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Abstract

We describe the Sheffield AIVRU 3D vision system for
robotics. The system currently supports model based object
recognition and location; its potential for robotics applications
is demonstrated by its guidance of a UMI robot arm in a pick
and place task. The system comprises:

1) The recovery of a sparse depth map using edge based
passive stereo triangulation.

2) The grouping, description and segmentation of edge seg-
ments to recover a 3D description of the scene geometry
in terms of straight lines and circular arcs.

3) The statistical combination of 3D descriptions for the
purpose of object model creation from multiple stereo
views, and the propagation of constraints for within view
refinement.

4) The matching of 3D wireframe models to 3D scene
descriptions, to recover an initial estimate of their posi-
tion and orientation.

Introduction.

The following is a brief description of the system. Edge
based binocular stereo is used to recover a depth map of the
scene from which a geometrical description comprising
straight lines and circular arcs is computed. Scene to scene
matching and statistical combination allows multiple stereo
views to be combined into more complete scene descriptions
with obvious application to autonomous navigation and path
planning. Here we show how a number of views of an object
can be integrated to form a useful visual model, which may
subsequently be used to identify the object in a cluttered
scene. The resulting position and attitude information is used
to guide the robot arm. Figure 1 illustrates the system in
operation.

The system is a continuing research project: the scene
description is currently being augmented with surface
geometry and topological information. We are also exploring
the use of predictive feed forward to quicken the stereo algo-
rithm. The remainder of the paper will describe the modules
comprising the system in more detail.

PMF: The recovery of a depth map.

The basis is a fairly complete implementation of a single
scale Canny edge operator [Canny 1983] incorporating sub
pixel acuity (achieved through quadratic interpolation of the
peak) and thresholding with hysteresis applied to two images
obtained from CCD cameras. The two edge maps are then
transformed into a parallel camera geometry and stereoscopi-
cally combined (see figures 2, 3, 4 and 5). The PMF stereo
algorithm, described in more detail elsewhere [Pollard et al
1985; Pollard 1985], uses the disparity gradient constraint to
solve the stereo correspondence problem. The parallel camera
geometry allows potential matches to be restricted to
corresponding rasters. Initial matches are further restricted to
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Figure 1. A visually guided robot arm.

Figures (a), (b) and (c) illustrate our visual system at work. A
pair of Panasonic WV-CD50 CCD cameras are mounted on an
adjustable stereo rig. Here they are positioned with optical centers
approximately 15cm apart with asymmetric convergent gaze of
approximately 16 degrees verged upon a robot workspace some
50cm distant. The 28mm Olympus lens (with effective focal length
of approximately 18.5mm) subtends a visual angle of about 27
degrees. The system is able to identify and accurately locate a
modelled object in the cluttered scene. This information is used to
compute a grasp plan for the known object (which is precompiled
with respect to one corner of the object which acts as its coordinate
frame). The UMI robot which is at a predetermined position with
respect 1o the viewer centered coordinates of the visual system is
able to pick up the object.

AV C 1987 doi:10.5244/C.1.9



Figure 2. Stereo images.

The images are 256x256 with 8 bit grey level resolution. In
the camera calibration stage, a planar tile containing 16 squares
equally spaced in a square grid was accurately placed in the
workspace at a positon specified with respect to the robot coordi-
nate system such that the orientation of the grid corresponded to the
XY axes. The position of the corners on the calibration stimulus
were measured to within 15 microns using a Steko 1818 stereo
comparator. Tsai’s calibration method was used to calibrate each
camera separately, We have found errors of the same order as Tsai
reported and sufficient for the purposes of stereo matching. The
camera attitudes are used to transform the edge data into parallel
camera geometry to facilitate the stereo matching process. To
recover the world to camera transform the calibration images are
themselves used as input to the system, eg are stereoscopically
fused and the geometrical description of the edges and vertices of
the squares statistically combined. The best fitting plane, the direc-
tions of the orientations of the lines of the grid corresponding to the
XY axes, and the point of their intersection gives the direction
cosines and position of the origin of the robot coordinate system in
the camera coordinate system. The use of the geometrical descrip-
tions recovered from stereo as feedback to iterate over the estimates
of the camera parameters is a project for the future.

edge segments of the same contrast polarity and of roughly
similar orientations (determined by the choice of a disparity
gradient limit). Matches for a neighbouring point may sup-
port a candidate match provided the disparity gradient
between the two does not exceed a particular threshold.
Essentially, the strategy is for each point to choose from
among its candidate matches the one best supported by its
neighbours.

