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Abstract 

Background Ischemic stroke (IS) is a common cerebrovascular disease. Although the formation of atherosclerosis, 
which is closely related to oxidative stress (OS), is associated with stroke-related deaths. However, the role of OS in IS is 
unknown.

Methods OS-related key genes were obtianed by overlapping the differentially expressed genes (DEGs) 
between IS and normal control (NC) specimens, IS-related genes, and OS-related genes. Then, we investigated 
the mechanism of action of key genes. Subsequently, protein–protein interaction (PPI) network and machine learning 
algorithms were utilized to excavate feature genes. In addition, the network between feature genes and microRNAs 
(miRNAs) was established to investigate the regulatory mechanism of feature genes. Finally, quantitative PCR (qPCR) 
was utilized to validate the expression of feature genes with blood specimens.

Results A total of 42 key genes related to OS were acquired. Enrichment analysis indicated that the key genes were 
associated with oxidative stress, reactive oxygen species, lipid and atherosclerosis, and cell migration-related path-
ways. Then, 6 feature genes (HSPA8, NCF2, FOS, KLF4, THBS1, and HSPA1A) related to OS were identified for IS. Besides, 6 
feature genes and 255 miRNAs were utilized to establish a feature genes-miRNA network which contained 261 nodes 
and 277 edges. At last, qPCR results revealed that there was a trend for higher expression of FOS, KLF4, and HSPA1A 
in IS specimens than in NC specimens. Additionally, HSPA8 expression was significantly decreased in the IS specimens, 
which was consistent with the findings of the GEO database analysis.

Conclusion In conclusion, 6 feature genes (HSPA8, NCF2, FOS, KLF4, THBS1, and HSPA1A) related to OS were mined 
by bioinformatics analysis, which might provide a new insights into the evaluation and treatment of IS.
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Introduction
Ischemic stroke (IS) is characterized by high incidence, 
disability, high mortality and recurrence. Besides, IS is 
a major cause of disability and cognitive impairment, 
accounting for about 5.2% of all deaths worldwide [1]. 
Brain tissue necrosis and focal neuron defect, induced by 
thrombosis or embolism, are the basic pathology of IS. IS 
progresses rapidly, necessitating timely detection. Early 
detection and diagnosis of IS are very important for the 
treatment and rehabilitation of IS.

The standard treatment of ischemic stroke (IS) includes 
intravenous thrombolysis, arterial thrombectomy, and 
supportive therapy. The purpose of these therapies 
designed to quickly recover brain blood flow, reduce 
brain damage [2]. Thrombolytic therapy, particularly 
with recombinant tissue plasminogen activator (rtPA), 
requires rapid diagnosis within a narrow therapeutic time 
window and immediate initiation to dissolve the throm-
bus and reinfuse the affected brain area [3]. However, 
thrombolytic therapy is not suitable for all IS patients. 
Bleeding or recent history of surgery are contraindica-
tions to intravenous thrombolysis. Arterial thrombec-
tomy is an interventional therapy, that shows significant 
efficacy even within 24 h after symptom onset. However, 
its success is highly dependent on the timeliness of treat-
ment and the specific condition of the patient [4]. The 
effect of this therapy strategy is significant affected by the 
intervention time and patient selection criteria, empha-
sizing the importance of precision medical treatment in 
IS. Exploring new treatments is essential to improve the 
prognosis of stroke and reduce its social and economic 
burden.

Oxidative stress (OS) is one of the important mecha-
nisms of ischemic cerebral (IS). Studies [5] have shown 
that OS is related to neurological function damage in 
patients, which can accelerate neuronal damage. As a 
result, targeted inhibition of OS has been as a neuro-
protective strategy for IS treatment. The overproduction 
of reactive oxygen species (ROS) is central to oxidative 
stress (OS), resulting in an imbalance of oxidation and 
antioxidation functions, thus causing a series of OS cas-
cades [6]. In clinical, some drugs can directly inhibit the 
production of ROS, thereby inhibiting oxidative stress. 
For instance, antioxidants, such as vitamin C and vita-
min E, can inhibit the activity of nicotinamide adenine 
dinucleotide phosphate oxidase (NADPH) and reduce 
the production of ROS [7]. However, the available anti-
oxidant strategies are limited to preclinical studies, and 
more clinical trials are needed to verify the clinical cura-
tive effect [8]. Notably, only a few studies have assessed 
the genes related to oxidative stress-induced IS. Genes 
such as Nrf2, SOD1, SOD2, and GPX1 have been identi-
fied to play a role in OS [9–12], while the complete gene 

network of OS has not been fully characterized. There-
fore, Further genetic studies to identify all the genes 
involved in OS response is very necessary.

