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Abstract
Background: Feedback regulation plays crucial roles in the robust control and maintenance of
many cellular systems. Negative feedbacks are found to underline both stable and unstable, often
oscillatory, behaviours. We explore the dynamical characteristics of systems with single as well as
coupled negative feedback loops using a combined approach of analytical and numerical techniques.
Particularly, we emphasise how the loop's characterising factors (strength and cooperativity levels)
affect system dynamics and how individual loops interact in the coupled-loop systems.

Results: We develop an analytical bifurcation analysis based on the stability and the Routh-
Hurwitz theorem for a common negative feedback system and a variety of its variants. We
demonstrate that different combinations of the feedback strengths of individual loops give rise to
different dynamical behaviours. Moreover, incorporating more negative feedback loops always tend
to enhance system stability. We show that two mechanisms, in addition to the lengthening of
pathway, can lower the Hill coefficient to a biologically plausible level required for sustained
oscillations. These include loops coupling and end-product utilisation. We find that the degradation
rates solely affect the threshold Hill coefficient for sustained oscillation, while the synthesis rates
have more significant roles in determining the threshold feedback strength. Unbalancing the
degradation rates between the system species is found as a way to improve stability.

Conclusion: The analytical methods and insights presented in this study demonstrate that
reallocation of the feedback loop may or may not make the system more stable; the specific effect
is determined by the degradation rates of the newly inhibited molecular species. As the loop moves
closer to the end of the pathway, the minimum Hill coefficient for oscillation is reduced.
Furthermore, under general (unequal) values of the degradation rates, system extension becomes
more stable only when the added species degrades slower than it is being produced; otherwise the
system is more prone to oscillation. The coupling of loops significantly increases the richness of
dynamical bifurcation characteristics. The likelihood of having oscillatory behaviour is directly
determined by the loops' strength: stronger loops always result in smaller oscillatory regions.

Background
Feedback control mechanisms are vital to the robust func-
tioning of gene regulatory and metabolic pathways. They

have been extensively researched over the last two dec-
ades: we now know more about the topology and func-
tionality of positive and negative feedback in intra- and
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inter-cellular systems than ever before [1]. For example,
positive feedback is essential for the existence of multiple
steady states within multi-scale gene regulatory systems
[2] and to help prolong and amplify the response to weak
signals in intracellular signalling [3]. Operating synchro-
nously, negative feedback is found to help (1) stabilize
and maintain the concentration of gene products, (2)
maintain the homeostasis of gene expression rates [4], (3)
improve the robustness of developing cells [3], and (4)
facilitate the sustaining of oscillations of gene transcrip-
tion rate [2]. Many examples of negative feedback systems
exist: (1) regulatory pathways: the main repressor of the
SOS regulon in bacteria Escherichia coli, LexA, represses its
own production [5]; the Hes1 oscillator represses its own
transcription [6]; the p53-Mdm2 network with p53 acti-
vates the Mdm2 gene and Mdm2 sequesters p53 [7]; and
the tryptophan operon system with multiple negative
feedback regulations [8]; (2) metabolic pathways: in the
linear mandelate-acetate pathway in Pseudomonas fluores-
cens the acetate represses seven preceding reactions [9,10];
and, (3) signaling pathways: the NF-kB signalling path-
way in which nuclear NF-kB activates production of IkBα
which in turn inhibits nuclear import of NF-kB by seques-
tering it in the cytoplasm [11]; and circadian clocks [12].
These feedback loops orchestrate the molecular fluxes in
multi-scale manner so that the organisms survive and
thrive in many different environments.

Early work on negative feedback in gene regulatory sys-
tems goes back to that of Goodwin [13] who proposed an
auto-repressive transcriptional model with inhibition
imposed by the gene's own protein product. This initial
model has provided a useful framework for later studies of
systems involving negative feedback regulation [14-19].
In addition, a number of Goodwin-based models of bio-
logical oscillators characterised by one or more negative
feedback loops have recently been developed, for example
of the circadian clocks [20,21]. Nevertheless, our under-
standing of the dynamic nature of negative feedback regu-
lation is still limited in many aspects. First, the mere
presence of a negative feedback loop within a system is
insufficient to understand its dynamical behaviour
[22,23]. In fact, negative feedback is found to promote
both system stability and oscillatory instability; the same
feedback, if it is "loose", it may support stability, and if
tighter, it may give rise to sustained oscillations [24].
Therefore, to gain deeper insights into the dynamical
behaviours of biologically regulated systems, it is neces-
sary for us to understand and characterize the differences
among the feedback loops that influence system dynamics
by systematically studying the different types of negative
feedback loops that occur in these systems.

Two important factors that can be used to characterise a
negative feedback loop are the feedback strength and level

of binding cooperativity (nonlinearity) between an inhib-
itor and its regulated molecule [25,26]. In this paper we
investigate the effects of these factors on system dynamics.
Earlier work has only looked at the effects of changes in
the cooperativity levels, but not those of feedback strength
[14-19]. To coordinate complex and rich interactions
within the cell, cellular systems often consist of not just
one negative feedback loop, but multiple ones, entangled
together. What are the functional advantages of the cou-
pled feedback loops which evolved within the host sys-
tems? Although attempts have been made – e.g. the
interplay between positive and negative feedback regula-
tion have been shown to provide robustness and reliabil-
ity to system performance [3,27] – the studies on how the
coupled loops affect the molecular dynamics have been
very limited. We therefore aim to explore in this paper the
dynamical aspects of systems with multiple negative feed-
back loops in comparison with their single-loop counter-
parts to understand the possible functional advantages
the extra loops may provide.

We consider a commonly encountered motif of the nega-
tive feedback systems in which negative feedback is
imposed by the last species of the system pathway on the
upstream species. We develop mathematical models to
analyze for stability and bifurcation, in order to study the
behaviour of these systems, confining ourselves to the
analytical solutions which allow us to obtain bifurcation
points dependent on the feedback strengths and nonline-
arity as the parameters. Based on these results, the condi-
tions on the feedback strength or nonlinearity for: no
stability; no oscillation; stability enhancement; oscillation
enhancement; and guaranteed stability (oscillation) can
be established. Our analyses will lead to regimes in the
parameter space in which different dynamical behaviours
can be identified. In contrast to numerical methods, ana-
lytical methods facilitate an analysis of the parameter sen-
sitivities of the system dynamics.

For clarification, here we define the meanings of robustness
and stability used in this paper. Robustness is referred to as
the ability of a system to maintain its functionality against
internal perturbations and environmental variations. Sta-
bility, on the other hand, is only concerned with the abil-
ity to maintain the system state. Although both are
important properties of living systems, robustness is a
broader concept than stability, with the emphasis on sys-
tem functionality rather than system state [28]. A system
can preserve its function amid perturbations by actively
switching between different (stable and unstable) states
[28]. In this study, we focused on the stability aspect of
systems.

The remaining structure of this paper is given as follows:
the Methods section discusses Hill function and its use for
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negative feedback modelling, followed by a description of
the regulatory motifs studied in the current paper and
their mathematical models. The analytical methods devel-
oped for stability and bifurcation analyses are outlined in
the last subsection. Detailed analyses along with discus-
sion of pertinent results are presented in the section
Results and Discussion. In the section Biological Exam-
ples, we analyze the Hes1 oscillator in vertebrates and the
Tryptophan operon system in bacteria Escherichia coli as
examples. Finally, we end the paper with the Summary
and Conclusion section.

Methods
Modelling negative feedbacks – Hill function
In modelling biochemical systems, the rate of a reaction
representing concentration change per unit time can be
written as a function of the concentrations of reactants
and products. There exist a number of rate laws corre-
sponding to different types of reaction mechanisms: the
mass action rate law, the Michaelis-Menten kinetics, and
the Hill functions [1,29]. The level of inhibition caused by
negative feedback loop due to product X can be described
by the Hill function of the following form (another form
of the Hill function can also be used to model activation
– [1]):

where the parameter Ki represents the half-saturation con-
stant (i.e. the concentration of X that gives 0.5 ratio repres-
sion). It is also commonly referred to as the dissociation

constant or binding constant. The parameter n (Hill coef-
ficient) is related to the cooperativity level of the chemical
process.

The strength of feedback is inversely proportional to Ki:
increasing Ki lowers the repression level while decreasing
Ki increases the repression for a given n; therefore we may
define FS = 1/K as feedback strength (Figure 1); and refer
to K as the inverse feedback strength indicator. The Hill
coefficient n can be interpreted as the sensitivity of the
feedback loop. As n becomes larger, the Hill curve
becomes more sensitive to change in X in the vicinity of
X0.5 and acts like an on-off switch. When n is very large
(infinity), the Hill function resembles the step function
(Figure 1).

In gene regulatory networks, change in FS could be
brought about in a number of ways: (1) by mutations that
alter the DNA sequence of the binding site of X in the
inhibited molecular species' promoter – even alternation
of a single DNA base can strengthen or weaken the chem-
ical bonds between X and the DNA – which will subse-
quently change FS; (2) by change of binding site position
within the DNA. The Hill coefficient can be changed, for
example, by mutations that alter number of binding sites
within the DNA. It has been experimentally shown for
bacteria that they can accurately tune these parameters
within only several hundred generations for optimal per-
formance when faced with environmental change [1].