The disparity gradient limit provides a parameter for
controlling the disambiguating power of the algorithm. The
theoretical maximum disparity gradient is 2.0 (along the epi-
polars), but at such a value the disambiguating power of the
constraint is negligible. False matches frequently receive as
much support as their correct counterparts. However, as the
limit is reduced the effectiveness of the algorithm increases
and below 1.0 (a value proposed as the psychophysical max-
imum disparity gradient by Burt and Julesz [1980]), we typi-
cally find that more than 90% of the matches are assigned
correctly on a single pass of the algorithm. The reduction of
the threshold to a value below the theoretical limit has little
overhead in reduction of the complexity of the surfaces that
can be fused until it is reduced close to the other end of the
scale (a disparity gradient of 0.0 corresponds to fronto-parallel
surfaces). In fact we find that a threshold disparity gradient of
0.5 is very powerful constraint for which less than 7% of sur-
faces (assuming uniform distribution over the gaussian sphere:
following Amold and Binford [1980]) project with a max-
imum disparity gradient greater than 0.5 when the viewing
distance is four times the interocular distance. With greater
viewing distances, the proportion is even lower.

It has been shown [Trivedi and Lloyd 1985; Porrill
1985], that enforcing a disparity gradient ensures Lipschitz
continuity on the disparity map. Such continuity is more
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general than and subsumes the more usual use of continuity
assumptions in stereo.

The method used to calibrate the stereo cameras was
based on that described by Tsai [1986] (using a single plane
calibration target) which recovers the six extrinsic parameters
(3 translation and 3 rotation) and the focal length of each
camera. This method has the advantage that all except the
latter are measured in a fashion that is independent of any
radial lens distortion that may be present. The image origin,
and aspect ratios of each camera had been recovered previ-
ously. The calibration target which was a tile of accurately
measured black squares on a white background was positioned

Figure 3. Parallel Camera Geometry

Camera calibration returns good estimates of the optical centre,
focal length and orientation of each camera. This original geometry
is illustrated in the figure behind the interocular axis 0,0,. The
point at which the principal axis of the camera intersects the image
plane is denoted P, and P, for the left and right hand cameras
respectively. Not that (i) the principal axes need not meet in space
(though it is advantageous if they almost do), and (ii) the focal
lengths are not necessarily equal. It is desirable to construct an
equivalent parallel camera geometry. For convenience this is based
upon the left camera; the principal axis of the imaginary left camera
0, is chosen 1o be of focal length F, perpendicular to 00,, and
to be coplanar with O,0/P; (as is the x axis of the image plane). An
identical imaginary camera geometry is constructed for the right
camera (ie 04, and O:Q, are parallel). Note that O,TQ,. need not be
coplanar with 0,0 P,. For pictorial simplicity the new coordinate
frames are shown in front of the interocular axis.

Points on the original image planes can now be projected through
the optical centres of each camera onto the mew and imaginary
image planes. With the result that corresponding image points will
appear on corresponding virtual rasters. For the sake of economy
and to avoid aliasing problems this transformation is applied to edge
points rather than image pixels themselves.



Figure 4. The edge maps.

A single scale Canny operator with sigma 1 pixel is used. The
non maxima suppression which employs quadratic interpolation
gives a resolution of 0.1 of a pixel (though dependent to some
extent upon the structure of the image). After thresholding with hys-
teresis (currently non adaptive), the edge segments are rectified so
as to present parallel camera geometry to the stereo matching pro-
cess. This also changes the location of the centre of the image
appropriately, allows for the aspect ratio of the CCD array (fixing
the vertical and stretching the horizontal) and adjusts the focal
lengths to be consistent between views.

at a known location in the XY plane of the robot work space.
After both cameras have been calibrated their relative
geometry is calculated.