In recent years, Genetic studies provide a new insight 
for revealing the disease susceptibility of ischemic stroke. 
In this process, bioinformatics plays an indispensable 
role. Through the comprehensive application of genome-
wide association studies (GWAS), expression quantitative 
trait loci (eQTLs) and transcriptome analysis, bioinfor-
matics technology can mine IS-related genetic from large 
genetic data sets. With the continuous accumulation of 
genetic data and the continuous innovation of bioinfor-
matics tools, it provides us a new opportunities and strat-
egies for understanding the genetic research of IS.

In our study, bioinformatics integrated analysis was 
used to further analyze the oxidative stress-related genes 
involved in IS, and the targeted miRNAs of key genes 
were predicted. This provides a new vision for us to iden-
tify potential biomarkers and explore therapeutic strate-
gies for IS.

Materials and methods
Data source
The Gene Expression Omnibus (GEO) database is the 
primary database for storing, retrieving and analysing 
high-throughput gene expression data. From these, we 
obtained datasets (GSE16561 and GSE180470) that were 
directly related to the IS, with a consistent sample source, 
method of acquisition, and a small difference in the num-
ber of samples and controls. GSE16561 (peripheral whole 
blood, GPL6883, 39 IS specimens and 24 normal con-
trol (NC) specimens) and GSE180470 (peripheral whole 
blood, GPL20301, 3 IS specimens and 3 NC specimens) 
were collected from GEO. Then, 1399 OS-related genes 
were retrieved from the published literature [13]. The 
analysis flow was shown in Fig. 1.

Differential expression analysis of GSE16561 dataset
The expression matrix of the GSE16561 dataset was nor-
malized via the limma package (v3.50,2022) [14]. Princi-
pal component analysis (PCA) was performed on the data 
before and after data normalization. Empirical Bayesian 
smoothing of standard errors using trend = TRUE via 
eBayes was performed with multiple test correction, and 
moderated t-statistic and log-odds were calculated for 
each gene in each comparison. Subsequently, the differ-
entially expressed genes (DEGs) between IS specimens 
and NC specimens were extracted via limma package 
(p < 0.05 and |log2FC|> 0.5). This improved the precision 
and stability of the estimates. This smoothing is particu-
larly useful when the sample size is small, as it compen-
sates for the instability of individual gene estimates by 
drawing on information from the entire dataset.
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Weighted gene co‑expression network analysis (WGCNA)
The IS-related genes were determined by WGCNA pack-
age (v1.70, 2022) in the stroke dataset GSE16561 [15]. 
Firstly, the specimens were clustered to remove the outli-
ers and ensure the accuracy of the subsequent analysis. 
Then, analysed using the WGCNA in-package (v1.70, 
2022) [15] algorithm, the optimal soft threshold (β) 
was determined to ensure that the network approached 
scale-free distribution. Similarity was calculated between 
genes according to the adjacency, and the phylogenetic 
tree between genes was obtained, the higher the square 
of the correlation coefficient  (R2), the closer the network 
approximates the distribution at the no-network scale. 
The core of constructing the co-expression matrix is to 

categorize the tens of thousands of genes of the input 
expression matrix into dozens of modules. The modules 
were segmented via a dynamic tree cutting algorithm. 
Then, based the results of the correlation analysis, the 
modules with the strongest positive and negative corre-
lation are selected as key modules, respectively. Finally, 
key genes were obtained by overlapping DEGs between 
IS and NC samples, IS-related module genes, and OS-
related genes.