H K n X
Ki

n

Ki
n X ni( , , ) ,=

+

Hill function for modelling inhibitionFigure 1
Hill function for modelling inhibition. (a) Hill function with increasing n (FS is fixed at 10) (b) Hill function with decreasing 
FS (n is fixed at 2).
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Regulatory Motifs and Models

Our model motifs consist of generic pathways of activa-
tion steps (reactions) with arbitrary lengths with single or
coupled negative feedback loops imposed by the end-
product of the pathway. Figure 2 shows the schematic dia-
grams of a few example motifs. We denote a general l-spe-
cies system with length l by Ll; while a system having

single feedback loop on the step k is denoted by  (1 ≤ k

≤ l). The system with the coupled loops on the steps k1,

k2,.., kj is denoted by .

A model system can be described by using a set of l differ-
ential equations as follows,

where xj, kj, kdj (j = 1,.., l) represent the concentration of
species Xj, its synthesis rate, and its degradation rate,
respectively. And,

 if feedback loop is present while

H(Kj, nj, xl) = 1 if no feedback loop is present for the jth

step.

The first species of the pathways X0 is often assumed to be

static, i.e. its concentration is unchanged. In most cases, it
represents the gene which is the source of the pathway and
activates the whole sequence of reactions. However, we
also consider the cases when X0 is variable by studying the

variants of system Ll with shorter lengths. The degradation

process of model species is assumed to follow first-order
kinetics. Degradation parameter kdj is actually an aggre-

gated rate combining transport (or modification) and
decay rate of corresponding species. The Goodwin oscilla-

Ll
k

Ll
k k k j1 2, ,..,

dx
dt

k x H K n x k x

dx
dt

k x H K n x k x

l

l

1

2

1 0 1 1 1 1

2 1 2 2 2 2

= −

= −

( , , ) ,

( , , ) ,

..

d

d

..

( , , ) ,
dxl
dt

k x H K n x k xl l l l l l l= −−1 d

H K n xj j l

K j
n j

K j
n j xl

n j
( , , ) =

+

Schematic network structures of example negative feedback systemsFigure 2
Schematic network structures of example negative feedback systems. (a) The classical Goodwin system with length 
l. (b) The modified Goodwin system with the feedback loop reallocated to repress step kth reaction. (c) The multiple-loop 
system.
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tor is a special case and represented by system . We do

not consider time delay in these models; readers who are
interested in this aspect are referred to the work of Mac-
Donald [30].

Despite their simplicity, these models can readily be used
to model real biological systems. For instance, a generic
model with three variables can be interpreted as follows:
the first equation as the synthesis of nucleic mRNA, the
second equation describing transportation of mRNA to
the cytoplasm, while the last equation explains transla-
tion of mRNA into protein. Extended four-variable system
can be interpreted by including a fourth equation describ-
ing transportation of protein back to the nucleus.

We first analyse the single-loop systems with three and
four variables. The coupled-loops systems are examined
next. We then study the generalised, extended systems
with arbitrary pathway lengths.

Analysis Methodology
Biological systems display many types of dynamic behav-
iours including stable steady state, sustained oscillations,
and irregular fluctuating dynamics (chaos). Change of sys-
tem parameters may lead to change of system dynamics.
Bifurcation analysis allows one to subdivide the parame-
ter space into qualitatively different regions within each,
the system dynamics are homogeneous. Furthermore, the
changes in the size and location of resulting regions due
to parameters variation can be investigated.

A Summary of Stability Analysis and the Routh-Hurwitz Theorem
The stability analysis of a system consisting of a set of dif-
ferential equations can be conducted by considering its
dynamical behaviour in the neighbourhood of its equilib-
rium (i.e. steady) state. A steady state is classified locally
stable if the system returns to this steady state after a suf-
ficiently small but arbitrary perturbation. Local stability of
a steady state can be analysed by linearising the differen-
tial equations around the steady state and assessing the
eigenvalues of the resulting Jacobian matrix (J) [31]. For a
system of differential equations

If the real parts of all J's eigenvalues are negative, the
steady state is said to be stable, while if any of the real
parts are positive, the steady state is unstable (in this case
the system oscillates if the imaginary part is nonzero).

Because J's eigenvalues are actually the roots of the follow-
ing characteristic equation

- αis are the coefficients – to assess the signs of J' eigenval-
ues, we make use of the Routh-Hurwitz theorem [31,32]
which states that eigenvalues λ all have negative real parts
if

where

Bifurcation – a Geometrically Motivated Approach
Our aim is to establish analytical bifurcation points for
the feedback strengths, Hill coefficients, and other model
parameters of single-loop as well as multiple-loop sys-
tems. System stability conditions are first formulated
using the Routh-Hurwitz stability criteria outlined above.
These conditions are then examined using a geometri-
cally-motivated approach. We demonstrate the method
below using a system with length 3. Longer pathway sys-
tems are similarly analysed. Consider the case where all
three loops are present (Figure 3g), and the equations for
this system are:

Denote the equilibrium values of the state variables xi, (i

= 1, 2, 3) . Steady-state (equilibrium) values of the sys-

tem variables can be determined by setting the right hand
sides of (1) to zeros. This subsequently gives (see Addi-
tional file 1)
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where

In this case, the characteristic polynomial is cubic

Following the Routh-Hurwitz theorem, the system is sta-
ble if and only if the following Stability Condition (SC) is
satisfied:

It is convenient to introduce the following composite var-
iables

Variables M1, M2, M3 interestingly have the characteristics
of activation functions. Working with M1, M2, M3 is more
straightforward than with x1, x2 and x3 directly as it spares
one from having to deal with the exponential and rational
forms in (2). We also have 0 <M1, M2, M3 < 1. The equilib-
rium condition (2) is now simplified to

Equations (4) also allow the characteristic coefficients α1,

α2 and α3 to be expressed in terms of only M1, M2, M3 and

other model parameters, i.e. the synthetic and degrada-
tion rates (see equations (9) below for example). Particu-
larly, the conditions (3) and (5) for simpler system motifs
with less feedback loops can be easily derived. For exam-
ple, setting Mi = 0 for some index i gives rise to a system

structure lacking the corresponding feedback loop, e.g. M1

= 0 gives , M1 = M2 = 0 gives . Equations (4) lead to:

Combined with (5) and (6), each of M1, M2 and M3 can be

expressed as functions of the others involving only Kis and

nis. For example, assume M3 = 0 for simplicity (system

), we have

Here, M1 is a strictly decreasing function of M2 over (0, 1).

Substitute this into , we obtain:

as a function of K2 and M2. Moreover, K1 is strictly increas-
ing with M2 since the derivatives with respect to M2 of the
terms inside the brackets in (7) are positive over (0, 1)
(see section 4.1 in Additional file 1).

This means if there exist bounds M2l, M2h (based on equa-
tion (3)) such that M2l ≤ M2 ≤ M2h, then the stability con-
dition (3) would be equivalent to

Condition (8) represents an analytical relationship
between the feedback strength indicators K1 and K2 of the
loops in action, and f1(M2l, K2) and f1(M2h, K2) are the
bifurcation points of K1.

To determine the bounds M2l and M2h, note that (3) can
be manipulated to take the form

where g is a function whose explicit form depends on the

particular system motif. For system  we have

Because α1, α2, α3 > 0, (3) is equivalent to α1α2 - α3 > 0.
Substituting (9) into this relation we obtain

where f(M2) = M1 and , with coeffi-

cients a0, a1 and b1 are expressions of the system parame-
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ters and given in the supplementary material (section 4.2,
Additional file 1).

Note that (10) is to take different forms depending on
specific motifs of feedback loops. Next, we analyse the

inequality (10) for the system  using a geometrical

approach in which the curves f(M2) and g(M2) are drawn

on the two dimensional M1-M2 coordinate plane (Figure

4a). f(M2) is a strictly decreasing curve contained within

the unit square U = {(0,0); (1,0); (1,1); (0,1)} (indicated
with dashed boundary in Figure 4a), g(M2) is a straight

line with a positive slope. As 0 <M1, M2 < 1, the analysis is

constrained within U only. Range of M2 satisfying (10)

can be determined along with its lower and upper bounds
M2l and M2h, illustrated in Figure 4a.

Results and discussion
Single-loop Systems
Because two-species systems are incapable of demonstrat-
ing oscillatory dynamics, we only consider systems with
three species or more. Here, we present the results for the
systems with a single feedback loop. To this end, the
three-species systems are first considered. We then exam-
ine the four-species systems and investigate potential
effects on system functional dynamics as a result of
lengthening the pathways.

Three-species Systems

Three negative feedback motifs are possible for the three-
species system where the feedback loop is imposed on the

first, second, and the last step of the pathway. These are

denoted ,  and  and schematically demonstrated

in Figure 3a, b, and 3c, respectively. We found that sys-

tems  and  are both incapable of having oscillatory

dynamics, regardless of their parameter values. System

, essentially the Goodwin system of length three, pos-

sesses both stable and oscillatory dynamics. Switching
between these dynamical regimes occurs through a Hopf
bifurcation. We present below the analytical condition
governing this bifurcation.

