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Abstract
Background The COVID-19 pandemic has significantly impacted education systems worldwide, with Brazil being 
one of the countries with the longest school closures. Over a million children and teenagers have been affected, 
leading to increased hunger and nutritional deficiencies. This study aimed to implement long-term surveillance of 
SARS-CoV-2 infections in public and private schools in Campo Grande, Brazil, after returning to in-person classes.

Methods The study involved testing and genomic surveillance at 23 public and private schools in Campo Grande, 
Mato Grosso do Sul, Brazil, from October 18, 2021 to November 21, 2022. The participants eligible for enrollment were 
students aged 6–17 years and staff members from school institutions. At the time of collection, participants were 
asked if they had symptoms in the last two weeks. Whole-genome sequencing of SARS-CoV-2 was conducted to 
identify circulating variants and to compare them with those detected in the municipality. The demographic data and 
clinical history of the participants were described, and a logistic regression model was used to understand how the 
RT-qPCR results could be related to different characteristics.

Results The study included 999 participants, most of whom were women. A total of 85 tests were positive, with 
an overall positivity rate of 3.2%. The dynamics of case frequency were consistent with those observed in the 
municipality during the study period. The most common symptoms reported were cough, rhinorrhea, headache, 
and sore throat. Symptoms were significantly associated with SARS-CoV-2 infection. Eleven lineages were identified 
in school community samples, with a frequency of occurrence per period similar to that found in the sequences 
available for the municipality. The most prevalent lineages within the sampling period were BA.2 (59.3%) and BA.5 
(29.6%).
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Background
Education systems worldwide have faced unprecedented 
challenges during the COVID-19 pandemic. Many 
nations have developed measures at schools to lower 
the risk of infection as part of larger plans to prevent 
the spread of SARS-CoV-2 [1–3]. One of the first mea-
sures taken by governments worldwide was school clo-
sures. Brazil was among the countries where schools 
were closed for the longest time (78 weeks), whereas the 
global average was approximately 38 weeks [4]. Over a 
million children and teenagers in Brazil were affected by 
the closure of their schools. On-site school closures have 
increased hunger and nutritional deficiencies due to the 
lack of school meals and increased unemployment in vul-
nerable pre-pandemic communities, further exacerbating 
pre-existing inequalities in the country [5, 6].

The reopening of schools in Brazil for in-person and 
hybrid learning programs began in the second half of 
2020, but only a few schools returned at that time [6]. In 
Mato Grosso do Sul state, Brazil, in-person classes were 
suspended on March 17, 2020. The in-person return to 
school took place on July 26, 2021, for municipal schools, 
and on August 2, 2021, for state schools. Private schools 
returned to in-person classes on April 5, 2021, but with a 
hybrid option for the rotation of students or families who 
opted for the online system. Similar to other countries, 
strategies to prevent the transmission of SARS-CoV-2 in 
schools have focused on physical distancing, mask use, 
hygiene, staggering schedules, and cohorting [6–8]. How-
ever, an important tool for detecting active infections and 
potential outbreaks is testing, which was neglected in 
protocols for reopening Brazilian schools [6].

Surveillance of infections in school-aged children can 
help to understand the situation in schools, evaluate 
and adjust protective measures, and trigger mitigation 
responses [7, 9]. In addition, it can provide information 
that helps understand the severity of infections and pos-
sible subsequent complications, such as multisystem 
inflammatory syndrome in children (MIS-C) and post-
acute sequelae, or “long COVID” [8, 10–12]. Other stud-
ies have demonstrated the feasibility and potential role 
of regular SARS-CoV-2 monitoring in schools [13–19]. 
With government assistance at the federal, state, and 
municipal levels, the surveillance of SARS-CoV-2 infec-
tions in school environments could have been imple-
mented as one of the pillars of reopening plans. This 
could have reduced the time that the schools remained 

closed, guaranteeing greater safety for the school com-
munity, in conjunction with preventive measures. Thus, 
the aim of this study was to implement long-term sur-
veillance of SARS-CoV-2 in a representative number of 
public and private schools in the municipality of Campo 
Grande, Brazil, after all schools (private and public) 
returned to offering in-person classes. This study pro-
spectively examined SARS-CoV-2 infection among chil-
dren and adults in the school community, the symptoms 
presented, and the SARS-CoV-2 lineages circulating in 
this environment.