Functional annotation of key genes
To obtain an understanding of the metabolic pathways 
and gene functions of key genes, we were subjected to 
gene ontology (GO) and kyoto encyclopedia of genes and 

Fig. 1 Flowchart describing the schematic overview of the study design
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genomes (KEGG) enrichment analyses. GO and KEGG 
enrichment analyses were implemented via clusterPro-
filer package (v4.2.1,2022) (p < 0.05 and FDR < 0.5) [16]. 
Multiplied check correction with “fdr”. This correction 
ensures that the percentage of false discoveries is kept 
within acceptable levels while maintaining a high discov-
ery rate.

Protein–protein interaction (PPI) network and machine 
learning algorithms
PPI is network with proteins as nodes involved in the 
same metabolic pathway, biological process, structural 
complex, functional association, or physical contact 
between proteins as edges. The PPI network was estab-
lished via STRING network (https:// string- db. org) (Con-
fidence = 0.15). The genes with top 20 degree values were 
identified using cytoscape software (v3.7.2, 2022) for 
further analysis [17]. The candidate feature genes were 
validated via machine learning algorithms. The logis-
tic regression (LASSO) and support vector machine-
recursive feature elimination (SVM-RFE) algorithm were 
implemented via glmnet package (v4.1, 2022) [18] and 
e1071 package (v1.7, 2022), respectively. Next, the feature 
genes were obtained by overlapping the candidate feature 
genes.

Expression analysis and miRNA prediction of feature genes
The expression heat map of the feature genes was plot-
ted via pheatmap package (v0.7.7, 2022) [19]. The micro-
RNAs (miRNAs) interacting with feature genes were 
mined by NetworkAnalyst (v3.0, 2022) (https:// www. 
netwo rkana lyst. ca/).

Sample collection for Quantitative PCR validation
The sample was conducted in Shanghai Xuhui Central 
Hospital and received approval from the Ethics Commit-
tee of Shanghai Xuhui Central Hospital (reference no. 
2023–030), participants and their relatives signed writ-
ten informed consent for the study. A total of 20 patients 
came from the Department of Rehabilitation and physi-
cal center of Shanghai Xuhui Central Hospital. The data 
were collected from August 2023 to October 2023.

Recruitment criteria required: age control in 35–80 
years old, no infection in the last 3months, no surgery in 
the past 3months, no cancer and no 2 Diabetes Mellitus.

Normal patients were required to have no underlying 
disease.

Quantitative PCR (qPCR) analysis
Firstly, 10 blood specimens were taken from IS and NC 
groups, and RNA was extracted from specimens with 
TRIzol. Second, RNA concentration was captured by 
NanoPhotometer N50, followed by reverse transcription 

of total RNA useing via SureScript-First-strand-cDNA-
synthesis-kit. The qPCR reaction system was made up of 
3ul of cDNA, 5ul of 2xUniversal Blue SYBR Green qPCR 
Master Mix, 1ul of upstream primers, and 1 ul down-
stream primers (Table 1). Finally, the reactions were per-
formed on a CFX96 real-time quantitative fluorescence 
PCR instrument. The amplification reactions were per-
formed as follows: pre-denaturation at 95  °C for 1  min, 
followed by 40 cycles, each cycle at 95 °C for 20 s, 55 °C 
for 20 s, and 72 °C for 30 s. Relative gene expression was 
measured by the  2−ΔΔCt, with GAPDH, as the internal ref-
erence gene. The primer sequences are listed in Table 2.

Statistical analysis
All open databases and R software were utilized for 
analysis and visualization in this study. The Venn dia-
gram was plotted via Tbtools software (v1.09, 2022) [20]. 
P < 0.05 was considered a significant difference.

Results
Identification of DEGs in GSE16561 dataset
Firstly, PCA was utilized to measure the degree of simi-
larity between IS and NC specimens before and after 

