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Abstract 

Background Many studies have investigated the role of metals in various types of malignancies. Considering 
the wide range of studies conducted in this field and the achievement of different results, the presented systematic 
review was performed to obtain the results of investigations on the prevention and occurrence of various types 
of cancer associated with metal exposures.

Methods In this review, research was conducted in the three databases: Scopus, PubMed, and Web of Science 
without historical restrictions until May 31, 2024. Animal studies, books, review articles, conference papers, and letters 
to the editors were omitted. The special checklist of Joanna Briggs Institute (JBI) was used for the quality assessment 
of the articles. Finally, the findings were classified according to the effect of the metal as preventive or carcinogenic.

Results The total number of retrieved articles was 4695, and 71 eligible results were used for further investigation. 
In most studies, the concentration of toxic metals such as lead (Pb), chromium (Cr (VI)), arsenic (As), cadmium (Cd), 
and nickel (Ni) in the biological and clinical samples of cancer patients was higher than that of healthy people. In 
addition, the presence of essential elements, such as selenium (Se), zinc (Zn), iron (Fe), and manganese (Mn) in toler-
able low concentrations was revealed to have anti-cancer properties, while exposure to high concentrations has det-
rimental health effects.

Conclusions Metals have carcinogenic effects at high levels of exposure. Taking preventive measures, implement-
ing timely screening, and reducing the emission of metal-associated pollutants can play an effective role in reducing 
cancer rates around the world.

Keywords Cancer, Essential elements, Metal carcinogenesis, Heavy metals, Oxidative stress

Introduction
Currently, one of the main causes of morbidity and mor-
tality worldwide is cancer. More than 1 person out of 5 
people get cancer [1]. Based on projections, the num-
ber of new cancer patients will increase from 14.1 mil-
lion reported in 2012 to 21.6 million estimated in 2030 
[2]. Lifestyle behaviors such as obesity, smoking, and 
unhealthy diet, genetic changes, chronic diseases, and 
environmental interactions play key roles in cancer eti-
opathogenesis [3, 4].

Cancer is a disease caused by the uncontrolled and 
unnormal cell growth, resulting in the possibility to 
invade and metastasize any part of the body and forma-
tion of a tumor [5]. There are several types of cancer, 
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including carcinoma, sarcoma, lymphoma, and leu-
kemia [6]. The causes of cancer are mutations in the 
genes responsible for cell growth and division control 
[6]. Among the causes of the mutations, genetic inher-
itance, hormonal imbalances, and exposure to envi-
ronmental factors such as certain chemicals  can be 
mentioned [6]. Cancer pathophysiology involves three 
stages. The first one is caused by the initiation of muta-
tions in the cell DNA leading to the activation of can-
cer genes and the inactivation of tumor suppressor 
genes. In the second stage promotion of the mutation 
cell takes place, which is stimulated by the differentia-
tion and rapid growth of the mutation cell, forming a 
small cluster of abnormal cells. In the third stage the 
progression takes place, where abnormal cells continue 
to divide and grow, forming tumors that invade the sur-
rounding tissue, and spread to other parts of the body 
through the blood flow or lymph system [6].

Studies have shown that various metals can impact 
on cancer induction by the same mechanisms, such as 
manipulating the state of chromatin and gene expression 
[7] or producing ROS and  increasing  oxidative stress 
[8]. Nickel was found to activate the signal pathways 
induced by hypoxia, mediated by competition with Fe 
in the prolyl-hydroxylase [8]. Arsenic and Cd have also 
been shown to compete or replace important metals such 
as Zn and Ca in proteins as the main mechanisms of cell 
gene and cell toxicity [8]. Also, As and Cd were found 
to suppress cell autophagy, which is an important factor 
in tumor suppression [8]. Considering genetic damage 
through both oxidative and nonoxidative (DNA adducts) 
mechanisms, metals were revealed to cause significant 
changes in DNA methylation and histone modifications, 
that results in epigenetic silencing or reactivation of gene 
expression [9]. Moreover, it was revealed in in vitro geno-
toxicity experiments and animal carcinogenicity studies 
that metals can cause cocarcinogenic and comutagenic 
effects as  metals are likely to interfere with DNA repair 
processes [9].

Existing reports estimate that environmental factors, 
such as insecticides and pesticides, pollutants in air, 
water, and soil, cause 24% of the global disease burden 
measured in healthy life years lost and 23% of all types 
of premature deaths [10]. Studies indicate that the differ-
ence in exposure to environmental-related risk factors 
and the ability to obtain adequate health care increase 
the environmental burden of the apperance of diseases 
in developing countries 15 times compared to devel-
oped countries [11–13]. Environmental anthropogenic 
changes, such as water, soil, and air pollution, the growth 
of industrial activities, agricultural practices, the use of 
chemical fertilizers and pesticides, and food process-
ing, play an important role in increasing the incidence of 

cancer by disrupting the balance of trace elements and 
metals in the environment [14, 15].

The mechanism of toxicity and carcinogenicity of toxic 
metals is presented in Fig.  1. After entering the body 
through exposure via digestion, inhalation, and dermal 
contact, metals can accumulate in the vital organs of the 
body such as the liver, kidney, and bones [16]. This fea-
ture can cause complications caused by the toxic effects 
of these elements in humans, including digestive sys-
tem and kidney dysfunction, immune system dysfunc-
tion, nervous system disorders, vascular damage, birth 
defects, skin lesions, and epigenetic processes that lead 
to cancer [17, 18]. These processes lead to the deactiva-
tion of tumor suppressor genes, DNA repair enzymes, 
the transformation of proto-oncogenes into oncogenes, 
as well as changes in DNA methylation [19]. Metals 
also significantly affect the development of malignan-
cies by activating redox-sensitive transcription factors, 
a protein that signals pathways involved in cell growth, 
apoptosis, disruption of cycle regulation in cells, as well 
as cell differentiation [20, 21], histone modifications and 
non-coding RNA expression [22, 23]. In addition, the ini-
tiation and progression of cancer have been found to be 
related to oxidative stress and the activation of inflamma-
tory mediators. Connecting and activating transporters 
and cell surface receptors [24], activating metallothio-
neins [25] and specific enzymes and modulating selected 
intracellular kinases and phosphatases [26, 27] are other 
mechanisms of metal carcinogenesis. The following pro-
tein kinase: extracellular signal-regulated (ERK1/2) and 
protein kinase B (PKB or AKT) are the main elements 
of intracellular signaling that are effective in the cell pro-
liferation regulation process [28, 29] and are sensitive to 
increasing/decreasing metal concentrations [29].