The system is stable if and only if the following condition
is satisfied (see section 1.1.1 in Additional file 1 for the
derivation):

where

K1 versus n1
Manipulating the inequality (11) yields an equivalent
condition between the inverse feedback strength indicator
K1 versus the Hill coefficient n1 and the remaining model
parameters (i.e. the synthetic and degradation rates – see
section 1.1.4 in Additional file 1 for the derivation), given
below
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2 L3
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2 L3
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1

M
B
n1
1

< , (11)

B
k k k k k k
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d d2 d3

1
1

(12)

(a) Functions f(M2) and g(M2) on the two-dimensional M1-M2 coordinateFigure 4
(a) Functions f(M2) and g(M2) on the two-dimensional M1-M2 coordinate. Lower (M2l) and upper (M2h) bounds of M2 
satisfying the stability condition are indicated on the M2 axes (the figure is produced with parameter values: n1 = 12, n2 = 3, k1 = 
1, k2 = 2, k3 = 1, kd1 = 1.2, kd2 = 3, kd3 = 2 and K2 = 0.02). (b) Determining curve f(M3) (solid blue) and g(M3) (dashed purple) on 
the two-dimensional M1-M3 coordinate.
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where

This shows, given other model parameters' values, the
existence of a threshold feedback strength (1/K1thresh) at
which the system loses stability to an oscillatory regime.
Based on (13), two-parameter bifurcation diagrams of K1
against other model parameters can be set up. Figure 5a
illustrates on the K1 vs. n1 plane, regions of stable and
oscillatory dynamics, separated by the K1thresh curve.

To obtain oscillatory behaviour, the feedback loop must
be sufficiently strong (K1 below the curve). Furthermore,
K1thresh saturates at high n1 which indicates that there exists
a critical value of K1 or feedback strength above which, the
system is guaranteed to have sustained oscillations regard-
less of the value of the Hill coefficient n1 (Figure 5a).
Denote this critical value K1crit, we found that K1crit = 1/A,
which is the product of the system synthesis rates divided
by the product of the system degradation rates (see section
1.1.5 in Additional file 1 for the derivation). Figure 5a fur-
ther shows that higher cooperativity level improves the
likelihood to observe oscillation, since oscillation is
obtained over a wider range of K1, i.e. lower n1 provides
more stability. However, this improvement diminishes at

high cooperativity level due to the saturation behaviour of
K1thresh.

Parameter's "Ranges of Guaranteed Stability"
Here, we define the Ranges of Guaranteed Stability (RGS)
of a model parameter p with respect to model parameter q
as all possible values of p that always give a stable system
dynamics, subjected to arbitrary variation in q. For
instance, as shown above, K1 > 1/A or (1/A, +∞) is the RGS
of K1 with respect to n1.

Because M1 < 1, equation (11) means that the system is
always stable if n1 ≤ B. This threshold value depends on
the degradation rates only. It also yields the RGS of n1 to
equal (0, B], with respect to all model parameters except
the degradation rates. Since B ≥ 8 for any arbitrary values
of kd1, kd2 and kd3, the interval (0,8] becomes the "global"
RGS of n1, i.e. with respect to all model parameters. Fur-
thermore, for any n1 ≥ 8, the system can be made oscillat-
ing with a proper set of the degradation rates and having
a sufficiently weak feedback loop. The number of these
sets is found indefinite and shown in section 1.1.3 in
Additional file 1.

Effects of turnover parameters
Here, we investigate effect of the synthesis and degrada-
tion parameters on the system's bifurcation characteris-
tics. Since A and B are symmetrical expressions, K1thresh is
also symmetrical with respect to the degradation as well as
the synthesis rates. This means that all system species
equally affect the system's bifurcation characteristics in

K
n B n

An B n
K thresh1 1

1
1 1 1

1
1 1

> − +
=( ) /

/
, (13)

A
k k k

k k k
= d d2 d31

1 2 3
. (14)

(a) Bifurcation diagram of K1 against n1Figure 5
(a) Bifurcation diagram of K1 against n1. The stable and oscillatory regions are separated by the K1thesh curve which 
increasingly approaches the K1crit line (dashed). B, indicated on the n1-axis, is the minimum value of the Hill coefficient at which 
oscillations are possible (parameter values k1 = 1, k2 = 2, k3 = 1, kd1 = 1.2, kd2 = 3, kd3 = 2 were used for graphing). (b, c) Com-
parison of the K1 vs. n1 bifurcation diagrams for different scenarios. (b) K1 vs. n1 bifurcation diagram for the base parameter set, 
k1 = 1, k2 = 2, k3 = 1, kd1 = 1.2, kd2 = 3, kd3 = 2, (solid); when a synthesis rate k1 is doubled (dashed); and 10-times increased 
(dot). Note that the exact same effects are also obtained for changing other synthesis rates. (c) K1 vs. n1 bifurcation diagram for 
the base parameter set (solid) compared to the set in which the degradation rate kd1 is increased 10 times (dashed), and the set 
when the degradation rates are set identical, kd1 = kd2 = kd3 = 0.5 (dot).
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spite of the fact that the feedback loop is only acting on
the first reaction of the pathway.

Regarding the synthesis rates, K1thresh changes proportion-
ally with these parameters. Increase in the production of
any of the model species therefore gives rise to a more
oscillatory-prone system, indicated by a larger oscillatory
region in the two-parameter K1 vs. n1 plane (Figure 5b).
More interestingly, raising the production rate of any spe-
cies results in an exactly same K1thresh curve as raising the
production rate of any other species by the same propor-
tion. Bifurcation patterns are therefore conserved under
these different changes. This knowledge is potentially use-
ful in many cases. For example, it can facilitate the engi-
neering of synthetic circuits with desirable dynamical
behaviour; as one could effectively choose appropriate
points to perturb to attain desired dynamical behaviours.
It can also help in the process of parameter estimation and
optimisation of synthetic circuits.

The degradation rates, on the other hand, have opposite
effect on system dynamics. Higher degradation rates tend
to reduce K1thresh, leading to smaller oscillatory region
(Figure 5c) and consequently a more stable system. Sys-
tem stability, therefore, is most likely when model species
are rapidly degraded. This is because at large kdj, rapid deg-
radations of the state species significantly weaken the
strength of the negative feedback loop that is required for
oscillations. In contrast, very slow degradation makes it
almost impossible for the system to obtain stability,
unless the feedback loop is greatly relaxed with signifi-
cantly weak inhibition strength (i.e. very high K1).

In examining parameter effects on the threshold value of
the Hill coefficient (B), our analysis reveals that compara-
ble degradation rates across model species (kd1 ≈ kd2 ≈ kd3)
leads to minimum B and thus minimum RGS for n1;
whereas if one is many folds greater than another (kdi >>
kdj, i, j ∈ {1, 2, 3}), B will be high, resulting in a large RGS
(see section 1.1.6 in Additional file 1 for the justification).
This suggests a way to enhance system stability by unbal-
ancing the degradation rates of molecular species, prefer-
ably, towards higher values. Figure 5c compares the
bifurcation profiles between a reference parameter set and
one with equally low degradation rates; and one with une-
qual, enhanced degradation rates.

Four-species Systems

These systems can be considered extension of the previous
models, which consist of four species. There are a total of
four feedback motifs for single-loop systems. Similar to

 and , systems  and  are found to be incapable

of producing oscillations. Here, we consider  and 

in turn (Figure 3h, i).

Interestingly for , our analysis arrives at the same bifur-

cation points for n1 and K1 as in (11) and (13), however

with different expressions of A and B:

We found that B ≥ 4 for arbitrary values of the degradation
rates. Compared with the three-species system, n1's RGS is
reduced, supposedly due to the lengthening of system
pathway. Furthermore, for n1 > 4 the system is capable of
displaying sustained oscillation for an indefinite number
of parameter sets, given a proper selection (see section 1.2
in Additional file 1 for the justification).

Let us now consider system , a variant of the single-

loop Goodwin system where inhibition is imposed by the
end-product on the second rather than the first step of the
pathway (Figure 3i). At first glance, this system design

looks like its counterpart . However, there is a funda-

mental difference in the synthesis of the repressed varia-
bles between the two systems. The synthetic term for x2 in

 contains x1 which changes dynamically, having its rate

of change defined by the first model equation in Figure 3i;

whereas the synthetic term for x1 in  does not contain a

varying variable;  can thus be considered as a special

case of  by setting kd1 = 0 in Figure 3i. This difference

might give rise to distinct dynamical behaviours between

the two systems. Here, we analyse 's bifurcation to

identify and investigate possible behavioural discrepan-

cies compared to .

For system , the analytical bifurcation point for feed-

back strength K2 is

where A has the form of (15) while B is reduced to resem-

ble that of the three-species system  in equation (12),L3
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Generalised Single-loop Systems
Minimum Hill Coefficient for Sustained Oscillation
In fact, for the single-loop Goodwin system with arbitrary
length l, the minimum Hill coefficient required for sus-
tained oscillations has been theoretically computed to be

although this calculation is done under the stringent
assumption of equal degradation rates kd1 = kd2 =...= kdl
[15,19].