Table 1 The qPCR reaction system system

Component Volume

5 × Reaction Buffer 4ul

Primer 1ul

SweScript RT I Enzyme Mix 1ul

Total RNA 0.1 ng-5ug

Nnclease-Free Water Add to 20ul

Table 2 Related primer sequences

Primer Sequences

KLF4 F GGA CAC ACG GGA TGA TGC TC

KLF4 R TTC TCA CCT GTG TGG GTT CG

THBS1 F AAC CTC TAC TCC GGA CGC AC

THBS1 R CAG CAG GGA TCC TGT GTG TA

HSPA1A F TGT AAC CCC ATC ATC AGC GG

HSPA1A R AGG AAA TGC AAA GTC TTG AAGC 

NCF2 F CCA GAA GCA TTA ACC GAG ACAA 

NCF2 R CCT CGA AGC TGA ATC AAG GC

FOS F CCT AAC CGC CAC GAT GAT GT

FOS R TCT GCG GGT GAG TGG TAG TA

HSPA8 F TAT TGG AGC CAG GCC TAC AC

HSPA8 R GTG TTG GTG GGG TTC ATT GC

Endogenous -GAPDH F CGA AGG TGG AGT CAA CGG ATTT 

Endogenous -GAPDH R ATG GGT GGA ATC ATA TTG GAAC 

https://string-db.org
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
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standardization. The expression patterns of DEGs 
were significantly different between IS and NC speci-
mens (Fig. 2A, B). In addition, 568 DEGs were detected 
between IS and NC specimens, including 258 down-
regulated and 310 up-regulated genes in IS specimens 
(Fig. 2C).

Identification of IS‑related key modules by WGCNA
IS-related genes were identified via WGCNA analysis. 
A total of 62 specimens were utilized for subsequent 

analysis after excluding one outlier (GSM416554), as 
shown in Fig. 3A. When the soft threshold power was 
3, R^2 was close to the threshold of 0.85, and mean 
connectivity tended to 0 (Fig.  3B). Then, 9 co-expres-
sion modules were obtained in Cluster Dendrogram 
(Fig.  3C). Subsequently, 6625 IS-related genes were 
detected in MElightyellow and MEblack depending 
on the module-trait relationships (Fig.  3D, Table  3). 
Besides, 42 key genes were obtained by overlapping 568 
DEGs between IS and NC specimens, 6625 IS-related 
genes, and 1399 OS-related genes (Fig. 3E).

Fig. 2 Identification of DEGs inGSE16561dataset. A, B PCA was utilized to measure the degree of similarity between IS and NC specimens 
before and after standardization; C 568 DEGs were detected between IS and NC specimens,including258 down-regulated and 310 up-regulated 
genes in IS specimens
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Probing the molecular mechanism of IS based on key 
genes
GO and KEGG analyses were conducted to investigate 

the function of OS-related key genes. According to GO 
results, 42 key genes were associated with response to 
oxidative stress, cellular response to chemical stress, 

Fig. 3 Identification of IS-related key modulesby WGCNA. A 62 specimens were utilized for subsequent analysis after excluding one outlier 
(GSM416554); B When the soft threshold power was 3, R^2 was close to the threshold of 0.85, and mean connectivity tended to 0; C 9 
co-expression modules were obtained in Cluster Dendrogram; D 6625 IS-related genes were detected in ME lightyellow and ME black depending 
on the module-trait relationships; E 42 key genes were obtained by overlapping 568 DEGs between IS and NC specimens, 6625 IS-related genes, 
and 1399 OS-related genes
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and reactive oxygen species-related pathways (Fig.  4A). 
Moreover, KEGG showed that key genes were correlated 
with lipid and atherosclerosis, neutrophil extracellu-
lar trap formation, and reactive oxygen species and cell 
migration-related pathways (Fig. 4B).

Identification of OS‑related feature genes
To delve whether there were interactions between 42 
key genes, we created a PPI network. The top20 pro-
teins in the PPI network were selected, of which 5 pro-
teins (HSPA8, LTA, STAT4, CCR7, and XBP1) were lowly 
expressed and 15 proteins (PTGS2, ITGAM, LCN2, 

KLF4, ROCK1, NCF2, FOS, CDC42, MPO, G6PD, HP, 
HIF1A, THBS1, HSPA1A, and LRRK2) were highly 
expressed in the IS specimens (Fig.  5A). Subsequently, 
8 candidate feature genes (FOS, ITGAM, HSPA1A, 
HSPA8, NCF2, THBS1, KLF4, and ROCK1) were rec-
ognized via LASSO algorithm (Fig.  5B). Moreover, 12 
candidate feature genes (NCF2, HSPA8, CDC42, KLF4, 
LRRK2, HSPA1A, FOS, HIF1A, G6PD, THBS1, PTGS2, 
and XBP1) were recognized via SVM-RFE algorithm 
(Fig.  5C). Finally, 6 feature genes (HSPA8, NCF2, FOS, 
KLF4, THBS1, and HSPA1A) were acquired by overlap-
ping the candidate feature genes obtained through two 
machine learning algorithms (Fig. 5D).