Methods
Study design and participants
Testing and genomic surveillance were conducted in 
public and private schools in the urban area of the 
municipality of Campo Grande, Mato Grosso do Sul, 
Brazil, from October 18, 2021, to November 21, 2022. 
The study was divided by school semester, totaling three 
surveillance periods: (i) from October 18 to Decem-
ber 1, 2021, the period in which all schools (private and 
public) already had in-person classes; (ii) from March 
9 to July 4, 2022; and (iii) from August 2 to November 
21, 2022 (Fig.  1). The present study is part of a larger 
and long-term research project, which is in accordance 
with the authorization of the Research Ethics Commit-
tee of Oswaldo Cruz Foundation (FIOCRUZ) of Brasília 
(CAAE: 47905721.9.0000.8027).

Public (municipal and state) and private schools were 
contacted and invited to participate in this project, and 
were considered eligible for enrollment of students aged 
between 6 and 17 years, as well as staff from school insti-
tutions, regardless of school position. In 2021, Campo 
Grande had 452 schools in the urban area, with 144,123 
students within the age range [20]. By 2022, there were 
461 schools and 145,119 students within the age range 
[21]. Despite the project’s authorizations, the schools had 
the freedom to choose whether to participate, and they 
could withdraw at any time. As there are schools that 
work at specific school levels, schools that covered the 
widest possible age range were prioritized to allow sam-
pling of the entire age range covered by the study with-
out the need to sample a large number of schools. A total 
of 250 schools met this condition (70 state schools, 89 
municipal schools, and 91 private schools), and 23 agreed 
to participate in the study (14 state schools, five munici-
pal schools and four private schools).

Conclusions Our findings demonstrate that schools can play a crucial role in epidemiological surveillance, helping 
trigger rapid responses to pathogens such as SARS-CoV-2. Long-term surveillance can be used to track outbreaks and 
assess the role of children and adults in transmission. It can also contribute to pandemic preparedness, enabling a 
rapid response to emergencies, such as COVID-19.
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During each period, eligible participants were con-
tacted with the help of the administrators of each school 
through face-to-face conversations, posters, and cell 
phone messages. A link was provided for online regis-
tration of school members who agreed to participate in 
the research. Participants needed to agree to the free and 
informed consent form and respond to a demographic 
questionnaire (Additional file 1) to be able to participate 
in the study. After agreeing to the free and informed con-
sent form, the participants received an automatic copy 
in the email registered for contact. Participants with dif-
ficulties completing the online registration were assisted 
by a team member either in person or by phone. The reg-
istration of students aged 6–17 years was conducted by 
a legal representative. However, even with the represen-
tatives’ consent, the students agreed to participate after 
receiving detailed information about the research and 
signing the free and informed assent form. A copy of the 
free and informed assent form was provided to be deliv-
ered to the respective representatives. The study data 
were collected and managed using REDCap electronic 
data capture tools hosted by the Oswaldo Cruz Founda-
tion of Mato Grosso do Sul – FIOCRUZ MS [22, 23].

Contextualization of health measures in force during the 
study period
In Mato Grosso do Sul state, Brazil, biosafety proto-
cols were implemented with the aim of mitigating the 

transmission of SARS-CoV-2 during the return of in-
person classes in 2021. These included operational 
procedures of hygiene and cleanliness of the school envi-
ronment, furniture and pedagogical materials, measures 
of social distancing, waste management, guidance of fam-
ily members, attendance to students, measures of main-
tenance of air conditioning, water tanks and drinking 
fountains, procedures for the entry and exit of students, 
and snack time and procedures to follow if a student or 
any other member of the school community has symp-
toms. Additionally, all school members were required to 
wear a mask, with some restrictions depending on age 
group. The vaccination program in Mato Grosso do Sul 
began in January 2021 for individuals over 12 years of 
age. For children aged 5 to 11 years, it started in January 
2022, and for children aged 3 to 5 in July 2022. Consider-
ing the increase in the population’s vaccination rate and 
the drop in the number of cases, the state government 
ceased to require the mandatory use of masks in public 
places, private establishments accessible to the public, 
and public transportation.