Although the carcinogenic role of metals has been 
proven in many studies [30–32], some researchers have 
reached contradictory results. The results of a recent 
case–control study showed that there  was  an inverse 
relationship between plasma Se levels and the chance of 
developing renal cell carcinoma [33]. Also, many studies 
reported higher concentrations of Mn and Fe in healthy 
people than in patients with various types of cancer such 
as lung [34], brain tumors [35], testicular [31], kidney 
[36], and non-melanoma skin [37].

However, many metals, such as copper (Cu), iron (Fe), 
selenium (Se), strontium (Sr), manganese (Mn), zinc 
(Zn), and molybdenum (Mo), are essential for life at low 
concentrations [38]. These metals have protective roles 
in processes such as chromosome damage and oxidation 
[38, 39]; and by regulating cell metabolism and DNA, 
RNA, and protein synthesis, they have preventive effects 
on cancer [40]. They also act as cofactors for some anti-
oxidants such as superoxide dismutases [41], play a role 
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in cell differentiation and apoptosis, and are essential for 
all stages of the cell cycle [42]. However, despite the evi-
dence demonstrating their preventive role in cancer [33, 
34, 43], if their concentration exceeds the body’s homeo-
static capacity, they can lead to degenerative conditions 
and even cancer [44].

The development of knowledge and technology in 
recent decades has led to the use of various solutions 
to prevent the spread of metals in the environment and 
reduce the adverse effects of exposure to these elements. 
Among these solutions, we can mention using Nano-
materials to reduce the consumption of substances con-
taining heavy metals in the water remediation process 
[45] and chelating agents and  barrier creams to prevent 
excessive exposure to heavy metals [46]. In addition, 
global removal of lead from gasoline, control of exposure 
to As in drinking water in Chile [47], and using bio-fil-
ters to remove these elements from wastewater [48] and 
landfill leachate [49] are among the preventive measures 
taken in this field. But considering the increasing spread 
of metals in the environment and the chronic exposure 

of people to these toxic elements, it seems that the meas-
ures taken are not enough.

Considering the broad exposure of humans to metals, 
the important role of these elements in cancer causa-
tion, and the contradictory results in various studies, our 
systematic review was performed to retrieve the scien-
tific literature without historical restrictions until May 
31, 2024. The main aims of this review were as follows: 
1) evaluation of the types and concentrations of metals 
in the environmental or biological samples of exposed 
people, 2) investigation of the carcinogenic effect asso-
ciated with metal concentrations, and 3) estimating the 
potential role of controlling metal exposures in cancer 
prevention.

Methods
Study protocol
The presented systematic review complies with the state-
ment of Preferred Reporting Items for Systematic Review 
and Meta-analyses guidelines (PRISMA) [50] and fully 
adherence with the protocol that was registered in the 

Fig. 1 Mechanism of toxicity and carcinogenicity of metals after human exposure
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International Prospective Register of Systematic Reviews 
(PROSPERO) (registration number CRD42023397867) 
on 8 February 2023.

PECO statement
To develop the research question, a Population, Expo-
sure, Comparator, and Outcome (PECO) protocol was 
used, and the statement is presented in Table  1. In this 
statement, the exact purpose of the present systematic 
review, the terms of search, and the inclusion and exclu-
sion criteria of studies related to the impact of exposure 
to different levels of metals and their impact on cancer 
occurrence or prevention were specified.

Search strategy and study selection
To access all studies presenting the effects of metals on 
the prevention or occurrence of cancer in humans, a sys-
tematic search without historical restrictions was con-
ducted until May 31, 2024 in the following databases: 
Scopus, PubMed, and Web of Science for the following 
keywords: “heavy metal*”, “trace element*”, “trace metal*”, 
cancer, tumor, carcinogen, cancerogenic, neoplasm, 
oncogen*, neoplasia*, malignancy.

Criteria of study entering and extracting
In the review performed, studies focused on the effects 
of metals on cellular and biochemical changes (without 
examining the metal effect on the cancer appearance) 
were excluded. In addition, animal studies, books, review 
articles, conference papers, and letters to editors were 
omitted. In this systematic review, only original peer-
reviewed articles in English were investigated. From the 
selected studies information on the name of the authors, 
publication year, study design, country, number of peo-
ple in the investigated human subpopulation, their age, 
gender, type of metals, type of environmental and human 
samples, average metal concentration in samples, and 
type of cancer were gathered.

Quality assessment
The quality of the investigated studies was evaluated by 
two researches (M.M. and A.H.Kh.) independently, and 
the Joanna Briggs Institute (JBI) checklists for cohort 

studies, case–control studies, and analytical cross-sec-
tional studies were used for this purpose. The JBI check-
lists assess the risk of bias in studies by asking 8 questions 
related to sample selection criteria, exposure assessment, 
confounding factors, and appropriate statistical analy-
sis. According to the percentages assigned to each of the 
answers in the questionnaire (“yes”, “no”, “unclear”, or “not 
applicable”), the quality of the articles was determined at 
3 levels, namely: 1) Q1 of high quality and low risk of bias 
(answer “yes” in ≥ 50–75%), 2) Q2 of average quality and 
unclear risk of bias (answer “unclear” in ≥ 50–75%), and 
3) Q3 of low quality and high risk of bias (answer “no” 
in ≥ 50–75%) [51]. All articles that were of adequate qual-
ity were included in the study.

