rank of complexity level of the fifteen networks from five different ages (58, 64, 70, 76, and 82) were rendered as lateral and medial surfaces at 
the bottom
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on other physiological signals such as motor control [42], 
cardiovascular system [43] and respiratory rhythms [44]. 
The decreasing of entropy indicates more regular (or, in 
other words, more predictable) brain activity. For a living 
system, it is necessary to maintain order (i.e. maintain a 
relatively low entropy), and temporal coherence is impor-
tant for the human brain [45, 46]. We are more likely to 
perceive and act based on experience during aging. The 
principle of free energy [47] considers the brain as an 
empirical Bayesian device [48], a living system, to resist 
disorder and minimize uncertainty (i.e. minimize the 
free energy). Previous researchers proposed the entropic 
brain hypothesis [49] that there is a critical zone where 
normal brain activity occurs, and that normal waking 
consciousness seems to be placed closer to the order 
side [50]. Psychedelic compounds shift the brain entropy 
upward, while sedatives and anesthetics shift the entropy 
downward. Resting brain entropy of the cerebral cor-
tex has also been found to be negatively correlated with 
education and task performance in fMRI studies. These 
results were observed not only in the elderly group [5] 
but also in adults [4] and adolescents [51]. In the task 
fMRI study [6], periodic behavior can be reflected in 
regular brain activity. It has been common to believe that 
abnormal high or low entropy implies abnormal brain. 
Our results suggest, at least within a certain range (in the 
critical zone), for healthy brain, the decreasing entropy 
means that our brain activity is becoming more order 

and predictable as interacting with environments. In this 
respect, older is order.

The cohort effect was found in our study, indicating 
that individuals born earlier had a higher global entropy. 
Specifically, the cohort effect is mainly reflected in pri-
mary (VIS-C and SMOT-B) and intermediate networks 
(PM-PPr, CG-OP and dATN-A), with only LANG being 
detectable among association networks. This effect may 
even conceal the individual age effect. From a popula-
tion perspective (cross-sectional), we observed a slightly 
U-shaped pattern (Fig. 1), which may explain why previ-
ous studies based on cross-sectional data have reported 
inconsistent results [5–7, 10–15]. The cohort effect is 
defined as the effect that having been born in a certain 
time, region, period or having experienced the same life 
experience (in the same time period) has on the devel-
opment or perceptions of a particular group [52]. The 
environment is one of the main factors that contribute 
to the effects of the cohort. As mentioned above, fMRI 
studies have also found a negative correlation between 
brain entropy and education. These results indicate that, 
to some extent, the decrease in entropy reflects that brain 
activity becomes more orderly as individuals interact 
with the environment and internalize experiences. That 
might be because the people who were born later lived in 
a more stable and order society. Our results also suggest 
that the effect of the environment on the brain might be 
greater than we previously expected, and future studies 
(at least for the complexity of low-frequency spontane-
ous brain activity, as our study revealed) should take the 
environmental factors into account.

We revealed two specific features in the aging process: 
the hierarchical shift of the sub-networks and the inter-
network diversity of complexity increases during aging. 
In early old age, cortical complexity ranges from pri-
mary unimodal networks to high-order association net-
works. Networks responsible for primary functions have 
higher entropy, while networks for high-order functions 
have relatively lower entropy. A similar pattern has been 
reported in previous studies, which found that in adults 
DMN exhibits the lowest entropy in the cerebral cortex 
[4, 6]. Other researchers have reported quasi-periodic 
patterns in the default and control networks [53]. The 
entropy diversity among networks is also low in early old 
age. Interestingly, this hierarchical organization trend 
shifts during aging, as the complexity of primary net-
works decreases more rapidly than that of high-order 
networks (Fig.  3). This implies that primary unimodal 
networks are more susceptible to the effects of aging, 
followed by intermediate networks, whereas association 
networks are not significantly affected by aging, except 
for the language network. Consequently, in advanced 
old age, association networks exhibit higher entropy 
than intermediate and primary networks. The diversity 

Table 1 Statistical effects on age and cohort of cortical 
entropy during normal aging. The adjusted R2 of the 
GAMM model, F -value of age effect, t -value of cohort 
effect and the corresponding p -value are listed in the table 
(∗ < 0.05, ∗∗ < 0.01, ∗ ∗ ∗ < 0.001)