Testing
In the first and second sampling periods, each school was 
visited every two weeks. However, at the request of the 
participants regarding the interval between collections, 
each school was visited once a month during the third 
sampling period. Collection visits to each school were 

Fig. 1 Monthly confirmed COVID-19 cases (bars) for the municipality of Campo Grande (above), Brazil, and for schools in the study (below). The dashed 
line shows the date on which all the schools had in-person classes. Orange shading shows the testing periods
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conducted in the mornings and afternoons. In general, 
two to three schools were visited daily. All participants 
underwent swab collection, but they could always refuse 
to be tested or withdraw from the project at any time. At 
the time of collection, participants were asked if they had 
symptoms in the past two weeks, and the answers were 
entered into a follow-up questionnaire (Additional file 1). 
Eligible participants who were not enrolled in the project 
could register at the time of the visit without restrictions. 
After each collection period of the day, the samples were 
immediately taken to the Central Public Health Labora-
tory of Mato Grosso do Sul (LACEN/MS), where they 
were tested using real-time reverse transcription poly-
merase chain reaction (RT-qPCR) as a routine diagnosis 
for SARS-CoV-2. Nucleic acid extraction was performed 
using the Quick-DNA/RNA Viral Megabead kit (Zymo 
Research, Irvine, CA, USA), following the manufacturer’s 
instructions. RT-qPCR for the detection of SARS-CoV-2 
was performed using the Molecular SARS-CoV-2 (EDx) 
Kit (Bio-Manguinhos - FIOCRUZ, Rio de Janeiro, RJ, 
Brazil), following the manufacturer’s instructions. The 
agreed deadline for releasing results for participants was 
48  h, although they were usually released in less than 
24 h.

After the tests were completed, the participants 
received a report with the results. In the case of the stu-
dents, the report was sent to their legal representatives. 
Participants with a positive result received the research 
report in addition to an official report from the laboratory 
management platform of the Brazilian Unified Health 
System. This official report could be shown to healthcare 
professionals (doctors) for proper treatment. However, 
the medical treatment was not within the scope of this 
study. School directors/coordinators were informed so 
that they could act in relation to positive cases in accor-
dance with the recommendations of the Brazilian Min-
istries of Health and Education, as it was not the study’s 
role in determining such measures. In general, positive 
cases could remain at home for at least seven days. Par-
ticipants who tested positive were not monitored when 
they were away but could be tested again as soon as they 
returned to the school environment.

SARS-CoV-2 amplification and sequencing
Samples for whole-genome sequencing were selected 
based on Cq values (≤ 30) to allow for high genomic 
coverage. The viral RNA was subjected to reverse tran-
scription and PCR amplification using the Illumina 
COVIDSeq Assay (Illumina, San Diego, CA, USA), 
including the Artic v4.1 nCoV-2019 Amplicon Panel 
(IDT, Coralville, Iowa, USA), but following modifica-
tions to the original manufacturer’s instructions, as 
proposed by the Fiocruz Genomic Network [24–26]. 
Normalized pooled amplicons of each sample were used 

to prepare NGS libraries and were clustered using the 
MiSeq Reagent Kit V2 (300-cycles) on 2 × 150 cycle runs. 
All sequencing data were collected using an Illumina 
MiSeq sequencing platform.

FastQ files were generated using the Illumina pipe-
line in BaseSpace. Consensus sequences were generated 
using the Viralflow v1.0.0 workflow [27]. SARS-CoV-2 
genome assembly was performed using the reference 
NC_045512.2, after trimming primer sequences of the 
Artic v4.1 nCoV-2019 Amplicon Panel. The quality of the 
consensus sequences was assessed using the Nextclade 
v2.14.0 [28]. Consensus sequences were initially assigned 
to viral lineages according to the nomenclature pro-
posed by [29] using the Pangolin software [30] and later 
confirmed by phylogenetic analyses. All genomes were 
uploaded to the EpiCoV database in GISAID [31–33] 
(Additional files 2 and 3).