Result synthesis
Meta-analysis as quantitative synthesis was not suitable 
in this study, as we obtained a too diverse range of study 
designs and other heterogeneities were found in method-
ological and contextual aspects. Therefore, the results of 
the study, which included types of metals, the mean con-
centrations of metals in the samples, the type of cancer, 
and the role of metal in the prevention or appearance of 
cancer (Table  S1), were narratively combined. A narra-
tive synthesis was performed in two stages, including (1) 
initial synthesis using general grouping based on preven-
tive/carcinogenic role and (2) exploration of associations 
within and between studies to investigate the relation-
ship between metal exposure levels and severity of the 
outcome.

The entire process of the present systematic 
review which was carried out by the research team mem-
bers  shown in  Fig.  2. This process includes 7 steps as 
follows: topic selection, keywords extraction, systematic 
search, screening and data extraction, evaluating risk 
of bias, resolving contradictions and ambiguities, and  
synthesizing results.

Results and discussion
Study selection
The process of articles selection performed in this study 
is presented in Fig.  3 using a PRISMA flow diagram. 
Through the systematic search, 4,695 articles were 

Table 1 Statement of the Population, Exposure, Comparator, and Outcome (PECO) Protocol in this systematic review

PECO Evidence

Population All people exposed to metals

Exposure Inhalational, ingestion, and dermal exposure to metals

Comparator Comparing the concentration of metals in biological samples (including blood, 
urine, serum, tissue, scalp hair, and nails) of people diagnosed and not diagnosed 
with cancer

Outcome The effect of different levels of metals on the development or prevention of cancer
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retrieved, of which 1558 were obtained from Web of Sci-
ence, 2553 from the Scopus, and 584 from the PubMed 
database. After removing 983 duplicates, 3712 articles 
were screened by title and abstract. This step resulted 
in the exclusion of 3556 studies. Then, 156 full texts 
were subjected to additional check to assess the criteria 
of the entry and the exit, and quality assessment. Fur-
ther 85 studies were excluded due to: lack of inclusion 
criteria (N = 25), in detail: not metal (7), benign tumor 
(4), not relevant (11), report on the cumulative effect of 
various contaminants on cancers (3), not determining 
and reporting the concentration of metals (self-reports) 
(N = 34), failure to report original data (N = 7), and inves-
tigating the effects of metals in cells on a laboratory scale 
(N = 19). Finally, in the current review, we included the 
total number of articles equal to 66 studies.

The studies in this review included 56 case–control 
studies [30–36, 52–99], 8 cohort studies [37, 100–106], 7 
cross-sectional studies [107–113], and one observational 
study [114]. They were performed in various countries 
around the world: 8 in Pakistan, 7 in China, 6 in Taiwan, 5 
in Sweden, 5 in USA, 4 in Iran, 6 in Poland, 3 in Turkey, 3 
in Tunisia, 3 in Egypt, 2 in Spain, 2 in Romania, 2 in Iraq, 
2 in India, 2 in Croatia, and one in Finland-Sweden-Ice-
land, Japan, Greece, the United Kingdom, New Zealand, 
United Arab Emirates, Ukraine, Italy, Nigeria, Russia, and 
Belgium. Four studies investigated metals in the natural 
environment and 67 in human biological samples such as 
tissue, serum, urine, blood, hair, and nails. The potential 
sources of exposure to metals are presented in Fig. 4.

The main analytical methods used to measure element 
concentrations were the Atomic Absorption Spectropho-
tometry (AAS) and Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS). A total of 1,369,887 people were 
examined in the 66 included studies. Table 2 presents a 
summary of the included 66 articles (for a complete table, 
see Table S1).

Toxic metals
The results of the majority of selected studies showed 
that metals such as Pb, As, Cr, Cd, and Ni act signifi-
cantly in the development or progression of several types 
of cancer. Most toxic metals can damage cellular mac-
romolecules such as DNA, RNA, proteins, and lipids by 
producing superoxide anion radical and hydroxyl radical 
reactive oxygen species (ROS) through the Fenton reac-
tion and change cellular homeostasis [115]. In addition, 
oxidative stress caused by metals can induce genetic and 
epigenetic changes, abnormal cell signaling, increased 
micronuclei, chromosomal aberrations and mitotic 
index, and uncontrolled cell growth [116, 117]. In their 
role as endocrine disrupting chemicals [118], metals 
cause interference in the estrogen and androgen signaling 
pathways and affect the expression of genes involved in 
the growth and secretory function of the prostate gland 
[119].

Metals like Cd, Pb, As, Ni, and Cr(VI) compete with 
essential elements in the formation of ligands with 
enzymes and other proteins, including calcium-substi-
tuted lead, zinc-substituted cadmium, and aluminum-
substituted mentioned with most of the rare elements 
[120]. These substitutions cause disturbances in impor-
tant biochemical reactions, antioxidant imbalance, 
and adverse effects on various hormonal activities and 
the functioning of essential enzymes [121]. Gaman 
et  al. (2021) reported that some metals can cross the 

Fig. 2 The seven stages of the systematic review management process
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blood–brain barrier through this replacement, accu-
mulate in neurons and other brain cells, and potentially 
cause brain malignancies [35]. Despite the sensitivity of 
the placental barrier to toxic substances [122], metals 
can pass through the placental barrier by deceiving the 
transport proteins in the cell membrane of the placenta 
and causing important biochemical changes during fetal 
development [123]. The toxicity of each metal depends 
on its physicochemical characteristics, as well as on the 

biological properties of the target cells, in addition to the 
dose and duration of exposure [124].

The results of this systematic review showed that most 
of the examined people were elderly (> 60 years). There-
fore, the age of exposed people can also play an impor-
tant role in various malignancies [125]. The aging process 
in humans is associated with significant changes in cells, 
including telomere wear, genomic instability, epigenetic 
changes, cell aging, quantitative and qualitative changes 
in protein spectra, mitochondrial dysfunction, change 

Fig. 3 PRISMA flow diagram of the literature search
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in intercellular communication, and exhaustion of stem 
cells [125].