The network of feature gene‑miRNA
To investigate the regulatory mechanism of feature 
genes, we established the network between feature 
genes and miRNAs. The network (261 nodes and 
277 edges) contained 6 feature genes and 255 miR-
NAs. Results revealed that hsa-mir-92a-3p regulated 
HSPA8, HSPA1A, and THBS1 in Fig. 6A. Subsequently, 

Table 3 6625 IS-related genes were contained in ME lightyellow 
and ME black depending on the module-trait relationships

Type Model color Cor p Gene number

Stroke Lightyellow 0.62 6.00E-08 102

Black −0.66 5.00E-09 6523

Fig. 4 GO and KEGG analyses were conducted to investigate the function of OS-related key genes. A According to GO results, 42 key genes were 
associated with response to oxidative stress, cellular response to chemical stress, and reactive oxygen species-related pathways; B Moreover, KEGG 
showed thatkey genes were correlated with lipid and atherosclerosis,neutrophil extracellular trap formation, and reactive oxygen species and cell 
migration-related pathways
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we delved the feature genes expression in GSE180470. 
The results demonstrated the expression trends of 
HSPA8, KLF4, HSPA1A, and FOS were consistent with 
those of GSE16561 dataset (Fig. 6B).

Participant inclusion of blood samples for qPCR
A total 10 blood specimens were taken from IS and NC 
groups met the inclusion criteria. IS group: age 66–79 
years (73 + 5.12), 5 males (50%) and females(50%); NC 
group: age 52–79 years (73.8 + 8.75), 4 males(40%) and 
females(60%).

The qPCR validation of feature gene expression in IS and 
NC specimens
qPCR validation was conducted using blood specimens 
to assess the differences in 6 feature genes (HSPA8, 
NCF2, FOS, KLF4, THBS1, and HSPA1A) expres-
sion between IS and NC samples. The results showed 
that the expression trends of HSPA8, FOS, KLF4, and 
HSPA1A between IS and NC specimens were consist-
ent with the expression in the GEO database, except for 
HSPA8 expression with significant difference (Fig.  7). 
However, the expression trends of THBS1 and NCF2 

Fig. 5 PPI network and modules screening. A The top20 proteins in the PPI network were selected, of which 5 proteins were lowly expressed 
and 15 proteins were highly expressed in the IS specimens; B 8 candidate feature genes were recognized via LASSO algorithm; C candidate feature 
genes were recognized via SVM-RFE algorithm; D 6 feature genes were acquired by overlapping the candidate feature genes obtained through two 
machine learning algorithms
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were not consistent with the GEO database, which 
might be influenced by tissue heterogeneity (Fig. 7).

Discussion
Oxidative stress (OS) not only directly causes cell death 
by triggering apoptosis, necrosis and autophagy [21], 
but also aggravates IS injury through indirect pathways 
such as inflammatory response, thrombosis promo-
tion and vascular endothelial function damage [22]. 
OS, which affects the pathophysiological process of IS 

through multiple dimensions, is the core mechanism 
of the disease progression of IS. In this study, 6 feature 
genes (HSPA8, NCF2, FOS, KLF4, THBS1, and HSPA1A) 
related to OS were identified by bioinformatics analysis, 
which might provide a new insight into the evaluation 
and treatment of IS.