Data set composition and maximum likelihood 
phylogenetic analysis
The sequences available for the municipality of Campo 
Grande from October 1, 2021, to December 31, 2022, 
were searched in the EpiCoV database in GISAID (Addi-
tional files 2 and 3). All sequences deposited by Octo-
ber 14, 2023, were downloaded, regardless of quality, to 
compare the known lineages for the municipality with 
the lineages sequenced from school samples. However, 
only sequences with less than 10% undetermined ‘N’ 
bases were kept in the data set for phylogenetic analysis. 
Because of the presence of recombinants and sequences 
with unassigned calls by the Pangolin software, four 
datasets were generated to evaluate phylogenetic rela-
tionships: (i) all sequences below the 10% threshold of 
unidentified positions; (ii) those below the threshold of 
unidentified positions and no recombinants; (iii) those 
below the threshold of unidentified positions and no 
unassigned calls in Pangolin; (vi) those below the thresh-
old of unidentified positions, no recombinants, and no 
unassigned calls in Pangolin. To assist in the identifica-
tion of clades, the reference genomes of variants of con-
cern (VOC), of interest (VOI), and under monitoring 
(VUM), provided by GISAID, were added to each data-
set (Additional files 2 and 3). The sequences were aligned 
using MAFFT v7.520 [34, 35], inspected, and edited 
using AliView v1.28 [36]. The best nucleotide substitu-
tion model was measured using ModelFinder [37] and 
the phylogenetic analyses were performed using the 
IQ-TREE v2.2.2.7 [38, 39]. Branch support values were 
obtained using the ultrafast bootstrap approximation 
(UFBoot) [40, 41] and SH-aLRT branch tests [42], both 
with 1,000 replicates. The resulting phylogenies were 
visualized and edited in R software v4.3.1 [43], using the 
packages ‘tidytree’ [44], ‘ggtree’ [44–48] and ‘treeio’ [44, 
49].
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Statistical analysis
The characteristics of the study participants were 
described by summarizing the demographics and clini-
cal history of each of them with absolute frequencies, 
percentages, and 25–75% interquartile range (IQR). Data 
on confirmed cases in the municipality of Campo Grande 
were obtained from the Ministry of Health, Brazil [50], 
for comparison with the results of tests in schools. A 
binomial logistic regression model with random effect for 
schools was used employing the R package ‘glmmTMB’ 
[51] to understand how the RT-qPCR results could be 
related to the group (staff and students) and sex (female 
and male) of participants, the presence of symptoms at 
the time of collection, and the period in which the tests 
were performed. Multicollinearity was checked by exam-
ining the Pearson correlation coefficient (Pearson’s r) 
between each pair of explanatory variables, using the R 
package ‘correlation’ [52, 53], and computing the variance 
inflation factor (VIF), with the R package ‘performance’ 
[54]. Tables and estimation plots were generated using 
the ‘jtools’ package [55]. The model was checked for nor-
mality of residuals, normality of random effects, homo-
geneity of variance, and residual dispersion using the 
packages ‘DHARMa’ [56] and ‘performance’.

Results
A total of 2,675 tests were performed on 999 participants, 
with three tests performed on average per school staff 
(IQR: 1–4) and two tests (IQR: 1–3) per student (Table 1). 
The majority of participants were women, and most 

of them received at least one dose of the vaccine. The 
average age of all school staff was 43 years (IQR: 35–51 
years) and that of students was 12 years (IQR: 10–15 
years) (Table 1). Participation in the study was low, with 
an average number of 23 volunteers per school in both 
groups, school staff and students (staff IQR: 14–34; stu-
dents IQR: 14–33) (Table 1). In total, 85 tests were posi-
tive from 83 participants, with an overall positivity rate 
of 3.2% (95% CI 2.5–3.9) (Table 2). Of these, 51 (60.0%) 
were from school staff and 34 (40.0%) were from stu-
dents. The average age of all positive participants was 34 
years (IQR: 13–49), 48 years (IQR: 40–56) for the school 
staff, and 13 years (IQR: 11–14) for the students. Of the 
two participants who tested positive twice, one was a 
female member of the school staff who tested positive 14 
days after the first positive test. Because of the short time 
period, both results were possibly due to the same infec-
tion. She had been vaccinated and had not reported any 
symptoms at the time of collection. The other participant 
was a middle-school boy who tested positive again 104 
days after the first positive test, which was possibly a case 
of reinfection. He was also vaccinated and reported no 
symptoms in either test.

Overall, the dynamics of the increase and decrease in 
detected cases resembled those observed in the munici-
pality during the study period (Fig.  1). In the first test-
ing period, there was only one positive result out of 473 
tests (0.2%). The second period had the highest positivity 
rate, with 58 out of 1,188 (4.9%), which was significantly 
higher than that in the other two periods (Tables 2 and 

Table 1 Study participation rates per group (staff and student), with the number of participants per category, or the average and 
25–75% interquartile range (IQR) per participant

Total Period 1 Period 2 Period 3
Staff Student Staff Student Staff Student Staff Student

Total participants 473 526 116 272 309 247 325 198
Sex Female 399 305 99 168 263 131 272 119