Age (F) Age (p) Cohort (t) Cohort (p) R-sq. (adj)
Global 8.521 0.0073 ** -2.251 0.0263 * 0.169
Primary 9.830 0.0033 ** -2.110 0.0371 * 0.137
Intermediate 11.253 0.0011 ** -2.456 0.0156 * 0.143
Association 1.833 0.1390 -1.519 0.1320 0.171
VIS-C 8.956 0.0070 ** -2.039 0.0438 * 0.113
VIS-P 6.970 0.0165 * -1.913 0.0583 0.092
SMOT-A 7.465 0.0073 ** -1.610 0.1102 0.191
SMOT-B 9.277 0.0029 ** -2.221 0.0283 * 0.085
AUD 6.203 0.0142 * -1.935 0.0554 0.111
PM-PPr 14.521 0.0002 *** -2.835 0.0054 ** 0.144
CG-OP 6.326 0.0133 * -2.044 0.0432 * 0.168
dATN-A 8.898 0.0058 ** -2.430 0.0167 * 0.152
dATN-B 6.376 0.0150 * -1.875 0.0634 0.093
SAL-PMN 4.676 0.0327 * -1.889 0.0614 0.142
LANG 4.221 0.0425 * -2.055 0.0422 * 0.169
FPN-A 3.584 0.0713 -1.595 0.1140 0.123
FPN-B 2.070 0.2050 -1.062 0.2906 0.170
DN-A 1.613 0.1150 -1.583 0.1160 0.175
DN-B 0.900 0.5240 -1.078 0.2830 0.178



Page 8 of 10Chang et al. BMC Neuroscience           (2024) 25:74 

of entropy between networks also increases with aging. 
In other words, aging is reflected not only in decreasing 
entropy but also in a shift of the complexity hierarchy of 
networks, as well as in the diversity of complexity among 
networks increasing due to different decreasing rates of 
each network.

Although all subjects had a history of AD from their 
parents or multiple siblings, the frequency of APOE∈ 4 
in the sample is not different from the frequency of typi-
cal Caucasian populations. Cognitive performance esti-
mation confirmed that there were no cognitive declines 
in participants during the 4-year follow-up period. 

Fig. 3 Aging patterns of hierarchical entropy in the human cerebral cortex. A three-level hierarchy of the cerebral cortex is used to extract mean entropy 
values for fitting the trajectories of primary (the 1st order), intermediate (the 2nd order), and association (the 3rd order) areas by GAMM, which generated 
the aging curves for the three hierarchies as indicated in the corresponding colors in the DU15NET cortical hierarchical parcellation. Accordingly, the rank 
of complexity level of the three hierarchies from five different ages (58, 64, 70, 76, and 82) were rendered as lateral and medial surfaces at the bottom
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Previous studies have reported that resting brain entropy 
is negatively correlated with education and general cog-
nitive capacity. In this study, we did not find significant 
educational effects, which could be due to the fact that 
the subjects in our study are highly educated (15.08 ± 4.42 
years). We also estimated the effect of cognitive perfor-
mance and found that a lower entropy in VIS-C, SMOT-
A, SMOT-B, PM-PPr and dATN-B was associated with a 
better performance on the total score of RBANS, while 
a lower entropy in SMOT-A, SMOT-B, PM-PPr, CG-OP 
and DN-B was associated with a better performance on 
the delay memory index of RBANS. This might reflect 
that the RBANS tests contain lots of operations that 
engage primary and intermediate networks, while as for 
delay memory high-order association networks are also 
needed. These findings are consistent with the previously 
reported negative correlation between entropy and cog-
nitive performance [4].

Conclusions
Our study confirmed that cortical entropy decreases con-
tinually in the aging process, both globally and regionally, 
and revealed its specific features in the aging process: 
the hierarchical shift of the sub-networks and the inter-
network diversity of complexity increases during aging. 
We conclude the reason why studies based on cross-
sectional data have reported inconsistent results: the sig-
nificant cohort effect. Several limitations must be taken 
into account. First, although the PREVENT-AD dataset 
is the best one that is available to us at present for the 
current study, the sample size is relatively small (24 par-
ticipants with 120 visits), and in particular there are few 
very old-age participants. Second, existing data cannot 
clarify the neurophysiological mechanism underlying the 
decrease in entropy, and we need more direct evidence in 
future studies. Third, the typical length of an rsfMRI time 
series is generally 5 to 10  min, which helps reduce the 
movement and discomfort of the participant. A common 
time for scanning a single head volume is around 2  s, 
balancing temporal resolution and signal-to-noise ratio. 
Although a higher temporal resolution would be ideal, 

previous studies have shown that the entropy metric we 
used is stable to measure entropy in fMRI time series and 
the length of the data has only a minor effect on it [4, 6].