Figure 6 plots this minimum Hill coefficient against the
pathway length l (≥ 3). We observe dramatic reduction of
the minimum n1 at small length (≤ 10) but this reduction

becomes insignificant for longer pathway; a saturation
trend is instead observed. Our derivation, however, gives
us explicit form of the minimum n1 as analytical expres-
sion of the degradation rates.

Effects of System Extension

Comparative study of the systems  and  allows us to

examine dynamical effects resulting from system exten-
sion (i.e. the lengthening of system pathway). We found
that the extended system with more species is not always
more stable. In fact, whether the extended system is more
stable or more prone to oscillation is determined by the
kinetics (i.e. synthetic and degradation rates) of the added
species.

If we denote K1crit(L) the critical K1 value of system L, (14)
and (15) then give

B L
k k k k k k

k k k
( )

( )( )( )
.4

2 = + + +d2 d3 d3 d4 d2 d4
d2 d3 d4

(17)

1/ ( ),Cos
l

l π

L3
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1
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k
K Lcrit crit1 4

1
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Minimum Hill coefficient (n1) required for sustained oscillations in the Goodwin system with length lFigure 6
Minimum Hill coefficient (n1) required for sustained oscillations in the Goodwin system with length l.
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Equation (18) indicates that if the additional species is
more quickly degraded than produced (k4 <kd4), K1crit will

be reduced for the extended system. On the other hand,

K1crit for  is raised if k4 > kd4 and unchanged if k4 = kd4.

Also, note that if kd4 is small (large) relative to other deg-

radation rates, n1crit for the extended system becomes

greater (smaller) (see (12) and (16)).

Figure 7 demonstrates the effects of system extension on
the bifurcation characteristics under different scenarios of
the added species' kinetics. We conclude that the extended
system obtained as a consequence of pathway lengthen-
ing becomes more stable only when the added species
degrades slower than it is being produced. In this case, the
feedback loop must increase its strength to a proportional
level, if sustained oscillation is to be obtained (see (18)).
On the other hand, the extended systems are more prone
to sustained oscillations if the additional species degrades
faster and being created. These observations provide us
with useful indications of how regulatory system might
tune its feedback strength to achieve certain types of
dynamics.

Generalisation of Feedback Strength and Hill coefficient

The equation defining the threshold feedback strength for

the systems ,  and  can be extended by induction

to a system with an arbitrary number of reaction steps.
The threshold feedback strength of the Goodwin system

with the general length l (  – schematic diagram in Fig-

ure 2), for example, can be expressed as in equation (13)
with A's generalised form below,

and B is a function of only the degradation rates kd1, kd2,...,
kdl. B was found for the systems with length 3 and 4 to be
neat expressions of the degradation rates. However, for
the system with 5 variables or more, B becomes complex
but can be derived explicitly. Moreover, B reaches its min-
imum when all degradation rates are equal, at which B =
1/Cosl(π/l). In addition, the generalised critical value of
the feedback strength is A. A system with feedback
strength weaker than this value is guaranteed a stable
dynamics independent of the Hill coefficient values.

Equation (17) shows that the threshold Hill coefficient of

 only depends on the degradation rates of the inhibited

species and its downstream molecules; and is independ-
ent of the upstream species. More interestingly, equations

(12) and (17) show that  and  share the same ana-

lytical form for B. Further generalisations, therefore, can
be made for variants of the general Goodwin systems: the
systems with single negative feedback loop in which any
step in the biochemical pathway can be potentially inhib-

ited by the end-product (i.e. systems  with 1 <= k <= I -

Figure 8a). The threshold Kkthresh of  is

where A is retained its form as in (19) whereas B involves
only the degradation rates of downstream species of the
repressive targeted species Xk.

More importantly, B has similar form as that of the

reduced Goodwin system  (Figure S1 in Additional

file 1). We confirmed these generalised analytical equa-
tions using numerical computations as well in which we

estimate Kkthesh for variant systems  and found that they

fit the theoretical form given by .

Effects of Feedback Loop Reallocation
The generalised findings above have important implica-
tions concerning the dynamical behaviour of feedback
systems. Comparing (19) and (20) reveals that realloca-
tion of the negative feedback loop has no effect on the crit-
ical feedback strength (1/Kcrit). Regardless of the loop's
position, the system's stability is ensured if the feedback
strength is weaker than this value.

However, loop reallocation may or may not make the sys-
tem more stable. This is because the threshold Hill coeffi-
cient values B in (19) and (20) are different. The ratios of

B for  and  based on equations (16) and (17) is

given by

For simplification, let kd2 = kd3 = kd4 = 1. We observe that

B( ) >> B( ) when kd1 << 1; B( ) <B( ) when kd1

≈ 1 but B( ) approaches B( ) when kd1 >> 1. This

means B could become either larger or smaller depending
on the relative magnitude of kd1 compared to kd2, kd3, kd4.

Consequently, the oscillatory region on the two-dimen-
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Comparison of the two-parameter bifurcation diagram K1 vs. n1 between the 3 and 4-species systems: L3 (solid) and L4 (dashed)Figure 7
Comparison of the two-parameter bifurcation diagram K1 vs. n1 between the 3 and 4-species systems: L3 (solid) 
and L4 (dashed). (a) kd4 = k4 for added species, K1crit is retained; (b)kd4 = k4 but small kd4, K1crit is retained but L4 has smaller 
oscillatory region; (c) kd4 = 0.5k4, K1crit is doubled, extended system has approximately doubled oscillatory region; (d) kd4 = 
0.5k4 but with small kd4, K1crit is doubled, however B1> B, L3 and L4 have overlapping oscillatory regions. We used parameter sets 
(k1 = 1, k2 = 2, k3 = 1, kd1 = 1.2, kd2 = 3, kd3 = 2) and (k4, kd4) = (5,5) for (a); (0.1,0.1) for (b); (1,0.5) for (c) and (0.2, 0.1) for (d).
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sional bifurcation diagram K1 vs. n1 could either shrink or

expand due to loop reallocation.

Non-oscillatory Systems

Because the systems with less than three species are not
able to display oscillatory dynamics, the generalised
results obtained in the previous section indicate that for

the systems with arbitrary length which possess a single
loop inhibiting either the last step or second-last step of

the pathways (  or ), oscillatory dynamics is also

not feasible. This conclusion is in line with analytical

results obtained for the systems , , ,  previ-

ously.
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(a) Schematic topology of the general Goodwin system () and its variants Figure 8

(a) Schematic topology of the general Goodwin system ( ) and its variants . (b) Schematic diagram of non-oscil-

latory systems. These include single as well as multiple-loop systems consisting of at least one loop on the last or second-last 
pathway step.
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We will show in the next section that, adding extra inhibi-
tion loops tends to make the system less likely to demon-
strate sustained oscillations. This implies that any system
with multiple negative feedback loops encompassing one

imposing on either the last or second last step (

or  with k1,.., km ∈ {1, 2,.., l}) is also incapable of

having oscillatory dynamics (Figure 8b).

Coupled-loop Systems
Let us consider systems with increased complexity in
which several negative feedback loops are coupled
together. Understanding of composite behaviour of cou-
pled loops has been limited. We aim to establish mean-
ingful connections between the feedback strength of these
loops (through the inverse indicator parameters Ks) under
certain conditions.

Three-species, Doubled-loop System 

Detailed analysis for this system was presented in section
"Analysis Methodology" as an example (Figure 3d). The
stability condition (10) is ensured if g(M2) intersect the
M1-axis at a point above point (0,1), indicated by a dot in
Figure 4a. This translates a0 ≥ b1 or n1 ≤ B with B as in (12).
Compared to the results from the previous section of the
three-species, single-loop system, we found that adding a
second feedback loop does not affect the RGS of n1. On
the other hand, if n1 > B, the line g(M2) must intersect
f(M2) within the unit square U and so condition (10) is
violated for some M2, subsequently destabilising the sys-
tem (Figure 3a).

K1-K2 Bifurcation Diagram
Range of M2 satisfying (10) can be determined, indicated
by its lower bound M2l and higher bound M2h in Figure 4a.
For each value of K2, we obtain corresponding values for
M2l and M2h. Using (8), we construct the two-parameter
bifurcation diagram with the feedback strength indicators
K1 and K2 being the axes.

Note that in this case, there exists at most one (unique)
intersection point between f(M2) and g(M2) within U,

indicating a simple binary separation of the K1-K2 bifurca-

tion diagram into stable and oscillatory regions. A typical

K1-K2 bifurcation profile for  is illustrated in Figure 9a.

We refer to the feedback loop involving K1 and K2 as loop

L1 and L2, respectively.

As loop L1 is relaxed (larger K1), sustained oscillation
becomes more difficult to obtain at stronger L2 (indicated
by raised minimum K2 possible for oscillation). Stability
is most likely under weak L1 coupled with strong L2. Oscil-
lations, on the other hand, are most likely at weak L2 cou-
pled with strong L1; shifting system dynamics to being
stable at strong L1, however, requires L2 to be very strong
too. Dynamical behaviours are summarised in Table 1
based on combinations of the individual loop's strength.