Male 74 221 17 104 46 116 53 79
Vaccinated Yes 464 323 111 107 304 199 321 165

No 6 132 5 98 3 39 3 29
Not informed 3 71 0 67 2 9 1 4

Age (years) Average 43 12 42 12 43 12 44 13
25–75% IQR 35–51 10–15 35–50 10–15 35–51 10–15 37–51 11–15

RT-qPCR testing Average 3 2 1 1 2 2 2 2
25–75% IQR 1–4 1–3 1–2 1–1 1–3 1–3 1–3 1–3

Participants per school Average 23 23 6 14 16 12 17 10
25–75% IQR 14–34 14–33 3–9 5–19 12–24 7–16 12–22 6–13

Number of people in schools* Total** *** *** 2966 18,031 4539 17,445 4539 17,445
Average 188 887 144 902 277 872 277 872
25–75% IQR 126–244 550–1082 94–188 592–1079 176–274 542–1092 176–274 542–1092

* It encompasses all school staff and students at schools that, regardless of whether they are enrolled in the study. The data was obtained from the Brazilian Basic 
Education Census of 2021 and 2022 [20, 21]

** The total number of people within the studied age range (students aged 6–17 and school staff of any age) who were linked to the schools that participated in the 
study

*** Number not available
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3). An increase in the number of positives was observed 
each month of the second period, although March 2022 
showed the highest positivity (Table 4). In the third test-
ing period, a decrease in the number of positives was 
observed, with 26 out of 1,014 (2.6%), but still greater 
positivity than that observed in the first period (Fig.  1; 
Table  2). Positivity did not differ significantly between 
the groups and sexes, but the presence of symptoms was 
significantly associated with SARS-CoV-2 infection when 
compared with asymptomatic cases (Table  3). Among 
the positive results, participants reported having symp-
toms at the time of collection in 32 tests (37.6%) (Fig. 2). 

Symptoms were reported in 25 (49.0%) positive tests by 
school staff and in seven (20.6%) by students (Fig. 2). The 
most commonly reported symptoms were cough, rhinor-
rhea, headache, and sore throat among both students and 
school staff (Fig. 2).

As of October 31, 2023, 741 sequences were deposited 
in the EpiCoV database in GISAID from samples col-
lected between October 2021 and December 2022 in the 
municipality of Campo Grande. Of these, 714 (96.4%) 
were from samples unrelated to the present study, but 
with 106 sequences having more than 10% undetermined 
‘N’ bases. A total of 60 lineages/sublineages were iden-
tified from the 671 sequences, as it was not possible to 
determine the lineages/sublineages for 43 sequences 
(Fig.  3; Table  5; Additional file 3). Three recombinants 
were identified: XAG and XM, recombinants of Omicron 
BA.1/BA.2, and XBB, recombinants of two lineages of 
Omicron BA.2 (Fig. 3; Table 5). Pangolin unassigned calls 
occurred in 74 sequences, including the recombinants 
XAG and XM. In this study, 27 samples from schools 
were sequenced, covering the period from April to 
November 2022. Eleven lineages were identified, with a 

Table 2 Number of tests performed (N) and positive cases (np) by characteristics of the participants, with percentages (%) and the 
exact 95% confidence interval (95% CI)

Total Period 1 Period 2 Period 3
N (Np) %; 95% CI N (Np) %; 95% CI N (Np) %; 95% CI N (Np) %; 95% CI

Total 2675 (85) 3.2; 2.5–3.9 473 (1) 0.2; 0.0–1.2 1188 (58) 4.9; 3.7–6.3 1014 (26) 2.6; 1.7–3.7
Sex Female 1933 (61) 3.2; 2.4–4.0 331 (1) 0.3; 0.0–1.7 830 (42) 5.1; 3.7–6.8 772 (18) 2.3; 1.4–3.7

Male 742 (24) 3.2; 2.1–4.8 142 (0) 0.0; 0.0–2.6 358 (16) 4.5; 2.6–7.2 242 (8) 3.3; 1.4–6.4
Group Staff 1379 (51) 3.7; 2.8–4.8 148 (0) 0.0; 0.0–2.5 601 (36) 6.0; 4.2–8.2 630 (15) 2.4; 1.3–3.9

Student 1296 (34) 2.6; 1.8–3.6 325 (1) 0.3; 0.0–1.7 587 (22) 3.7; 2.4–5.6 384 (11) 2.9; 1.4–5.1
Age (years) 6–10 291 (3) 1.0; 0.2–3.0 76 (0) 0.0; 0.0–4.7 146 (0) 0.0; 0.0–2.5 69 (3) 4.3; 0.9–12.2