Supplementary Information
The online version contains supplementary material available at  h t t  p s : /  / d o  i .  o r 
g / 1 0 . 1 1 8 6 / s 1 2 8 6 8 - 0 2 4 - 0 0 9 1 6 - 6     .  

Supplementary Material 1

Author contributions
D.C. worked on data curation, modeling design, software, validation, 
visualization, and preparation of the original draft. X.N.Z. and X.W. have 
contributed to conceptualization, formal analysis, model design, supervision, 
validation, and editing of the draft. B.L., Y.W. and Y.C. have contributed to 
methodology development. Z.R.H. and Z.Z. have contributed to the discussion 
of the implications of the present findings on healthy aging. All authors have 
reviewed and edited the manuscript.

Funding
The team receives funding support from the STI 2030 - the major 
projects of the Brain Science and Brain-Inspired Intelligence Technology 
(2021ZD0200500), the Key-Area Research and Development Program of 
Guangdong Province (2019B030335001), the National Basic Science Data 
Center “Interdisciplinary Brain Database for In-vivo Population Imaging” 
(ID-BRAIN: NBSDC-DB-15), the Start-up Funds for Leading Talents of Beijing 
Normal University.

Data availability
All codes in this study can be requested from the authors. All data included in 
this study can be downloaded from the PREVENT-AD database  (   h t  t p s  : / / r  e g  i s t e 
r e d p r e v e n t a d . l o r i s . c a     ) .  

Declarations

Ethics approval and consent to participate
Protocols, consent forms and study procedures were approved by McGill 
Institutional Review Board and/or Douglas Mental Health University Institute 
Research Ethics Board. Specific consent forms were presented prior to each 
experimental procedure. More details can be found in [29].

Consent for publication
Participants have obtained informed consent to publicly share their 
anonymized data or publish the data in an open online publication.

Competing interests
The authors declare no competing interests.

Clinical trial number
Not applicable.

Received: 12 February 2024 / Accepted: 27 November 2024

References
1. Sandler SI. Chemical, biochemical, and engineering thermodynamics. John 

Wiley & Sons; 2017.
2. Tribus M, Mcirvine EC. Energy and information. Sci Am. 1971;225(3):179–88.
3. Schrodinger E. What is life? The physical aspect of the living cell. At the 

University; 1951.
4. Wang Z. The neurocognitive correlates of brain entropy estimated by resting 

state fMRI. NeuroImage. 2021;232.
5. Wang Z, Init ADN. Brain entropy mapping in healthy aging and alzheimer’s 

disease. Front Aging Neurosci. 2020;12.
6. Wang Z, Li Y, Childress AR, Detre JA. Brain entropy mapping using fMRI. PLoS 

ONE. 2014;9(3).

Table 2 Age and education effects on cognitive performance 
during aging. The cognitive performance were assessed with the 
total score and five index scores of RBANS. The adjusted R2 of 
the GAMM model, F -value of age effect, t -value of education 
effect and the corresponding p -value are listed (∗ < 0.05)

Age 
(F)

Age 
(p)

Educa-
tion (t)

Educa-
tion (p)

R-sq. 
(adj)

Total 1.040 0.482 2.134 0.035 * 0.283
VisSpat/Construct 1.446 0.358 0.792 0.430 0.057
Immediate Memory 0.447 0.474 2.608 0.010 * 0.198
Delayed Memory 0.927 0.484 1.748 0.083 0.131
Language 2.279 0.174 2.499 0.014 * 0.088
Attention 0.720 0.398 1.124 0.263 0.156

https://doi.org/10.1186/s12868-024-00916-6
https://doi.org/10.1186/s12868-024-00916-6
https://registeredpreventad.loris.ca
https://registeredpreventad.loris.ca


Page 10 of 10Chang et al. BMC Neuroscience           (2024) 25:74 

7. Wink AM, Bernard F, Salvador R, Bullmore E, Suckling J. Age and cholinergic 
effects on hemodynamics and functional coherence of human hippocam-
pus. Neurobiol Aging. 2006;27(10):1395–404.

8. Beckers F, Verheyden B, Aubert AE. Aging and nonlinear heart rate control in 
a healthy population. Am J Physiol Heart Circ Physiol. 2006;290(6):H2560–70.

9. Peng CK, Mietus JE, Liu YH, Lee C, Hausdorff JM, Stanley HE, et al. Quantifying 
fractal dynamics of human respiration: age and gender effects. Ann Biomed 
Eng. 2002;30(5):683–92.