Herein, GO showed that 42 genes were associated 
with response to oxidative stress (OS), cellular response 
to chemical stress, and reactive oxygen species-related 
pathways. Moreover, KEGG showed that the key genes 

Fig. 6 The network of feature gene-miRNA. A hsa-mir-92a-3p regulated HSPA8,HSPA1A, andTHBS1; B The results of the GSE180470 dataset 
demonstrated the expression trends of genes were consistent with those of GSE16561 dataset

Fig. 7 qPCR validation offeaturegene expression in IS and NC specimens
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were correlated with lipid, atherosclerosis, and reactive 
oxygen species-related pathways. Studies have shown 
that IS, including atherosclerosis, cardiogenic embolism, 
and arteriolar occlusion, is associated with many risk fac-
tors [23]. Atherosclerosis is the most common IS subtype 
with many treatment options. Atherosclerosis can lead to 
many types of stroke, such as ischemic and hemorrhagic. 
About 70% of the existing cerebrovascular patients in 
China have IS. Notably, atherosclerotic thrombosis is 
one of the key causes of IS, indicating that the population 
with atherosclerosis is the high-risk group of IS [24].

In this study, 6 feature genes (HSPA8, NCF2, FOS, 
KLF4, THBS1, and HSPA1A) were identified by over-
lapping the candidate feature genes obtained through 
two machine learning algorithms. The FOS (FBJ osteo-
sarcoma oncogene) is involved in the regulation of lipid 
metabolism and was related to intracellular lipid accu-
mulation. Furthermore, FOS can regulate the formation 
of VSMC-derived foam cells in Vascular smooth muscle 
cells (VSMC) after activation by mtROS, which con-
firms the important role of FOS gene in oxidative stress 
response and lipid metabolism disorder [25]. Notably, 
lipid metabolism disorder is one of the risk factors of IS 
[26]. Studies have shown that high FOS expression may 
be used as a reference index for the time of brain injury 
[27]. In this study, FOS expression was high in IS patients. 
Therefore, future studies should explore if FOS gene can 
predict the neural recovery stage of IS.

Krüppel-like factor 4 (KLF4) gene can alleviate neu-
ronal damage in IS patients by promoting lncRNA-ZFAS1 
expression to inhibit Drp1m6A modification [28]. And 
KLF4 can reduce cerebrovascular damage by improving 
vascular endothelial inflammation after IS [29]. However, 
the anti-inflammatory and pro-inflammatory effects of 
KLF4 are environment-dependent in pathophysiology. 
Moreover, the promotion or inhibition of KLF4 in ath-
erosclerosis depends on the target genes and target cells 
[30]. The regulatory role of KLF4 in diseases is difficult to 
clarify since it has dual regulatory functions. The serum 
KLF4 level in patients with acute ischemic stroke is nega-
tively correlated with infarct size, which indicates that 
KLF4 level can reflect the severity of ischemic stroke and 
play a protective role in the pathogenesis. KLF4 may also 
be used as a potential biomarker for predicting the prog-
nosis of acute ischemic stroke. In conclusion, KLF4 plays 
a neuroprotective role in ischemic stroke by reducing 
infarct size, inhibiting oxidative stress, restoring blood–
brain barrier function and promoting long-term nerve 
recovery [31], consistent with our findings. We can fur-
ther explore the related molecular mechanisms of KLF4 
in IS in future studies.

HSPA1A (heat shock 70 kDa protein 1A) and HSPA8 
(heat shock 70 kDa protein 8) belong to the heat shock 

70  kDa protein family (HSP70) [26]. HSP70 is a chap-
erone protein induced by various stresses on cells and 
is involved in the development of various diseases [31]. 
Hsp70 can improve the activity of antioxidant enzymes, 
such as super oxide dismutase (SOD) and accelerate the 
removal of oxygen free radicals, indicating that Hsp70 
can mitigate the damage caused by excessive ROS [32]. 
Studies have shown that the expression of Hsp70mRNA 
and Hsp70 in brain tissue was extremely low in the 
absence of stimulant stimulation. Denaturetic protein 
in the damaged cells could rapidly induce the expres-
sion of Hsp70 when focal or global brain deficiency 
is present. Studies have shown that OS can induce 
HSPA1A, leading to its release to the extracellular [33], 
consistent with our results.