11–14 623 (23) 3.7; 2.4–5.5 158 (1) 0.6; 0.0–3.5 278 (16) 5.8; 3.3–9.2 187 (6) 3.2; 1.2–6.9
15–17 392 (8) 2.0; 0.9–4.0 91 (0) 0.0; 0.0–4.0 170 (6) 3.5; 1.3–7.5 131 (2) 1.5; 0.2–5.4
≥ 18 1369 (51) 3.7; 2.8–4.9 148 (0) 0.0; 0.0–2.5 594 (36) 6.1; 4.3–8.3 627 (15) 2.4; 1.3–3.9

Self-reported symptoms Yes 380 (32) 8.4; 5.8–11.7 5 (0) 0.0; 0.0–52.2 240 (24) 10.0; 6.5–14.5 135 (8) 5.9; 2.6–11.3
No 2295 (53) 2.3; 1.7–3.0 468 (1) 0.2; 0.0–1.2 948 (34) 3.6; 2.5–5.0 879 (18) 2.0; 1.2–3.2

Table 3 Odds ratios (OR), 95% confidence intervals (95% CI), and 
p-values estimated from the binomial logistic regression model 
for the positive RT-qPCR result for SARS-CoV-2
Predictors OR 95% CI p-value
Sex [Male] 1.64 0.80–3.38 0.178
Group [Student] 0.99 0.57–1.73 0.984
Self-reported symptoms [yes] 3.03 1.90–4.81 < 0.001
Period [period 1] 0.06 0.01–0.42 0.005
Period [period 3] 0.56 0.34–0.90 0.016
Group [Student] × Sex [Male] 0.53 0.19–1.44 0.212

Table 4 Number of tests performed (N) and positive cases (np) per month, with percentages (%) and the exact 95% confidence 
interval (95% CI)
Year Month Total Staff Student

N (Np) %; 95% CI N (Np) %; 95% CI N (Np) %; 95% CI
2021 October 173 (1) 0.6; 0.0–3.2 46 (0) 0.0; 0.0–7.7 127 (1) 0.8; 0.0–4.3

November 300 (0) 0.0; 0.0–1.2 102 (0) 0.0; 0.0–3.6 198 (0) 0.0; 0.0–1.8
2022 March 23 (2) 8.7; 1.1–28.0 10 (2) 20.0; 2.5–55.6 13 (0) 0.0; 0.0–24.7

April 187 (4) 2.1; 0.6–5.4 57 (0) 0.0; 0.0–6.3 130 (4) 3.1; 0.8–7.7
May 395 (22) 5.6; 3.5–8.3 195 (12) 6.2; 3.2–10.5 200 (10) 5.0; 2.4–9.0
June 555 (30) 5.4; 3.7–7.6 325 (22) 6.8; 4.3–10.1 230 (8) 3.5; 1.5–6.7
July 28 (0) 0.0; 0.0–12.3 14 (0) 0.0; 0.0–23.2 14 (0) 0.0; 0.0–23.2
August 331 (18) 5.4; 3.3–8.5 220 (12) 5.5; 2.8–9.3 111 (6) 5.4; 2.0–11.4
September 289 (5) 1.7; 0.6–4.0 174 (1) 0.6; 0.0–3.2 115 (4) 3.5; 1.0–8.7
October 222 (1) 0.5; 0.0–2.5 127 (1) 0.8; 0.0–4.3 95 (0) 0.0; 0.0–3.8
November 172 (2) 1.2; 0.1–4.1 109 (1) 0.9; 0.0–5.0 63 (1) 1.6; 0.0–8.5
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Fig. 3 SARS-CoV-2 lineages and phylogenetic tree. Bar charts show the relative frequency of lineages sequenced during the sampling months of the 
study. Donut chart shows lineages with unassigned calls in Pangolin. The phylogenetic tree was reconstructed with the data set (vi) with sequences 
below the threshold of unidentified positions, no recombinants, and no unassigned calls in Pangolin (Model: GTR + F + I + R2). Phylogenetic reconstruc-
tions with the other data sets are in the Additional file 4. Reference tips are the reference genomes of the variants provided by GISAID. For detailed infor-
mation on lineages and tips, see Additional file 3

 

Fig. 2 Self-reported symptoms by testing for all participants, school staff and students. Above is the percentage of tests with symptoms for each test 
result (positive and negative). Below is the frequency of each symptom reported at the time of collection, by test result (positive and negative)
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frequency of occurrence per period similar to that found 
in the sequences available in the GISAID (Fig.  3). The 
most prevalent lineages within the sampled period were 
BA.2 (59.3%) and BA.5 (29.6%) (Fig.  3; Table  5; Addi-
tional file 4). Pangolin unassigned calls occurred only 
in the recombinant XM sequence. Phylogenetic analy-
sis recovered all the school sequences in the respective 
clades of their lineage (Fig. 3; Table 5; Additional file 4).