10. Yang AC, Huang CC, Yeh HL, Liu ME, Hong CJ, Tu PC, et al. Complexity of 
spontaneous BOLD activity in default mode network is correlated with cogni-
tive function in normal male elderly: a multiscale entropy analysis. Neurobiol 
Aging. 2013;34(2):428–38.

11. Dong JX, Jing B, Ma XY, Liu H, Mo X, Li HY. Hurst exponent analysis of 
resting-state fMRI signal complexity across the adult lifespan. Front NeuroSci. 
2018;12.

12. Liu CY, Krishnan AP, Yan LR, Smith RX, Kilroy E, Alger JR, et al. Complexity and 
synchronicity of resting state blood oxygenation level-dependent (BOLD) 
functional MRI in normal aging and cognitive decline. J Magn Reson Imaging. 
2013;38(1):36–45.

13. Sokunbi MO, Cameron GG, Ahearn TS, Murray AD, Staff RT. Fuzzy approximate 
entropy analysis of resting state fMRI signal complexity across the adult life 
span. Med Eng Phys. 2015;37(11):1082–90.

14. Lou WT, Wang DF, Wong A, Chu WCW, Mok VCT, Shi L. Frequency-specific 
age-related decreased brain network diversity in cognitively healthy elderly: 
a whole-brain data-driven analysis. Hum Brain Mapp. 2019;40(1):340–51.

15. Smith RX, Yan L, Wang DJ. Multiple time scale complexity analysis of resting 
state FMRI. Brain Imaging Behav. 2014;8(2):284–91.

16. Vidal-Pineiro D, Wang Y, Krogsrud SK, Amlien IK, Baare WFC, Bartres-Faz D, et 
al. Individual variations in ’brain age’ relate to early-life factors more than to 
longitudinal brain change. eLife. 2021;10:e69995.

17. Xing XX. Globally aging cortical spontaneous activity revealed by multiple 
metrics and frequency bands using resting-state functional MRI. Front Aging 
Neurosci. 2021;13:803436.

18. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the 
motor cortex of resting human brain using echo-planar MRI. Magn Reson 
Med. 1995;34:537–41.

19. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with 
functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–11.

20. Power JD, Schlaggar BL, Petersen SE. Studying brain organization via sponta-
neous fMRI signal. Neuron. 2014;84:681–96.

21. Richman JS, Moorman JR. Physiological time-series analysis using 
approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 
2000;278(6):H2039–49.

22. Cieri F, Zhuang XW, Caldwell JZK, Cordes D. Brain entropy during aging 
through a free energy principle approach. Front Hum Neurosci. 2021;15.

23. Zhou FQ, Zhuang Y, Gong HH, Zhan J, Grossman M, Wang Z. Resting state 
brain entropy alterations in relapsing remitting multiple sclerosis. PLoS ONE. 
2016;11(1).

24. Li ZJ, Fang Z, Hager N, Rao H, Wang Z. Hyper-resting brain entropy within 
chronic smokers and its moderation by sex. Sci Rep. 2016;6.

25. Sokunbi MO, Gradin VB, Waiter GD, Cameron GG, Ahearn TS, Murray AD et 
al. Nonlinear complexity analysis of brain fMRI signals in schizophrenia. PLoS 
ONE. 2014;9(5).

26. Wang Z, Suh J, Duan DN, Darnley S, Jing Y, Zhang J, et al. A hypo-status 
in drug-dependent brain revealed by multi-modal MRI. Addict Biol. 
2017;22(6):1622–31.

27. Sokunbi MO, Fung W, Sawlani V, Choppin S, Linden DEJ, Thome J. Resting 
state fMRI entropy probes complexity of brain activity in adults with ADHD. 
Psychiatry Research-Neuroimaging. 2013;214(3):341–8.

28. Chang D, Song DH, Zhang J, Shang YQ, Ge Q, Wang Z. Caffeine caused a 
widespread increase of resting brain entropy. Sci Rep. 2018;8.

29. Tremblay-Mercier J, Madjar C, Das S, Pichet Binette A, Dyke SOM, Étienne P, 
et al. Open science datasets from PREVENT-AD, a longitudinal cohort of pre-
symptomatic alzheimer’s disease. NeuroImage: Clin. 2021;31:102733.