Cadmium
Studies show that an increase of 1 μg of Cd in urine, 
increases the risk of lung cancer by 1.25 times [94]. A 
case–control study in the Italian population showed 
that a 1.11-fold increase in Cd in the diet doubles the 
incidence of melanoma [126]. Men et al. (2020) showed 
that the concentration of Cd in the urine of breast cancer 
patients was almost twice that of the control population 
[89], which was consistent with the results of a previous 
epidemiological study [127]. Also, the study conducted 
by Abdul Qayyum et al. (2019) reported double the levels 
of this metal in the blood and scalp hair of patients with 
lymphoma [30]. Meanwhile, some researchers concluded 
that the levels of Cd in patients with stomach cancer were 
1.37 times higher than those of the control group [91]. 
Although the difference in the concentration of this ele-
ment between the group of patients and healthy people 
reported in [30] was higher than that of [91], the highest 
levels of Cd (case group) in these two studies were equal 
to 25.04 μg/dL and 344.6 μg/dL, respectively. In addi-
tion, the results of a recent case–control study showed 
that the Cd concentration in the whole blood of testicu-
lar cancer patients was 1.57 times higher than that of the 
control group [31]; which was consistent with the results 
obtained by Chang et al. (2016) [80]. The study examin-
ing the impact of heavy metals in urothelial carcinoma, 
revealed that the urinary concentration of Cd in patients 
were 1.52 times (1.53 μg/g CR) higher than in healthy 
people [80].

Many studies have proven the role of Cd in human 
lung, kidney, liver, breast, hematopoietic system, bladder, 
stomach, prostate, and pancreas cancers [128, 129]. Cad-
mium is a toxic metal with a long biological half-life, hav-
ing low excretion levels related to the absence of efficient 
elimination mechanisms [130]. This element is spread 
in the environment through various sources, including 
industrial applications as stabilizers in PVC products, 
Ni–Cd batteries and pigments, fossil fuel combustion, 
use of phosphate fertilizers, electronic waste recycling, 
smoking, and volcanic activities and can cause chronic 
human exposure [131, 132].

Cadmium affects several cellular processes including 
cell cycle progression, proliferation, differentiation, DNA 
replication, and apoptosis [133], which may play a major 
role in Cd genotoxicity [134]. This process is also true for 
other diseases caused by exposure to Cd such as lung, 
prostate, or breast cancer [135], as well as non-cancerous 
diseases such as diabetes and cardiovascular diseases 
[136]. It can also replace essential elements like Fe, Cu, 
and Zn in various cytoplasmic and membrane proteins 
and cause oxidative stress through the Fenton reaction 
[90]. Chronic exposure to Cd, in addition to inhibiting 
the activity of superoxide dismutase, which is known 
as one of the strongest antioxidant enzymes [137], also 
causes dysplastic lesions in the gastric glands [138].

Studies have shown that Cd creates a key step in the 
initiation of cancer and tumor stimulation by disrupting 
E-cadherin at cell junctions [139]. This mechanism has 
been reported to accelerate cancer growth by activating 
proto-oncogenes and genes involved in cell proliferation, 
reducing p53 function, and inhibiting DNA methylation, 
causing the clonal expansion of damaged and mutated 
cells [140]. Studies have shown that increased oxidative 
stress caused by exposure to Cd may cause cancer [141]. 
Zhang et  al. (2016) in an epidemiological study con-
cluded that the concentration of Cd in prostate tissue and 
plasma from patients with prostate cancer is substan-
tially higher compared to healthy individuals [142]; this 
is consistent with the study of Zimta et al. (2019) [143]. 
However, a recent meta-analysis did not find any epide-
miological evidence of the effect of Cd exposure in the 
general or occupational population with an increased risk 
of prostate cancer [144]. Epidemiological studies indi-
cate that exposure to this heavy metal can increase the 
risk of lung cancer [145]. Based on available evidence, a 
doubling of Cd concentration leads to an approximate 
68% increase in the relative risk of lung cancer [146]. 
Chronic exposure to Cd causes a significant decrease in 
the amount of glomerular filtration [147] and kidney and 
bladder cancer [82]. However, some recent studies did 
not find any relationship between occupational exposure 
to Cd and kidney cancer [36]. The study of Madrigal et al. 

Fig. 4 Environmental sources of exposure to metals based on studies 
included in this systematic review
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(2019) also revealed that the decrease in kidney func-
tion associated with occupational exposure to Cd differs 
according to gender and the presence of comorbidities, 
that is, diabetes mellitus and high blood pressure [148].

Lead
Lead is a key player for esophageal and stomach cancers 
[112], brain tumors [35], kidney [33], thyroid [91], and 
testicular cancer [31]. Metal plating industries, mines, 
paints, cosmetic products, batteries, electronic waste, 
and the combustion of fossil fuels containing Pb are 
among the most important sources of Pb emission in the 
environment [149]. Increasing levels of this element in 
the environment can increase levels of human exposure 
and cause adverse health effects.

So far, many studies have investigated the effect of Pb 
concentration on various types of malignancy [31, 92, 93]. 
In their study, Tariba Lovaković et  al. [31] investigated 
the effect of heavy metal levels on testicular cancer and 
concluded that Pb levels in the whole blood of patients 
(30 μg/L) were 1.25 times those of healthy people (23.9 
μg/L). In addition, the results of a case–control study in 
Pakistan showed that stomach cancer sufferers have 1.8 
times more Pb in their blood [91]; which was consist-
ent with the results of the study by Sarkar et  al. (2020) 
[87]. In this research, 150 tissue samples (case = 50, con-
trol = 100) were evaluated in terms of the concentration 
of this element and showed that the Pb levels in the case 
group were 1.15 times higher than those in the control 
group [87]. Similar results were observed with other 
studies on thyroid cancer [86], breast cancer [84], and 
bladder carcinoma [82].