K1's Critical Value
Figure 9a also shows that there exists a critical value for K1
above which the system must be stable. This means stabil-
ity is guaranteed if L1 is sufficiently weak, regardless of the
nature of the second loop L2. Unlike L1, stable as well as
oscillatory dynamics can be obtained at any strength of L2,
given the proper specification of L1 (Table 1).

Ll
k k lm1 1,.., , −
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k k lm1 ,.., ,

L3
1 2,

L3
1 2,

(a) K1 vs. K2 bifurcation diagram at n1 = 10, n2 = 5 (using k1 = 1, k2 = 2, k3 = 1, kd1 = 1.2, kd2 = 3, kd3 = 2); (b) Bifurcation diagram for increasing n1 at n2 = 5; (c) Bifurcation diagram for increasing n2 at n1 = 10Figure 9
(a) K1 vs. K2 bifurcation diagram at n1 = 10, n2 = 5 (using k1 = 1, k2 = 2, k3 = 1, kd1 = 1.2, kd2 = 3, kd3 = 2); (b) Bifur-
cation diagram for increasing n1 at n2 = 5; (c) Bifurcation diagram for increasing n2 at n1 = 10.
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The critical K1crit mentioned above was found to have the
exact same expression as the Kt1hresh in (13)

Note that K1crit is independent of L2's specification,
whereas it increases with n1. As a result, higher n1
enhances oscillatory behaviour due to the expansion of
the oscillatory region. Increase n1 therefore enables oscil-
latory exhibition at weaker L1 (Figure 9b). Moreover, we
found that increasing n2 does also expand the oscillatory
region (Figure 9c), enabling oscillatory exhibition at
stronger L2. Therefore, for a coupled-loop system, raising

the Hill coefficient of any loop tends to enhance oscilla-
tory behaviour.

Effects of turnover parameters
The above equation indicates that K1crit increases propor-
tionally with the synthesis rates. This causes the oscilla-
tion region to approximately increase by the
corresponding proportion. Oscillatory dynamics is now
achievable at higher K1 given fixed K2 (Figure 10a). On the
other hand, comparable degradation rates (kd1 ≈ kd2 ≈ kd3)
leads to low B (see section 1.1.6 in Additional file 1) and
as a result raises K1crit. Particularly, K1crit is maximised
when this comparable rate is minimised. Whereas, if these
parameters are different by many folds, K1crit is small and
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Table 1: Dynamical Behaviour of Doubled-loop System

L1
L2 Sufficiently Weak

(K1 > Kthresh)
Weak

(large K1)
Strong

(small K1)

Weak (large K2) S S/O O

Strong (small K2) S S S/O

Very Strong (v. small K2) S S S

Effects of the synthetic and degradation parameters on the two-parameter K1 vs. K2 bifurcation diagramFigure 10
Effects of the synthetic and degradation parameters on the two-parameter K1 vs. K2 bifurcation diagram. (a) 
Comparison of the K1 vs. K2 bifurcation diagram between the reference parameter set (k1 = 1, k2 = 2, k3 = 1, kd1 = 1.2, kd2 = 3, 
kd3 = 2) and when a synthesis rate (k1) is doubled; (b) Comparison of the K1 vs. K2 bifurcation diagram for 3 parameter sets: the 
reference set above (solid); when the degradation rates are all equal = 1.2 (dashed); and when one degradation rate is much 
greater than another (dot).
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so is the corresponding oscillatory region. Figure 10b
compares three scenarios in this case. The parameter set
with kd1 = kd2 = kd3 = 1.2 obtains the largest oscillatory
region while setting kd1 = 4kd2 has it significantly dimin-
ished.

Three-species, Doubled-loop System 

An alternative doubled-loop system is considered here in
which the first and the last pathway steps are inhibited
(see Figure 3e for the schematic diagram and model equa-
tions). Follow the analytical methodology in section 2; we
obtain the following stability condition for the system

with

 and

, where coefficients a0, a1, a2 and

b1 are given in the supplementary material (section 4.3,

Additional file 1).

K1-K3 Bifurcation Diagram

Similar analysis was carried out on the two-dimensional
M1-M3 coordinate to determine the ranges of M3 satisfying

condition (21). Figure 4b shows that, in this case, g(M3) is

a concaved-up parabola instead of a straight line like

g(M2) in the previously considered system . Neverthe-

less, there exists still at most one intersection point
between f(M3) and g(M3), resulting in a similar bifurca-

tion pattern for the K1 vs. K3 diagram as in  (Figure

4a). Moreover, the critical value for K1 discussed previ-

ously is found to have the same form here. This again con-
firms that incorporation of additional feedback loop does
not affect K1crit, regardless of the location of the added

loop. Moreover, the first loop's Hill coefficient (n1) also

has its RGS unchanged: RGS = (0, B]. The two-parameter
K1 vs. K3 bifurcation diagrams were constructed based on

the following relation:

Here, we compare the bifurcation profiles between two

doubled-loop systems  and . To facilitate this, we

impose K2 = K3 and n2 = n3. The line g(M2) is superim-

posed on the M1-M3 plane (by setting M2 ≡ M3) and indi-

cated by the thin line in Figure 4b. Note that that g(M2)

and g(M3) meets on the M1-axis. Moreover, the slope at

this point for g(M3) is always steeper than g(M2), suggest-

ing a higher lower bound for M3 for stability. The implica-

tion is: given the same set of parameter values, adding
loop L3 results in a larger stability region (a smaller oscil-

latory region) than adding loop L2, therefore better

enhance system stability. On the other hand,  is more

likely to exhibit oscillatory dynamics than .

Three-species, Multiple-loop System 

In this section, we consider the system structure which
incorporates all three feedback loops imposing on all
pathway steps (see Figure 3g for the circuit diagram and
model equations). The analysis becomes more compli-
cated, as a result. For this multiple-loop system, the stabil-
ity condition is given by

Due to space restriction, we give the explicit forms of func-
tion f and g in the supplementary material (section 4.4,
Additional file 1). K1 was derived as a function of the
remaining model parameters:

Following the similar methodology laid out above, we
were able to compute bifurcation diagrams for any pair of
feedback strengths (K1vs. K2, K1 vs. K3, and K2 vs. K3). In all
the cases, it is found that having extra third loop always
increases the stability of the system, illustrated by expan-
sion of the stability region on bifurcation diagrams. The
likelihood of obtaining oscillatory dynamics is directly
controlled by strengths of the loops in effect, with stronger
feedback loops always result in smaller oscillatory region.
Figure 11b compares the bifurcation profiles of the dou-
bled-loop and three-loop systems.
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Four-species, Coupled-loop System

To further understand the effects of loops coupling in neg-
ative feedback systems, we examine a system consisting of

four species with two loops in action, denoted  (see

Figure 3l for the circuit diagram and model equations).
Our derivation arrives at the stability condition for this
system, given below

In this case f(M2) still have the usual form

with A as in equation (15). However, we have

where the coefficients a0, a1 and a2 are given in the supple-
mentary material (section 4.5, Additional file 1).

In a similar fashion, to construct bifurcation diagram of
the loops' feedback strengths, we need to determine the

ranges of M2 that satisfies (22) via examining the curves in
(23) and (24) on the M1-M2 coordinate. System stability
occurs over the ranges of M2 such that f(M2) lies below
g(M2), while oscillatory dynamics reigns over the remain-
ing ranges.

As expected, system extension greatly complicates the
analysis due to the increased number of parameters and
the increased complexity of g(M2).

Loops Coupling lowers Hill coefficients for Oscillations
To find the RGS for the Hill coefficients n1 and n2, we
determine on the two-parameter Hill coefficients n1-n2
plane regions that give rise to system stability regardless of
the feedback loops' strengths and other parameters. These
regions can be referred to as the Regions of Guaranteed
Stability for n1 and n2.

From Figure 12a we can see that condition (22) will
always be satisfied if g(M2) always lies above the unit
square U and therefore above f(M2) for all K2. The RGS for
n1, n2 can thus be found by solving the following system
of inequalities,
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Comparison of bifurcation diagram between coupled-loop systemsFigure 11
Comparison of bifurcation diagram between coupled-loop systems. (a) Bifurcation diagram comparison between 

 and  systems (we used n1 = 13, n2 = n3 = 5 and the reference parameter set). (b) Comparison of bifurcation diagram 

between systems with only first two loops, with all three loops but weak L3, and strong L3.
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Put , which

only depends on the degradation parameters. We obtain
the RGS as containing those points (n2, n1) on the n1-n2

plane such that

where B1 and B2 have the same form as in (16) and (17),
respectively. Specifically,

This region is presented in Figure 12b as the marked area
bounded by the axes (with B1 and B2). Figure 12b shows
the RGS region for three different sets of the degradation
rates. Interestingly, we found that for arbitrary values of
degradation parameters, the corresponding RGS always
contain the 8 by 4 triangular, indicating that any (n1, n2)
inside this triangular guarantees system stability regard-
less of all other model parameters including the feedback
strengths. On the other hand, for (n1, n2) outside the tri-

angular, we can always find a set of kdi (i = 1,..,4) so that
its RGS does not contain (n1, n2), giving rise to unstable
system equilibrium.