Discussion
This study demonstrated the potential benefits of long-
term surveillance in school communities. Even with a 
small participation, compared to the number of students 
and professionals in schools (Table 1), the observed pat-
tern of increase or decrease in detected cases was simi-
lar to that observed in the municipality, although on a 
much smaller scale (Fig.  1), with the highest positivity 
in the period between March and June 2022 (Tables  2 
and 3). The SARS-CoV-2 lineages also corresponded to 
those obtained per period in the municipality, with the 
sequenced samples demonstrating the predominance 
of BA.2 and BA.5 omicron lineages (Fig.  3; Table  5). 
Although further studies are still essential, especially 
to assess the cost-effectiveness of implementing such 
measures, it was possible to demonstrate the viability of 
surveillance tests combined with genomic surveillance 
within schools, allowing the detection and isolation of 
positive cases, identification of virus circulation dynam-
ics, and monitoring of variants.

Population-based studies conducted in other states in 
Brazil, as well as in other countries, showed that reopen-
ing schools was not a factor that significantly increased 
the number of COVID-19 cases [19, 57–64]. Additionally, 

studies have shown that the transmission of COVID-19 
in school environments is related to the level of com-
munity transmission, although with a lower incidence 
rate [59, 64]. During the present study, when cases in the 
municipality increased, a similar pattern was observed in 
the results of tests carried out in schools, and the same 
was observed with the reduction in cases (Fig. 1). After 
the return to in-person classes in all schools (private and 
public) in the municipality in 2021, there was no appar-
ent increase in the number of registered cases com-
pared to the previous months, while only one case was 
detected in the schools studied (Fig.  1). The increase in 
cases observed in January 2022 was caused by the intro-
duction of the Omicron variant in Brazil (Figs. 1 and 4), 
which was first recorded in November 2021, in addition 
to a possible relaxation of preventive measures owing to 
the significant drop in the number of cases in the previ-
ous months [65, 66].

Although the presence of symptoms has been asso-
ciated as a good predictor of SARS-CoV-2 infection 
(Table  3), many cases without reported symptoms were 
found, especially among students (with a potential case 
of reinfection) (Fig. 2). Among the school staff, 51% of the 
positive cases did not report any symptoms at the time of 
testing, compared to 74% among students (Fig. 2). Other 
studies have shown that children and young adults may 
experience a milder form of the disease than adults, usu-
ally with an expressive percentage of asymptomatic cases 
[15, 67, 68]. However, there is no definitive answer as 
to how asymptomatic and pre-symptomatic transmis-
sion contribute to the transmission of SARS-CoV-2 [19, 
69, 70]. Despite these uncertainties, surveillance testing 
could potentially help provide clearer answers regarding 

Table 5 Number of sequences and pangolin unassigned calls per SARS-CoV-2 lineage, available on GISAID (without school 
sequences) and sequenced in the present study (only school sequences)
Lineage GISAID Schools

Total (%) Unassigned (%) Total (%) Unassigned (%)
AY* 66 (9.2%) 0 (0.0%) - -
B.1.1.529 5 (0.7%) 5 (6.8%) - -
BA.1* 360 (50.4%) 7 (9.6%) - -
BA.2* 122 (17.1%) 16 (21.9%) 16 (59.3%) 0 (0.0%)
BA.4* 11 (1.5%) 3 (4.1%) 1 (3.7%) 0 (0.0%)
BA.5* 47 (6.6%) 19 (26.0%) 8 (29.6%) 0 (0.0%)
BE* 16 (2.2%) 6 (8.2%) 1 (3.7%) 0 (0.0%)
BF.39 1 (0.1%) 1 (1.4%) - -
BQ.1* 34 (4.8%) 12 (16.4%) - -
DL.1 2 (0.3%) 2 (2.7%) - -
EF.1 1 (0.1%) 0 (0.0%) - -
P.1* 2 (0.3%) 0 (0.0%) - -
XAG 1 (0.1%) 1 (1.4%) - -
XBB.1* 2 (0.3%) 0 (0.0%)
XM 1 (0.1%) 1 (1.4%) 1 (3.7%) 1 (100%)
Unidentified 43 (6.0%) 0 (0.0%) - -
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the role of children in the transmission of SARS-CoV-2, 
in addition to identifying active cases and potential out-
breaks [19, 69].