Furthermore, Chrysochou et  al. (2021) observed that 
the serum Pb level in leukemia patients was 154 times 
higher than that of healthy individuals [93], which is con-
sistent with the results of the study by Guzel et al. [150]. 
Guzel et al. (2012) indicated that the blood and prostatic 
Pb levels in patients with prostatic intraepithelial neo-
plasia are significantly higher than those with benign 
prostatic hypertrophy (BPH) [150]. Studies have found 
a positive correlation between Pb and Al elements with 
increased levels of methylated MGMT and methylated 
MLH1, DNA repair enzymes [88], which is consistent 
with the results obtained by Scanlon et  al. (2017). This 
study points to an effective role for metals in silencing the 
MLH1 promoter and in initiating the carcinogenesis pro-
cess [151]. Devóz et al. (2017) showed that occupational 
exposure to Pb causes changes in DNA methylation and 
gene expression regulation in exposed workers [152]. The 
BRAF and KRAS genes are important in the process of 
the RAS/RAF/MAPK signaling pathway and in this way 
can regulate cell growth, differentiation, proliferation and 
apoptosis in malignant and non-malignant cells [153]. 

In a study, Talaat Abd Elaziz et  al. (2020) investigated 
the effect of occupational exposure to heavy metals on 
colorectal cancer in industrial workers in Egypt and con-
cluded that compared to unexposed tissues, there was a 
statistically significant increase in the expression of the 
BRAF and KRAS genes in malignant tissues [88]. This 
relationship has a positive correlation with methylated 
repair enzymes MLH1 and MGMT and exposure to Pb 
and Al metals [88]. Some researchers reported that muta-
tions in the KRAS and BRAF genes in patients with colo-
rectal carcinoma play a role in disease progression and 
response to treatment [154]. Until now, many epidemio-
logical studies have shown a relationship between work-
ers’ exposure to inorganic Pb and lung, kidney, and brain 
cancers [155, 156], but no correlation was found with 
prostate cancer [95]. Several factors potentially account 
for the differences in the studies, including genetics, sex, 
exposure dose, duration of exposure, bone accumulation 
over time, and also the number of people examined in 
each study.

Arsenic
Arsenic is very relevant because groundwater and drink-
ing water supplies can exceed the Maximum Contami-
nant Level Goal (MCLG) of 10 µg/L (USAEPA) and 
indicate a health risk [31, 86, 92]. In the USA, around 7% 
of the wells contain As above the MCLG [157]. Sarkar 
et  al. (2020) revealed that the mean level of As in the 
group of patients with colorectal cancer vs healthy people 
was 2.12 ± 1.04 and 1.43 ± 0.73 ppm, respectively, and this 
difference was statistically significant [87]. Also, expo-
sure to this element at a sufficient dose and for a suitable 
period, by creating a dose–response relationship between 
As and cancer, leads to the progression of carcinogenesis 
[82]. In addition, the evaluation of serum levels of Cd and 
As with bladder cancer indicates that As levels in patients 
are 1.48 times those of healthy people [32]. Chrysochou 
et al. (2021) reported a 1440-fold difference in serum As 
concentration in Leukemia patients compared to the con-
trol group [93]. The results of this research were consist-
ent with the study conducted by Chang et al. (2016) [80].

Furthermore, Chrysochou et  al. (2021) showed that 
there is a strong relationship between As, Cd, Ni, and Pb 
in patients with chronic leukemia compared to the con-
trol group [93] and the twofold levels of As increase the 
risk of thyroid cancer 5.35 times [86]. Arsenic alters the 
transcription process in gene-related actions, inhibits 
glutathione, decreases antioxidant defense mechanisms, 
and increases free radicals [158, 159]. Talaat et al. (2011) 
[159] showed that Kindlin-2 protein is expressed in the 
stromal element of transplanted and archival samples of 
human bladder cancer associated with As. Prostate tis-
sues are a target of As [105, 160]. Some studies do not 
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support the relationship between As in prostate cancer 
and breast cancer [89, 95]. There are significant differ-
ences in tissue As concentrations. The reason could be 
the difference in the type of cancer and the accumulation 
of these metals in different tissues according to the bio-
logical characteristics of the involved cells [124]. Malan-
drino et  al. (2020) [161] showed that the concentration 
of many elements such as As in thyroid tissue was higher 
than in sternothyroid muscle and subcutaneous neck fat, 
which could be a good explanation for this difference.

Today, there are many natural and human sources 
for exposure to As, which can increase the risk of vari-
ous types of cancer in exposed people. Among the most 
important of these sources, the industries of metal smelt-
ing, fossil fuel combustion, coal power plants, industrial 
wastewater, pesticides, mining, and volcanic activities 
[162] are mentioned.

Nickel
In this review, 23 studies examined the relationship 
between Ni levels and cancer, and 78% of the studies 
reported elevated concentrations of this metal associated 
with several cancers. Concentrations of Ni in serum were 
different in acute and chronic leukemias vs the control 
group (22 and 2.2 times, respectively) [93]. These results 
are consistent with studies conducted in the breast [84], 
thyroid [91], bladder [82], lymphoma [30], prostate [96], 
and brain [35]. Lovaković et  al. (2021) also showed that 
the total blood/serum Ni concentration of patients with 
testicular germ cell tumors (TGCT) was significantly 
higher than that of healthy subjects [31]. Nickel has vari-
ous carcinogenic mechanisms, including induction of 
DNA changes, reduction in lymphocyte telomere length, 
inhibition of intercellular transfer mechanisms, inhibi-
tion of nucleotide excision maintenance, oxidative stress 
and DNA methylation, and endocrine disruptor.

Despite the evidence confirming the carcinogenic-
ity of Ni, some studies have reported results different 
from those mentioned [31, 85, 94]. The accumulation 
and effects of Ni are different according to the type of 
cell/tumor [163]. Lee et al. (2022) in a recent case–con-
trol study in Taiwan showed that urinary Ni levels in 
patients with lung cancer were 8.72 μg/g CR, in patients 
with other malignancies were 5.9 μg/g CR, and in healthy 
subjects 11.63 μg/g CR [94]. The results of their study 
were consistent with the research conducted by Tariba 
Lovaković et  al. (2021) [31]. Tariba Lovaković et  al. in 
the study of the relationship between exposure to low 
levels of metals and testicular cancer concluded that 
although the urinary levels of Ni in healthy people are 
higher than in patients, this concentration was oppo-
site in whole blood and serum samples [31]. The reason 
for this difference can be related to the physicochemical 

characteristics and the absorption and metabolism pro-
cess of each metal in different target tissues.