Recall that in the cases of single-loop systems considered
before, there exist lower bound conditions for the Hill
coefficients if oscillatory dynamics is to be obtained. For

example, n1 must > 4 for , and n2 must > 8 for . Feed-

back loops coupling, however, effectively removes these
constraints for the Hill coefficients. In fact, sustained
oscillation is now achievable for any value of n1 (n2) given

proper choice of n2 (n1). As a result, sustained oscillation

can occur at much more biologically plausible values of
n1, n2; e.g. (n1, n2) = (3, 3) or (2, 4), indicated by the dots

in Figure 12b.

It is important to note that the RGS for (n1, n2) solely
depends on only the degradation rates. Variation on these
rates affects its size and location. B2 is maximised if among
the degradation parameters, one is many folds greater
than another (kdi >> kdj with i, j ∈ {2,3,4}). Similarly, B1 is
maximised if kdi >> kdj. On the other hand, B1, B2 are low-
est when kdi >> kdj with kd1 ≈ kd2 ≈ kd3 ≈ kd4. Therefore,
reducing any degradation rate to extreme low or high level
will expand the RGS, resulting in system stability for wider
range of Hill coefficients. Oscillation, consequently, is
enhanced when the degradation rates are kept compara-
ble between the system species.
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(a) The f(M2) and g(M2) on the M1-M2 planeFigure 12
(a) The f(M2) and g(M2) on the M1-M2 plane. Several f(M2) with 3 different K2 values. The critical g(M2) curve is indicated 
by the dashed parabola which meets the unit square U at corner points A and B. (b) The RGS regions shown on the n1-n2 
plane.
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Loops Coupling Generates 13 different K1-K2 Bifurcation Patterns
If (n1, n2) lies outside the RGS region, g(M2) must cross U
and therefore must intersect with f(M2) at least once at
some value of the feedback strength indicator K2. Unlike
the previously considered systems where only one inter-
section point is detected, the number of intersection
points in this case could be up to three. This provides a
rich variety of different bifurcation profiles for the system.
In fact, we identify a total of 13 distinct patterns of bifur-
cation on the K1 vs. K2 bifurcation plane; each pattern for
one choice of the Hill coefficients. These 13 patterns are
displayed in Figure 13.

These bifurcation diagrams differ in their characteristics:
the shapes of the stable and oscillatory regions. For exam-
ple, Figure 13a shows a simple bifurcation profile: for
each and every value of K1, the system displays oscilla-
tions over a range of K2 with a lower bound but no upper
bound. Figure 13c shows a similar feature but the range of
K2 for oscillations is now bounded by both the lower and
upper bounds; moreover, this range only exists for a cer-
tain range of K1. Figure 13k displays even more intricate
bifurcation characteristics: as the parameter K1 moves up
the vertical axis, the corresponding set of values of K2 for
oscillations continually changes with no, one bounded
range, two bounded ranges, and one unbounded range.
This indicates the complexity between the feedback loops'
strengths in contributing to shaping up the dynamics of
the system, as a whole.

End-product Utilisation
In the preceding model systems, reduction of model spe-
cies was assumed to occur only through degradative proc-
esses (decay and modification). However, species'
reduction could also occur via other mechanisms. We
consider here the scenario where the end-product (inhib-
itor), besides being degraded, is due to be consumed by
the cell for synthesising other cellular components. Nota-
ble examples are of common amino acid biosynthesis
pathways in which the amino acid (pathway's end-prod-
uct) is utilised by the cell for protein synthesis [33-35].
Earlier work [16,35] suggests that the change of the end-
product in this manner has important effects on the
dynamical stability of the system. However, these work
were numerical; there are no analytical analyses of this
effect.

Although the inclusion of g complicates our analysis, we
were able to obtain the stability condition for the system
in simple form similar to (11) (see section 3 in Additional
file 1 for detailed derivation)

with Bg is given by (note that A and B are as in (15) and

(16) of system ):

As shown in Additional file 1, section 3, for the system to
have equilibrium, the utilisation rate g must not exceed a
critical value

End-product utilisation enables oscillations at any Hill coefficient

With (27), it is easy to check that Bg < 1 for all n1 and g.

Hence, for any n1, stability condition (3.24) can be

breached by choosing K1 sufficiently large (see Additional

file 1, section 1.1.3), and so the system is destabilised
(oscillatory). Moreover, this is true for arbitrary value of g
> 0. The interesting implication here is that, unlike system

 where sustained oscillation is only attainable for cer-

tain n1 (n1 must be greater than 4), the inclusion of g, even

small, has enabled the system to attain oscillation at any
n1. End-product utilisation therefore allows oscillatory

dynamics at low cooperativity level. This is demonstrated
in Figure 14b where bifurcation diagrams on the K1-n1

plane are compared for system with (thick line) and with-
out (thin line) end-product utilisation. The bifurcation
diagrams were constructed based on the threshold K1

which we calculated to be (see Additional file 1, section 3
for the derivation):

This threshold approaches a critical value as n1 increases; 

K1crit is given by (1-G)/A which is smaller than K1crit of  

(1/A). This indicates in order to achieve oscillation; the 
feedback strength of the system with end-product utilisa-

tion must generally be stronger (Figure 14b).

Effects of g on systems dynamics
We expect that change in g would bring change in the
dynamical characteristics of the system. We found that
this change comes about in an interesting way. As g (G)
increases, K1crit reduces, causing shrinking of oscillatory
region, especially at high n1 (Figure 14c). Therefore,
higher utilisation of the end-product generally requires
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13 different patterns of the two-parameter K1 vs. K2 bifurcation diagramsFigure 13
13 different patterns of the two-parameter K1 vs. K2 bifurcation diagrams. S denotes stable regions and O denotes 
oscillatory regions. For each bifurcation diagram, the inset graphs indicate the different scenarios (number of intersection 
points) of the functions f(M2) and g(M2).
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(a) Schematic diagram of the negative feedback system with end-product utilisationFigure 14
(a) Schematic diagram of the negative feedback system with end-product utilisation. (b, c, d) The K1 vs. n1 bifurca-
tion diagram for the system with end-product utilisation. (b) Bifurcation diagram comparison between system without end-
product utilisation and one with utilisation on K1-n1 plane (G = 0.2 was used). (b) Bifurcation diagram of system with utilisation 
for increasing G (G = 0.2, 0.4, 0.8 were used). (c) Two-parameter K1 vs. g bifurcation diagrams for n1 = 2, 4 and 6; oscillatory 
regions are in red (parameter set k1 = 1, k2 = 2, k3 = 1, k4 = 1, kd1 = 1.2, kd2 = 3, kd3 = 2, kd4 = 1 was used).
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stronger feedback loop if oscillation is to be obtained.
However, when G exceeds 0.5, the oscillatory region
changes its shape significantly resembling an L shape,
indicated by the crossed area in Figure 14c (Figure 14c
compares when G = 0.8 against G < 0.5). Now at low n1,
oscillatory region is greatly expanded, enabling oscillation
at a much wider range of K1.

We also present on Figure 14d the two-parameter K1 vs. G
bifurcation diagrams for n1 = 2, 4 and 6. In this case,
higher cooperativity generally gives rise to larger oscilla-
tory region, consequently promoting oscillation. We
observe an intermediate value of G (and so g) for which
oscillation is most likely (widest range of K1) while at low
and high G the system tends to be more stable. This is con-
sistent for all three plotted n1. As n1 increases, this inter-
mediate g moves further left in its spectrum (between 0
and gc)

To sum up, we showed that end-product utilisation
enhances sustained oscillation at low cooperativity level
while it enhances stability at high cooperativity. However,
it is important to note that raising the utilisation level
does not always further these enhancements. In fact, there
exists an intermediate rate for utilisation at which sus-
tained oscillation is detected most likely, while less likely
at other rates.

Biological Examples
Restricted by the paper's scope, we only present here two
biological examples from the literature where useful
insights can be readily obtained by applying the analysis
outlined in this paper. These are (1) the Hes1 oscillator
which plays an important role during somitogenesis of
vertebrates and (2) the Tryptophan operon system
responsible for regulatory production of tryptophan in
Escherichia coli. The former system exemplifies single-loop
system while the later is an instance of multiple-loop sys-
tem.