30. Jonathan GR, Alex IW, Alexa PB, Sylvia V, Sylvain B, Group PAR. Synergis-
tic association of aβ  and tau pathology with cortical neurophysiol-
ogy and cognitive decline in asymptomatic older adults. Nat Neurosci. 
2024;27:2130–7.

31. Manjón JV, Coupé P, volBrain. An online MRI brain volumetry system. Front 
Neuroinformatics. 2016;10:30.

32. Xu T, Yang Z, Jiang LL, Xing XX, Zuo XN. A connectome computation system 
for discovery science of brain. Sci Bull. 2015;60(1):86–95.

33. Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-
AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI 
data. NeuroImage. 2015;112:267–77.

34. Xing XX, Xu T, Jiang C, Wang YS, Zuo XN. Connectome computation system: 
2015–2021 updates. Sci Bull. 2022;67(5):448–51.

35. Pincus SM. Approximate entropy as a measure of system complexity. Proc 
Natl Acad Sci U S A. 1991;88.

36. Du J, Dinicola L, Angeli P, Saadon-Grosman N, Sun W, Kaiser S, et al. Organiza-
tion of the human cerebral cortex estimated within individuals: networks, 
global topography, and function. J Neurophysiol. 2024;131(6):1014–82.

37. Sorensen O, Walhovd KB, Fjell AM. A recipe for accurate estimation of lifespan 
brain trajectories, distinguishing longitudinal and cohort effects. NeuroIm-
age. 2021;226:117596.

38. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin 
I, et al. The montreal cognitive assessment, MoCA: a brief screening tool for 
mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

39. Morris JC. The clinical dementia rating (CDR) - current version and scoring 
rules. Neurology. 1993;43(11):2412–4.

40. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects 
of age, sex, and ethnicity on the association between apolipoprotein e geno-
type and alzheimer disease: a meta-analysis. JAMA. 1997;278(16):1349–56.

41. Randolph C, Tierney MC, Mohr E, Chase TN. The repeatable battery for the 
assessment of neuropsychological status (RBANS): preliminary clinical validity. 
J Clin Exp Neuropsychol. 1998;20(3):310–9.

42. Vaillancourt DE, Newell KM. Changing complexity in human behavior and 
physiology through aging and disease. Neurobiol Aging. 2002;23:1–11.

43. Lipsitz LA, Goldberger AL. Loss of complexity and aging - potential applica-
tions of fractals and chaos theory to senescence. JAMA. 1992;267:1806–9.

44. Kaplan DT, Furman MI, Pincus SM, Ryan SM, Lipsitz LA, Goldberger AL. Aging 
and the complexity of cardiovascular dynamics. Biophys J. 1991;59:945–9.

45. Bergstrom RM. An entropy model of the developing brain. Dev Psychobiol. 
1969;2(3):139–52.

46. Singer W. The brain, a complex self-organizing system. Eur Rev. 
2009;17(2):321–9.

47. Carhart-Harris RL, Friston KJ. REBUS and the anarchic brain: toward a unified 
model of the brain action of psychedelics. Pharmacol Rev. 2019;71(3):316–44.

48. Friston KJ. A theory of cortical responses. Philosophical Trans Royal Soc 
B-Biological Sci. 2005;360(1456):815–36.

49. Carhart-Harris RL. The entropic brain - revisited. Neuropharmacology. 
2018;142:167–78.

50. Priesemann V, Wibral M, Valderrama M, Propper R, Le Van Quyen M, Geisel T, 
et al. Spike avalanches in vivo suggest a driven, slightly subcritical brain state. 
Front Syst Neurosci. 2014;8:108.

51. Song D, Zhang L, Wang Z. Identifying neural substrates of fluid intelligence in 
the adolescence brain using brain entropy. 2021.

52. Atingdui N. Cohort effect. In: Goldstein S, Naglieri JA, editors. Encyclopedia of 
child behavior and development. Boston, MA: Springer US; 2011. pp. 389–9.

53. Abbas MA, Belloy, Kashyap JA, Billings, Nezafati M, Schumacher EH, Keilholz 
S. Quasi-periodic patterns contribute to functional connectivity in the brain. 
NeuroImage. 2019;191:193–204.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Older is order: entropy reduction in cortical spontaneous activity marks healthy aging
	Abstract
	Background
	Methods
	Participants
	Imaging parameters
	Cognitive evaluation
	Image data preprocessing
	Entropy calculation
	Statistical modeling

	Results
	The PREVENT-AD sample
	Global entropy reduction
	Network Entropy reduction
	Cognitive changes with entropy reduction

	Discussion
	Conclusions
	References