In addition, increasing levels of exposure to Ni from 
volcanic activity, wild forest fires, windblown dust, fossil 
fuel combustion, commercial and industrial applications 
such as electroplating, stainless steel, battery manufac-
turing industries, industrial waste, stainless steel kitchen 
utensils, dental or orthopedic implants, tobacco, and 
cheap jewelry can increase the risk of various types of 
malignancies [164, 165].

Chromium
In this systematic review, 87% of Cr studies associated 
with cancer reported higher concentrations in cancer 
patients than in controls [93, 112]. The results of exami-
nation of the metal imbalance in the blood of patients 
with thyroid cancer showed that the levels of this element 
in the case group were 1.28 times those of the control 
group (757.9 vs 588.8 μg/dL) [91]. In addition, Afzal et al. 
(2020) achieved similar results in the study of stomach 
cancer [90]. The investigation of the effect of heavy met-
als on breast cancer progression also reported a 2.6-fold 
difference between sick and healthy people [54], which is 
consistent with the results of the study by Abdel-Gawad 
et  al. (2016) [82] and Chang et  al. (2016) [80]. Qayyum 
and Shah (2019) investigated the average Cr contents in 
blood and hair from lymphoma patients versus healthy 
controls and found a significant difference, 59.43 µg/dl vs 
34.95 µg/dl, respectively [30].

Chromium levels can increase in the environment 
through mining, steel and metal alloy industries, paint 
production, wood and paper processing, burning coal 
ash, or the use of municipal waste for energy produc-
tion and second generation fertilizer production [166]. 
Chromium is present in contaminated drinking water 
[167], and its effects other than oncological, include an 
endocrine disrupting capacity [168]. Das et  al. (2015) 
reported mitochondrial-dependent apoptosis in male 
somatic cells and spermatogonial stem cells by hexava-
lent Cr(Cr (VI)), a pathway for reproductive abnormali-
ties and infertility. Paternal exposure to heavy metals 
and solvents increases the risk of their sons developing 
a testicular germ cell tumor (TGCT) [169]. However, 
some previous evidence shows that there is no statisti-
cally significant risk between paternal exposure to heavy 
metals/welding fumes and boys suffering from TGCT, 
which requires more and more extensive studies to reach 
a definitive result [170]. A recent case–control study 
proved that maternal exposure to Cr increases the chance 
of Tenosynovial Giant Cell Tumor (TGCT) occurrence 
in male children [171]. Krstev et al. (2019) reported in a 
meta-analysis that occupational exposures to pesticides, 
Cr (VI), polycyclic aromatic hydrocarbons, diesel fumes, 
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metal fabrication environments, vehicle batteries, flight 
personnel, jobs causing circadian disruption, firefight-
ers, sewage and petroleum and gasoline workers increase 
the risk of prostate cancer [172]. In  vitro and in  vivo 
studies show that even exposure to low doses of Cr (VI) 
can affect the epithelial-mesenchymal pathway (EMT), 
cause the growth and migration of prostate cancer cells, 
and follow the progress of tumor and metastasis [173]. 
Rafnsson et al. (1997) reported the cancer incidence of an 
Iceland cohort of 1172 masons exposed to wet concrete 
aerosols and Cr (VI) exposures associated with cement. 
These masons had an increase in lung cancer with a 
standardized incidence ratio (SIR) of 1.69 and 1.77 after 
30 years of work [174].

Mercury (Hg)
In this systematic review, 11 studies investigated the 
effect of Hg levels on thyroid [58, 86], breast [68, 89], 
lung [76, 94, 109], prostate [95], brain tumor [35], and 
other types of cancers [105]. The results showed that 
62.5% of the case–control studies conducted in this field 
confirmed higher levels of Hg in the biological samples of 
patients compared to healthy people. Pizent et al. (2022) 
investigated the role of metal exposure in prostate cancer 
and concluded that the mean Hg levels in blood/serum of 
the case group were 2.43 times that of the control group 
[95]. In addition, some researchers have reported a two-
fold difference in the concentration of this metal in the 
urine of healthy people and those with thyroid cancer, 
confirming the existence of a direct relationship between 
exposure to heavy metals and the development of malig-
nancies [86]. The results of these studies were consistent 
with the  investigations  conducted by Binkowski et  al. 
(2015) [76] and Alatise et al. (2010) [68].

Cement, iron and steel, gold, and chloro-alkali indus-
tries, non-ferrous metal smelting, dental amalgam, forest 
fires, and volcanoes are among the main sources of Hg 
release in the environment and exposure of humans to 
this dangerous element [175]. Some laboratory studies 
concluded that Hg causes hypomethylation and hyper-
methylation of G protein signaling; therefore, it can act 
as a driving force for tumor growth [176]. One of the 
most important mechanisms in pathologies caused by 
Hg is oxidative stress [177]. Mercury has a strong abil-
ity to deplete intracellular thiols (especially glutathione) 
and bind to thiol groups on proteins. Although the exact 
mechanism of ROS production by Hg is not yet known, 
it seems that this mechanism depends on the physi-
cal and chemical form of the element [95]. For example, 
the detection of Hg in blood reveals exposure to organic 
methylmercury (MeHg) associated with eating seafood 
or inhaling elemental mercury vapor [95]. Studies have 

shown that the high affinity of this organic compound for 
selenohydryl groups, thiols, and selenides can disrupt the 
structure and function of antioxidant enzymes and pro-
teins [178].