The sequencing results of this study also demonstrate 
the potential for long-term surveillance in schools. It 
was possible to identify the predominant lineages in 
this period, the replacement of BA.2 by the BA.5 Omi-
cron lineage, and the co-circulation of different lineages 
(Fig.  3). Likewise, until November 16, 2023, the only 
known lineage of samples collected in September 2022 
came from the present study (Fig.  3). To date, genomic 
surveillance of SARS-CoV-2 has not been specifically 
conducted in schools in Brazil. SARS-CoV-2 sequencing 
allows monitoring of potentially more virulent, transmis-
sible, or emerging variants [17, 71–74]. Recently, public 
health systems have prioritized pathogen genome surveil-
lance, particularly since the COVID-19 pandemic. There 
is increasing international understanding of the role of 
genomic surveillance in public health as an important 
tool for pandemic (or epidemic) preparedness proposed 
by the WHO [75, 76]. Therefore, school environments 
can be considered important targets for genomic surveil-
lance because of their potential role in the community 
spread of infectious diseases, considering the high mix-
ing rates among school-age children [77, 78]. In addition, 
genomic surveillance in schools has gained attention as a 
tool during the COVID-19 pandemic, with studies focus-
ing on wastewater surveillance demonstrating its applica-
tion and effectiveness [79, 80].

Our study has some limitations. Participation was vol-
untary and not all urban schools agreed to participate 
in the study. Some schools that participated in 2021 did 
not continue in 2022, while others only joined from 2022 
onwards. Student involvement was lower than antici-
pated despite efforts to raise awareness of the signifi-
cance of the study in the school community. Because the 
parents completed the children’s registration, the sample 
size of this group was low owing to the difficulty in get-
ting in touch with the parents. Part of the reason for low 
participation can be attributed to the refusal to undergo 
swab collection for testing, not only in children and ado-
lescents but also in adults. Some potential participants 
even described refusing due to the discomfort of swab 
collection, especially when considering the possibility of 
repeating it periodically throughout the study. In addi-
tion, it was observed throughout the study that people’s 
perception of risk may be a factor that influenced their 
acceptance of participating in the study. When peo-
ple had someone close to them who tested positive for 
SARS-CoV-2 or there was news about an increase in 
cases in the country, there was a greater demand to par-
ticipate in the study, especially among adults. Since par-
ticipation was voluntary, it is assumed that the sampling 
resulted in a selection bias toward those who were more 

cautious and concerned about the pandemic. Therefore, 
the results should be interpreted with caution because 
generalizations can be misleading. Finally, it is worth 
mentioning the possibility of false-negative results in RT-
qPCR testing. Considering that sampling was periodic, 
the time of collection for each participant may have influ-
enced the sensitivity in detecting SARS-CoV-2 owing to 
the variation in viral load throughout the infection [81].

Conclusions
In conclusion, this study showed that the school commu-
nity might be an important instrument in epidemiological 
surveillance, which can act as a public health component 
to trigger a rapid response. Long-term surveillance in 
schools could be interesting not only for SARS-CoV-2 
but also for other pathogens. This was reinforced by 
the presence of negative tests, in which the participants 
reported symptoms, which is a possible indication of the 
circulation of other pathogens. Therefore, it can be used 
to track outbreaks and transmissible variants and to eval-
uate the role of children and adults in the transmission of 
these pathogens. Surveillance in schools can also be seen 
as part of pandemic (or epidemic) preparedness, allowing 
a rapid response to emergencies, such as the COVID-19 
pandemic. In conjunction with health education on the 
importance of vaccines and hygiene care, surveillance in 
schools can avoid or at least reduce the time that schools 
would need to remain closed, thus reducing the impact of 
adverse effects on children’s well-being and their poten-
tial to exacerbate inequality. Finally, it is important to 
highlight that additional studies are needed to compare 
the results and evaluate the cost-effectiveness of imple-
menting measures, such as those employed in this study, 
especially when considering the public health system.
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