The Hes1 Oscillator
A wide range of cellular phenomena have their activities
centred on oscillations [36,37]. One such notable exam-
ple is vertebrate somitogenesis. This is a developmental
process in which the vertebrate embryo becomes seg-
mented by the regular sequential assignment of mesoder-
mal cells to discrete blocks [38]. Experimental evidence
reveals the basic helix-loop-helix (bHLH) transcription
factor Hes1 as an important cyclic gene driving this oscil-
lations [6,39,40]. These studies showed that the oscilla-
tory expression of the bHLH factor Hes1 is regulated by a
direct negative feedback loop whereby Hes1 represses the
transcription of its own coding gene (Figure 15a)

A few models have been developed for this network [6,41-
44]. Here we base our analysis on a model suggested by
Zeiser et al. [43] which consists of four ordinary differen-
tial equations involving Hes1 mRNA and protein and
incorporates their transportation processes between the
nucleus and cytoplasm. Using notations in the original
paper, the model equations are given below,

Here m1 and m2 represents the concentration of Hes1
mRNA before and after being transported from the
nucleus to the cytoplasm, respectively; while p1 and p2 are
the concentration of Hes1 protein before and after being
transported from the cytoplasm to the nucleus, respec-
tively. Equation (29a) describes the synthesis of mRNA in
the nucleus. The mRNA is then transported into the cyto-
plasm, described by (29b). Translation into protein is
specified by (29c) while (29d) represents transportation
of the protein into the nucleus where it represses its own
transcription. Parameters b and a denote the decay and
modification rates for mRNA respectively; while d and e
are used for the protein. To simplify the analysis, Zeiser et
al. assumed the decay rates (b and d) as being identical for
both forms of the mRNA and protein. By fixing b = 0.028,
d = 0.031 and under condition of having oscillation
period about 120 min, all determined in Hirata et al. [6],
Zeiser et al. estimated a set of fitting parameters, displayed
in Table 2.

It is easy to see that model (29) is just a special case of sys-

tem model  analysed earlier with parameters adapted

and presented in Table 3. Consequently, the threshold
Hill coefficient is computed based on equation (16) using
only the degradation parameters gives a value of about
5.6. This means for the Hes1 oscillator to be oscillating at
all, the Hill coefficient must be greater than 5.6. The Hill
coefficient used by Zeiser et al., 6.2 is quite close to this
minimum value (Table 3 and Figure 16b). We constructed
the two-parameter K1-n1 bifurcation diagram in Figure

16a. The threshold feedback strength can also be readily
calculated from equation (15), as K1thesh = 1/A = 3296.

Thus, for the Hes1 system to be an oscillator, the necessary
condition for K1 is that K1 < 3296, given other parameters'

′ =
+

− −m k
Hh

Hh ph
bm am1 1 1

2

(29a)

′ = −m am bm2 1 2 (29b)

′ = − −p cm dp ep1 2 1 1 (29c)

′ = −p ep dp2 2 2 (29d)
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(a) Schematic representation of the Hes1 networkFigure 15
(a) Schematic representation of the Hes1 network. (b) Schematic diagram of the tryptophan operon system. 5 
genes are denoted as E (AS), D, C, B and A. P, O, L denotes the promoter, operator and leader region, respectively. Blunt 
arrow represents inhibition while normal arrow represents activation.
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values in Table 3. Moreover based on Figure 16a, at n1 =

6.2, viable range of feedback strength for the Hes1 oscilla-
tor is 0 <K1 < 207.6. Zeiser et al. therefore used a quite

small K1 (i.e. 10). Interestingly, we find that variation of

the feedback strength (K1) has little effect on the oscilla-

tion period. Figure 16c compares the temporal change of
Hes1 protein concentration, p2 in (29), for the parameter

set in Table 2 and when feedback strength is 100-fold
stronger (K1 = 0.1), and 10-fold weaker (K1 = 100). So in

fact, constraining the oscillation period to be 120 mins
can gives rise to many more suitable parameter sets other
than one in Table 3.

The Tryptophan Operon System
The tryptophan operon system in E. coli controls the pro-
duction of tryptophan amino acid inside the cell. Key
molecular processes include transcription, translation and
synthesis of tryptophan. To regulate these processes, the
tryptophan operon utilises three negative feedback mech-
anisms: transcriptional repression, attenuation, and
enzyme inhibition [8,45].

The transcription process is initiated as RNA polymerase
binds to the promoter. However, when the activated form
of repressor which is induced by the attachment of two
tryptophan molecules become abundant, it will bind to
the operator site and block RNA polymerase from binding
to the promoter, thereby, repressing transcription and
forming the first feedback loop. Furthermore, transcrip-
tion can also be attenuated depending on the level of
intracellular tryptophan and is controlled by the leader

region sitting between the operator and the genes (Figure
15b). This attenuation makes up the second feedback
loop. The tryptophan operon consists of five structural
genes positioned consecutively after the leader region.
These genes code for five polypeptides that make up
enzyme molecules in the form of tetramers, which in turn
catalyse the synthesis of tryptophan from chorismates
[8,29,45,46].

Anthranilate synthase (AS) is the enzyme catalysing the
first reaction step in the tryptophan synthesis pathway.
The pathway end product tryptophan is fedback to inhibit
anthranilate synthase activity if tryptophan level is high.
Enzyme inhibition therefore forms the third negative
feedback loop in the tryptophan operon system.

We set up a simple three-species model for the tryptophan
system as in equations (30). The state variables are the
mRNA (M), the AS enzyme (E) and the tryptophan amino
acid (T). Each negative feedback loop is modelled using a
Hill function; Ot is the static total operon concentration;
k1, k2, k3 represent transcription rate, translation rate and
tryptophan synthesis rate, respectively; kd1, kd2, kd3 are the
degradation rates (aggregated parameters combining the
decay rate and dilution rate due to cell growth). Con-
sumption of tryptophan for protein synthesis is simply
assumed to follow first order kinetics and represented by
the last term of equation (30c). Parameter values are
adapted from [47,48] and tabulated in Table 4.

It can be seen that model (30) is a case of the general mul-

tiple-looped  considered in the section "Coupled-

loop systems". We applied the analysis to the tryptophan
operon system for the parameter set in Table 4. Further-
more, for each parameter p in Table 4, we varied it over a
wide range around its nominal value (from p × 10-2 to p ×
102) while fixing the other parameters. Under all these
scenarios, system stability was always obtained. Given the
nominal values of the synthetic and degradation rates, the
system failed to demonstrate oscillations even at very high
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Table 2: Parameter values for the Hes1 oscillator estimated in 
Zeiser et al. [43]

b d A e c H k h

0.028 0.031 0.05 0.09 0.2 10 30 6.2

Table 3: Values for the parameters of the general system  

adapted from Table 2.

k1
(k)

k2
(a)

k3
(c)

k4
(e)

kd1
(b+a)

kd2
(b)

kd3
(d+e)

kd4
(d)

K1
(H)

n1
(h)

30 0.05 0.2 0.09 0.078 0.028 0.121 0.031 10 6.2
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Hill coefficient values (> 50) and at weak or strong feed-
back loops. This suggests that the tryptophan system is
extremely stable.

The highly stable property of the tryptophan system is
probably underlined by the fact that it is regulated by mul-
tiple feedback loops in concert. In addition, the system's
degradation rates kd1, kd2 and (kd3+g) are significantly dif-
ferent to each other as shown in Table 4. This disparity in
value of the degradation rates, as discussed earlier, greatly
enhances system stability. On the other hand, by adjust-
ing kd1, kd2, kd3 and g so that kd1 ≈ kd2 ≈ kd3+g, oscillatory
behaviour can now be observed at much lower Hill coef-
ficient and at appropriate feedback strength of the loops.
For example, setting kd1= kd2= kd3+g = 15 can give rise to
oscillatory dynamics with n2, n3 as in Table 4 and n1 as low
as 8.5.

Summary and conclusion
Previous studies [14-19] have looked mainly at the effect
of cooperativity level on system dynamics, while largely
neglecting the effects of feedback strength. Furthermore,
most of these analyses were carried out numerically; those
with analytical approaches were however often done
under great simplification for model equations such as
stringently assuming that all degradation parameters are
identical [15,19]. The major contributions from our study
are summarised and discussed below.

Threshold feedback strength
For single-loop systems where inhibition is fedback by the
end-product on the first reaction step, i.e. the original
Goodwin system, it was found that oscillatory behaviour
is only obtainable if the feedback loop is sufficiently
strong. Otherwise, the system is stable and achieves steady
state. Switching between these dynamics occurs through a
Hopf bifurcation. We derived an explicit, analytical form
for the feedback strength's bifurcation point which can be
straightforwardly computed if the other model parame-
ters are known. Interestingly, this threshold strength was
found to follow a saturation trend and approaches a criti-
cal level as the Hill coefficient increases. We further
showed that this critical feedback strength equals the ratio
of the product of the degradation rates and the product of
the synthesis rates. So for a system with feedback strength
weaker than this critical level, system stability is guaran-
teed regardless of how high the Hill coefficient is.

Studying the two-parameter bifurcation diagram with the
feedback strength and the Hill coefficient as parameters
revealed that as the Hill coefficient is raised, sustained
oscillation can be obtained over a wider range of feedback

The Hes1 oscillatorFigure 16
The Hes1 oscillator. (a) Two-parameter K1-n1 bifurcation diagram for the Hes1 oscillator. (b) Close-in of the bifurcation 
diagram with Zeiser et al.'s point highlighted in red. (c) Temporal revolution of Hes1 nuclear concentration (p2) for three feed-
back strengths: K1 = 10 (black, solid); K1 = 0.1 (blue, dot) and K1 = 100 (red, dash).

Table 4: Parameter values for the Tryptophan operon system.