Although many researchers have proven the role of 
exposure to Hg in various types of malignancies, some 
studies have reached contradictory results. The results 
obtained from the study by Lee et  al. (2022) showed 
that the urinary Hg concentration in patients with lung 
cancer was measured at 1.57 μg/g CR, while in healthy 
subjects urinary Hg concentration was equal to 2.3 μg/g 
CR [94]. In addition, a case–control study conducted in 
China showed that urinary Hg levels in the control group 
(24 μg/L) were 6 times higher than those with breast can-
cer (4 μg/L) [89]. The results of these two studies were 
consistent with the research conducted by Gaman et al. 
(2019) [35]. In this study, the concentration of Hg in tis-
sue-blood samples from healthy people was higher than 
in patients with brain tumors [35].

The difference in the results of this section can be con-
sidered related to the difference in the type of biologi-
cal sample examined and the duration of Hg detection 
(according to the Hg half-life). Studies have shown that 
Hg is distributed and accumulated in most vital organs, 
mainly in the central nervous system and kidneys [179]. 
Blood Hg concentration decreases with a half-life of 
nearly 50 days [180]. Researchers reported that 90% 
of this element is excreted through feces and only 10% 
through urine [181, 182].

Essential elements
Some of the metals such as Co, Cu, Fe, Mn, Cr (III), Zn, 
Se, and Mo also have a protective role in the processes of 
chromosome damage and oxidation [38, 39] and are vital 
for the body in low concentrations. Metals play key roles 
in antioxidant defense, hemoglobin and energy produc-
tion in the aerobic respiration process, preserving nor-
mal nerve and muscle function, and aiding the immune 
system [183]. Some of these essential metals are also an 
integral part of antioxidant enzymes such as selenoen-
zymes, glutathione peroxidase (GSH-Px) and superoxide 
dismutase (SOD) and are effective in maintaining suffi-
cient amounts of metallothionein (MT), reducing ROS, 
and subsequently, oxidative DNA damage [184]. In addi-
tion, they can act as cofactors of DNA repair proteins and 
as essential components of ribonucleotide reductase in 
DNA synthesis and help in nucleotide acid metabolism 
[185].

The researchers showed that the increase in the con-
centration of essential elements in the body follows a 
U-shaped dose–response relationship. Accordingly, at 
very low doses of essential micronutrients, a high level of 
complications will occur (known as "deficiency"), which 
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will decrease as the dose increases. In addition, very high 
doses also have the potential to cause high levels of side 
effects, which decrease as the dose is reduced. When 
the deficiency is removed by increasing the dose and no 
adverse reactions are detected, the organism reaches a 
state of homeostasis. Generally, Co, Cu, Fe, Mg, Mn, Mo, 
Se, and Zn are accepted as essential metals, each of which 
has a unique deficiency point and toxicity. This is hap-
pening while there is no deficiency and homeostasis area 
in the dose–response curve in toxic elements. In this sit-
uation, depending on the measured endpoint, the shape 
of this curve may be an inverted U or J shape. According 
to studies, if endpoints are related to growth, longevity, 
fertility, or cognitive function, the response is inverted 
U-shaped and in the case of disease, it is seen as J-shaped 
[186].

The results of the present study showed higher concen-
trations of these metals in the healthy control group than 
in the case group, which supports their preventive role in 
the onset and progression of cancer. Case–control stud-
ies indicate an inverse relationship between plasma Zn 
level and the risk of cancers of the lung [34], cervix [59], 
lung [34, 78], prostate [74, 75], thyroid [91], mesotheli-
oma [92], and lymphoma [30] cancers. Under physiologi-
cal conditions, Zn prevents the formation of free radicals, 
participates in the cellular immunity of T lymphocytes, 
and prevents tumor growth [187]. Zinc also plays a role 
in the antiangiogenic activity of endostatin cell prolifera-
tion and intracellular signaling pathways, and the serum 
level reduction can increase the risk of cancer [43].

Selenium is an important micronutrient for cancer 
prevention, which can effectively treat kidney cancer by 
inhibiting the proteins hypoxia-inducible factor 1- and 
2-alpha (HIF 1α and HIF 2α) and the nuclear factor eryth-
roid 2- (Nrf2) [188]. According to the studies, the pres-
ence of permissible concentrations of Se (230–250 ng/
mL of blood) reduces the risk of cancer [189]. The results 
of the study by Hsueh et  al. (2021) showed that higher 
plasma Se levels significantly reduce the chances of renal 
cell carcinoma (RCC) [33], which was consistent with the 
results of Bock et al. (2018). Chitta et al. (2013) showed 
that Se can reduce As toxicity by changing cytotoxicity, 
genotoxicity, and oxidative stress [190]. It also reduces 
the Cd oxidative stress by reducing serum malondialde-
hyde and increasing the activity of superoxide dismutase 
and glutathione peroxidase [191]. The mechanism of the 
Se effect against the reduction of As and Cd toxicity may 
be through Se-related antioxidant enzymes or the activa-
tion of the Nrf2 pathway [192].

Many studies in the present review showed that the 
concentration of Mn in the control group was higher 
than in the case group [31, 34, 35, 94, 112]. Manga-
nese is also considered as an essential micronutrient for 

intracellular activities. Some studies have shown that 
nanoparticles of compounds of Mn suppress oxidative 
stress and DNA damage by imitating several enzymes 
[193]. It also acts as a cofactor for antioxidants such as 
Mn superoxide dismutase (MnSOD), which play a role in 
antioxidant defense [194]. Sohrabi et al. (2021) reported 
in a cross-sectional study that the Mn content in cancer-
ous tissues is lower than in adjacent healthy tissues [112], 
which supports this mechanism.

Copper is an essential element and an integral constitu-
ent of various metalloenzymes. Studies have determined 
that the normal range of this element is 700–1400 ng/mL 
of blood [189]. Marzano et  al. (2009) investigated vari-
ous types of Cu complexes as possible antitumor agents 
[195]. Both decreased or increased Cu levels are associ-
ated with genetic disorders of Cu metabolism and with 
high environmental exposure resulting in severe patholo-
gies [196]. Available reports indicate that the lack of trace 
elements such as Fe, Zn, and Cu is related to bladder can-
cer [197, 198].