Thrombospondin-1 (THBS1) is a multifunctional gly-
coprotein released from platelets, macrophages, and fat 
cells. And it is a potent regulator of angiogenesis that 
functions to concurrently inhibit endothelial cell migra-
tion and the release of vascular endothelial growth 
factor from the extracellular matrix [29]. THBS1 was 
shown to be elevated in Acute ischemic stroke (AIS) 
and had positive predictive value at 3-months prog-
nosis [25]. And as AIS patients with relatively higher 
IGF2 and LYVE1 levels and lower THBS1 levels were 
more likely to have good outcomes [29]. The NCF2 
gene is a potential diagnostic and prognostic biomarker 
for unstable atherosclerotic plaque (UAP) -associated 
stroke, and smoking may up-regulate NCF2, thereby 
accelerating plaque instability and UAP-associated 
stroke [34]. In this study, the expression of THBS1 and 
NCF2 genes in qPCR validation was higher in normal 
subjects, which may be due to differences in model 
species and the complex role of it’s derivant in the 
microenvironment.

miRNAs are a group of endogenous non-coding small 
RNAs that regulate gene expression at the transcriptional 
level. Many studies have shown that miRNAs were highly 
expressed in atherosclerosis and played an important 
role in the occurrence and development of atheroscle-
rosis. miRNA-15a is up-regulated in anterior circulation 
infarction and small atherosclerotic stroke. miR-15a is 
associated with IL-6, IGF-1 and acute cerebral ischemia 
in blood, indicating that it is a potential diagnostic bio-
marker and therapeutic target for stroke [35]. Studies 
have verified that miR-15a-5p could reduce the inflam-
matory response and artery damage in diabetic AS rats 
by targeting FASN, and the increased expression of miR-
15a-5p may protective the treatment and treatment of AS 
patients [36]. Yang showed that inhibition of microRNA-
15a-5p expression could reduce OS and inflammation 
in IS patients, indicating the importance of microRNA-
15a-5p in IS [33].
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In this study, results showed that HSPA8, HSPA1A, 
and THBS1 are regulated by hsa-mir-92a-3p. miR-
92a belonging to microRNAs family, participates in 
pathophysiological process of cardiovascular diseases 
such as atherosclerosis, acute coronary syndrome, 
and myocardial infarction. And miR-92a was revealed 
to be highly expressed in normal vascular endothe-
lial cells, it affected the degradation and translation 
of target genes by interacting with target genes with 
specific binding sites, which is essential for the stabil-
ity of normal vascular homeostasis. Previous studies 
have detected the expression of KLF4 and miR-92a in 
rat myocardial tissue, confirming the target relationship 
between miR-92a and KLF4, and suggesting that the 
deletion of miR-92a can promote the upregulation of 
KLF4, thereby improving cardiac function and reduc-
ing myocardial cell apoptosis [37]. Meanwhile, Wang 
proposed that lncRNA X-Inaction-specific transcript 
(XIST) could affect angiogenesis and alleviate cerebro-
vascular injury after IS (CIS) by mediating miR-92a to 
regulate anti-inflammatory factor KLF4 [38]. In addi-
tion, miR-92a-3p was significantly increased in CAD 
patients compared to non-CAD patients. Knockout of 
miR-92a-3p in EMV could eliminate EMVS-mediated 
effects on ECs migration and proliferation in stromal 
plugs, and blocked vascular network formation. And 
the inhibition of THBS1 gene and protein expression 
was eliminated [39].

Nonetheless, this study has some limitations. First, we 
used the GSE180470 dataset as the validation set. The 
sample size of this validation set was only three pairs, 
which limited our ability to fully explore the diversity 
of gene expression in the target population. Second, 
the mRNA expression levels of key genes were verified 
by qPCR experiments in our study. Although the qPCR 
validation results were significant, the sample size of this 
study was relatively small, limiting the generalizability 
and statistical power of the results. A large sample size 
is needed for further verification of results. In qPCR, 
GAPDH was selected as the reference gene because it 
showed relatively stable expression levels in our study 
system. We are optimistic that the discovery of these 
genes will provide clinicians with new diagnostic mark-
ers and prognostic indicators, which will significantly 
improve the accuracy of disease assessment and person-
alized treatment planning of IS patients. However, we 
recognize that the selection of the optimal reference gene 
may vary for different study systems and conditions. In 
future studies, we could further explore other potential 
reference genes to assess their impact on the stability of 
the results. At the same time, the samples will be col-
lected and compared in different stages of IS to clarify the 
expression of each gene in different periods, and we will 

increase the related research and analysis at the protein 
level.
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