Parameters Value

k1 50 min-1

k2 90 min-1

k3 60 min-1

kd1 15.01 min-1

kd2 0.01 min-1

kd3 0.01 min-1

K1 3.53 μM
K2 0.04 μM
K3 810 μM
n1 1.92
n2 1.72
n3 1.2
G 25
Ot 0.00332 μM
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strength; suggesting that higher cooperativity level tends
to enhance the probability of demonstrating sustained
oscillations. This result is in line with previous results
from Tyson & Othmer [15] and Goldbeter [49].

Threshold Hill coefficient
Assuming identical degradation rates, previous studies of
the Goodwin system have identified a threshold value for
the Hill coefficient lower than which, sustained oscilla-
tion is unachievable. Under this over-simplifying assump-
tion, the threshold cooperativity level was found only
dependent of the length of the system pathway. However,
such a similar threshold Hill coefficient has not been ana-
lytically determined for systems with general, arbitrary
degradation rates. We explicitly derived this threshold for
the three and four-species systems, which turns out to be
rather simple, symmetrical functions of only the degrada-
tion rates and are not influenced by the synthesis rates.
More importantly, the threshold reaches its minimum
when all the degradation rates are equal. The threshold
Hill coefficient obtained under identical degradation
rates, therefore, provides a lower bound for that of the
general case. We further showed that for the systems with
Hill coefficient exceeding the threshold value, it can
always oscillate with a properly chosen set of parameters'
values. In fact, the number of parameter sets giving rise to
sustained oscillations is indefinite. For the systems with
more species, the threshold Hill coefficient is also explic-
itly derivable; however, the form of the resulting function
becomes significantly more complex. Nevertheless, the
above results also apply for longer systems which we con-
firmed using numerical simulations.

Effects of parameters variation
Parameter sensitivity analysis revealed interesting effects
of parameters (the synthetic and degradation rates) varia-
tion on the dynamical characteristics of the system.
Because of the symmetry in the expressions involving the
threshold feedback strength and Hill coefficient, the indi-
vidual model species equally characterise the system
bifurcation profiles despite the fact that the feedback loop
is only acting on the first reaction step. Specifically,
increasing the synthesis rate of any model species by the
same proportion results in a proportionally larger oscilla-
tory region and hence in a system which is more likely to
oscillate. In contrast to this simple linear relationship
between the synthesis rates and the bifurcation profiles,
the degradation rates affect system dynamics in a more
intricate manner. We found that system stability is most
likely when the model species are rapidly degraded while
slow degradation only leads to stability if the feedback
strength is significantly weak. We further showed that hav-
ing comparable degradation rates between the model spe-
cies promotes oscillations, whereas stability is promoted
if one rate is significantly larger than another. This sug-

gests a way to enhance system stability by unbalancing the
degradation rates; preferably, towards high levels. These
results are particularly helpful for the engineering of syn-
thetic circuits with desirable dynamical behaviour, as well
as for parameter estimation and optimisation.

Feedback reallocation
For single-loop systems, reallocation of the feedback loop
to inhibit a reaction step further downstream may or may
not make the system more stable. Interestingly, the spe-
cific effect is determined only by the degradation rates of
the model species downstream of the newly inhibited spe-
cies. The dynamical properties of the new system closely
resemble those of the Goodwin system with reduced
length, which equals to the number of species down-
stream of the inhibited species. Therefore, as the loop
moves closer towards the end of the pathway, the mini-
mum Hill coefficient for oscillation is reduced. In addi-
tion, we found that feedback reallocation does not
influence the critical feedback strength discussed above.
This means that for a system possessing a loop weaker
than this strength, its stability is ensured regardless of the
loop's position and the cooperativity level.

System extension
It has been known that lengthening the system by increas-
ing the number of reaction steps, i.e, increasing number of
model species, reduces the cooperativity necessarily
required for sustained oscillations [15,19]. The implica-
tion here was that system extension enhances oscillations.
However, this result was demonstrated under the assump-
tion of identical degradation rates. When this assumption
is relaxed, we found that the extended system is not
always more stable. More importantly, whether it is more
stable or not is attributed to the kinetics of the added spe-
cies: more stable only when the added species degrades
slower than it is being produced; and more oscillation-
prone otherwise.

Non-oscillatory systems
It has been known that the systems with two species are
incapable of exhibiting sustained oscillations, regardless
of the feedback strength and the Hill coefficient value
[14,15]. Our analysis further showed that those systems
with arbitrary lengths which possess a single loop inhibit-
ing either the last step or second-last step of the pathways
is also incapable of obtaining oscillatory dynamics. In
addition, multiple-looped systems which include at least
one loop inhibiting either the last or second last step of
the pathway is also incapable of demonstrating oscillatory
behaviours.

Effects of end-product utilisation
We also investigated the situation when the pathway's
end-product is used up by the cells, which is common in
Page 27 of 30
(page number not for citation purposes)



BMC Systems Biology 2009, 3:51 http://www.biomedcentral.com/1752-0509/3/51
many metabolic pathways. Most interestingly, we showed
analytically that end-product utilisation enables oscilla-
tory dynamics at any Hill coefficient value. More specifi-
cally, end-product utilisation enhances sustained
oscillation at low cooperativity level but enhances stabil-
ity at high cooperativity level. It is important to note that
raising the utilisation level does not always further these
enhancements. In fact, there exists an intermediate rate for
utilisation at which sustained oscillation is most likely to
be detected, while being less likely at other utilisation
rates.

Effects of loops coupling
Since cellular systems are complex and often consist of
multiple, interlocked feedback loops. Understanding of
how the loops act together in giving rise to the system
dynamics is absolutely crucial. Designs with interlinked
positive and negative feedback loop have been shown to
exhibit performance advantages over simple negative
feedback loops, such as the ability to easily tune frequency
of oscillators, improved robustness and reliability, even
under noisy environments [22,27,50]. Multiple-negative-
feedback-loop designs have also been shown to enhance
system robustness and generates developmental con-
stancy [8,27,47,51]. We obtained in this study a number
of results which further our understanding into the
dynamics of coupled-loop systems. We discuss these
below.

First, coupled loops effectively enable oscillations at
lower, more biologically plausible Hill coefficient value.
For example, a four-species single loop Goodwin system
requires the Hill coefficient (n1) to be at least 4 for oscilla-
tions. Its variant design with the loop reallocated to
impose on the second pathway step requires the Hill coef-
ficient (n2) to be at least 8 for oscillations. However, a sys-
tem with both of these loops in effect can achieve
oscillations at practically any Hill coefficient value for one
loop, given proper choice of the Hill coefficient for the
other loop. Oscillations, therefore, are possible at more
biologically plausible Hill coefficients, for example at (n1,
n2) = (3, 3) or (2, 4).

Reduction of the Hill coefficient for oscillations is often
only suggested via pathway lengthening by previous stud-
ies. In this study, loops coupling and end-product utilisa-
tion (discussed above) were shown as the two additional
mechanisms where this reduction can be obtained with-
out increasing the number of system variables.

Secondly, coupled-loop systems were also shown to
exhibit much greater complexity and more diverse behav-
iours compared to their single-loop counterparts. We
showed that, by having just two loops performing cooper-
atively, the four-species system demonstrates a rich diver-

sity of dynamical characteristics. For example, we detected
a total of up to13 different bifurcation patterns between
the feedback strengths. This enhancement in behavioral
complexity and diversity might be the reason why evolu-
tion has driven some systems to acquire multiple feed-
back regulations as it will increase the chance of
organisms' survival when facing fluctuating environ-
ments.

Thirdly, we found that different combinations of feed-
back strengths of individual loops give rise to different
dynamical regimes. For three species with double loops
acting on the first and second steps, stability is most prob-
able when a weak first loop is coupled with a strong sec-
ond loop. Oscillations, on the other hand, are most likely
if a weak second loop is coupled with a strong first loop.
If oscillations are to be obtained with a strong first loop,
the second loop must also be significantly strong.

Fourthly, we found a threshold strength for the first loop.
If the loop is weaker than this threshold, the system is
always stable regardless of the strength of the second loop.
This threshold strength turns out to be independent of the
second loop's specification (its strength and cooperativity
level). On the contrary, at any strength of the second loop,
stable as well as oscillatory dynamics are obtainable given
a proper choice of the first loop's strength. By further con-
sidering the coupled-loop system consisting of the loops
on the first and the third reaction step, we discovered that
the location of the additional loop has no influence on
the threshold strength of the first feedback loop.

Finally, examining the system with all three loops in
action showed that incorporating the extra third loop
always enhances system stability. The likelihood of having
oscillatory behaviour is directly determined by the loops'
strength: stronger loops always result in smaller oscilla-
tory region.

We demonstrate the practicality of our analysis by includ-
ing a brief investigation of two example systems: the Hes1
oscillator and the Tryptophan operon system. The former
system represents a single-loop system while the latter
represents one with multiple negative feedback loops cou-
pled together. Because of the abundant number of biolog-
ical systems regulated by negative feedback loops (and
many can be represented under simplifying assumptions
by one of the motifs considered here) the methods devel-
oped in this study may prove useful in gaining better
understanding of their dynamical behaviours.
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matical derivations for the results involving the system with endproduct 
utilisation. Section 4 gives the explicit expressions of the coefficients of 
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