The high concentration of Fe in healthy people com-
pared to patients in some studies suggests a potential 
effect of Fe in preventing the occurrence or progression 
of cancer [34–36, 66, 81, 90]. Fonseca-Nunes et al. (2015) 
showed that higher serum Fe and ferritin is inversely 
related to the risk of stomach cancer [199]. Cook et  al. 
(2012), however, reported that Fe metrics were not asso-
ciated with neither gastric cardia or non-cardia cancers 
when taking into account the roles of Helicobacter pylori 
and gastric atrophy [200]. Puliyel et al. (2015) discussed 
Fe toxicity in children and adults undergoing treatments 
for neoplastic processes and the importance of transfer-
rin saturation (TS), associated with toxic free Fe, and 
showed that high TS is associated with cancer develop-
ment and indeed, lowering free Fe decreases the risk 
[201]. Cook et  al. (2012) also obtained similar results 
[200]. Also, the investigations conducted revealed that 
the level of Fe in cancerous tissues was lower compared 
to healthy tissues [201], which could be due to the lower 
absorption of this metal in cancerous tissue. Fe is a vital 
micronutrient for oxygen transport and oxidative metab-
olism [202]. Deficiency of Fe, for example in Fe-deficient 
anemia, has a serious impact on physical and cognitive 
function with a severe reduction in quality of life [203]. It 
can also cause side effects such as increased DNA dam-
age, decreased antioxidant defense, decreased enzyme 
activity, and subsequently increased genomic instability 
[203].

Trivalent cobalt (Co (III)) and chromium (Cr (III)) also 
participate in many biological mechanisms as essential 
elements. Cobalt constitutes the central atom of cobala-
min (vitamin B12), and is also considered an important 
nutrient to maintain testicular function and normal 
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fertility [204]. This element impacts DNA synthesis and 
cell division and participates in purines and pyrimidine 
production as a cofactor of methionine synthase [205]. 
Based on its capacity, Cr can be classified into an essen-
tial or toxic group. Trivalent chromium has an effective 
role in the metabolism of carbohydrates, proteins, and 
fats. However, Cr (VI) is classified as a toxic metal due to 
its angiogenic and carcinogenic activities [206, 207]. Bibi 
et  al. (2020) investigated the imbalance of metals in the 
blood of thyroid cancer patients versus healthy individu-
als [91]. Concentrations of Pb (774.6 vs. 416.2 μg/dL), Cr 
(757.9 vs. 588.8 μg/dL), Cd (472.5 vs. 344.6 μg/dL) and 
Ni (360.5 vs. 200 μg/dL) were higher in cancer patients, 
while Co was higher in controls (2073 vs. 977 μg/dL).

There is a complex balance among essential elements 
in the prevention and progression of cancer, and several 
other factors, such as genetic protector and detrimental 
mechanisms, and the environment play a key role in the 
final outcomes [42, 44, 93].

Strengths and limitations
The strength of the present study is that it is the first 
systematic review that examines two opposite effects of 
metal exposure on carcinogenesis. This study provides 
new information on the toxicity of metals, their carcino-
genic properties, and, on the other hand, their preventive 
properties against cancer at different doses. Furthermore, 
the selected studies were retrieved by a comprehensive 
systematic search, without restrictions on publication 
date, study type, or country of investigation. Adopt-
ing this approach allowed the highest number of rel-
evant articles to be entered without the loss of scientific 
data. However, the limitation of this study was the lack 
of access to the full text of some articles and limiting the 
database search to studies in the English language only.

Gaps and recommendations
A comprehensive review of published studies shows the 
existence of some gaps in this important area of   health, 
including the lack of information on some heavy metals. 
According to the available evidence, most studies pub-
lished in this field have investigated the concentration of 
metals in only one type of biological sample, which may 
lack sufficient accuracy and representation. For exam-
ple, measuring the levels of some metals in urine samples 
can reflect short-term exposure. Therefore, depending 
on the physicochemical characteristics and the unique 
absorption and metabolism processes of each metal in 
target tissues, detecting element levels only in one type 
of biological body sample may not be a suitable measure 
to reflect internal exposure levels for all types of metals. 
Therefore, more detailed studies are recommended to 
cover this important gap.

It is also recommended to design more prospective 
cohort studies with independent replications to investi-
gate the role of prenatal exposure to toxic metals in the 
individual’s incidence of various types of cancer during 
the years after birth. Investigating the unique characteris-
tics and activities of vital body organs such as the thyroid, 
brain, and kidney, which can make them more suscep-
tible to the carcinogenic activity of some toxic metals, 
seems necessary.

Considering the slow process of removing toxic metals 
from the body, it seems that using methods to acceler-
ate this process can play an effective role in reducing the 
accumulation of these elements in the target organs and 
preventing adverse health effects. The surveys conducted 
indicate that few clinical trial studies have been con-
ducted in this field [208]. Therefore, it is recommended 
to design and implement more clinical studies to achieve 
an effective method.

Conclusions
The presented review indicated that chronic exposure 
to metals, even in low concentrations, can be a potential 
risk factor for various types of cancer. The main elements 
found in the biological samples of the patients included 
Pb, Cr (VI), As, Cd, and Ni and these elements were iden-
tified in many studies. Generally, the levels of these met-
als in clinical cases were higher than in controls, which 
demonstrates the carcinogenicity of these metals. In 
addition, the investigation of the effect of essential metals 
such as Se, Zn, Fe, and Mn on the occurrence of adverse 
health effects revealed that low concentrations of these 
elements indicated anticancer properties and that their 
high concentrations could be the cause of biological tox-
icity. Therefore, according to the biological accumulation 
property of heavy metals in the vital organs of the body, 
regular monitoring of toxic metal concentrations in bio-
logical and clinical samples is recommended to identify 
possible sources of their exposure. In addition, authori-
ties should adopt stricter laws to control and reduce 
metal emissions into the environment and to protect 
workers. This will significantly reduce the risk from der-
mal, inhalational, and ingestion exposure pathways from 
these metals and will play an effective role in reducing 
the cancer occurrence.
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