Whilst camera calibration provides the transformation
from the viewer/camera to the world/robot coordinate spaces
we have found it more accurate to recover the position of the
world coordinate frame directly. Stereo matching of the cali-
bration stimulus allows its position in space to be determined.
A geometrical description of the position and orientation of
the of the calibration target is obtained by statistically com-
bining the stereo geometry of the edge descriptions and ver-
tices. The process is described in Pollard and Porrill [1986].
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Figure 5. The depth map.

The output of the PMF stereo-algorithm displayed (with
respect to the left image) with disparities coded by intensity (near-
dark far-light). The total range of disparities in the scene was
approximately 35 pixels from a search window of 200 pixels. PMF
is a neighbourhood support algorithm and in this case the neigh-
bourhood was 10 pixels radius. The disparity gradient parameter to
PMF was 0.5. The iteration strategy used a conservative heuristic
for the identification of correct matches, and their scores were
frozen. This effectively removes them from succeeding iterations
and reduces the computational cost of the algorithm as it converges
to the solution. 5 iterations were sufficient,
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GDB: The recovery of the geometric descriptive base.

In this section we briefly report the methods for seg-
menting and describing the edge based depth map to recover
the 3D geometry of the scene in terms of straight lines and
circular arcs. A complete description of the process can be
found in Pridmore et al [1986] and Porrill et al [1986a].

The core process is an algorithm (GDF) which recur-
sively attempts to describe, then smooth and segment, linked
edge segments recovered from the stereo depth map. GDF is
handed a list of edge elements by CONNECT [Pridmore et al
1985]. Orthogonal regression is used to classify the input
string as a straight line, plane or space curve. If the edge list
is not a statistically satisfactory straight line but does form an
acceptable plane curve, the algorithm attempts to fit a circle.
If this fails, the curve is smoothed and segmented at the
extrema of curvature and curvature difference. The algorithm
is then applied recursively to the segmented parts of the
curve.

Some subtlety is required when computing geometrical
descriptions of stereo acquired data. This arises in part from
the transformation between the geometry in disparity coordi-
nates and the camera/world coordinates. The former is in a
basis defined by the X coordinates in the left and right images
and the common vertical Y coordinate, the latter, for practical
considerations (eg there is no corresponding average or cyclo-
pean image), is with respect to the left imaging device, the
optical centre of the camera being at (0,0,0) and the centre of
the image is at (0,0,f) where f is the focal length of the cam-
era. While the transformation between disparity space and the
world is projective, and hence preserves lines and planes, cir-
cles in the world have a less simple description in disparity
space. The strategy employed to deal with circles is basically
as follows: given a string of edge segments in disparity
space, our program will only attempt to fit a circle if it has
already passed the test for planarity, and the string is then
replaced by its projection into this plane. Three well chosen
points are projected into the world/camera coordinate frame
and a circle hypothesised, which then predicts an ellipse lying
in the plane in disparity space. The mean square errors of the
points from this ellipse combined with those from the plane
provide a measure of the goodness of fit. In practice, rather
than change coordinates to work in the plane of the ellipse,
we work entirely in the left eye's image, but change the
metric so that it measures distances as they would be in the
plane of the ellipse.

Typically, stereo depth data are not complete; some sec-
tions of continuous edge segments in the left image may not
be matched in the right due to image noise or partial occlu-
sion. Furthermore disparity values tend to be erroneous for
cxtended horizontal or near horizontal segments of curves. It
is well known that the stereo data associated with horizontal
edge segments is very unreliable, though of course the image
plane information is no less usable than for the other orienta-



tions. Our solution to these problems is to use 3D descriptions
to predict 2D data. Residual components derived from reliable
3D data and the image projection of unreliable or unmatched
(2D) edges are then statistically combined and tested for
acceptance. Where an edge segment from the left image is
entirely unmatched in the right then a 2D description is
obtained (and flagged as such). By these methods we obtain
more complete 2D and 3D geometrical description of the
scene from the left eyes view than if we used only the stereo
data. Figure 6 illustrates the GDB description.

Evaluation of the geometrical accuracy of the descrip-
tions returned by the GDF has employed both natural and
CAD graphics generated images. The latter were subject to
quantisation error and noise due to the illumination model but
had near perfect camera geometry; they were thus used to
provide the control condition, enabling us to decouple the
errors due to the camera calibration stage of the process. A
full description of the experiments are to be found in Prid-
more [1987], suffice it to say that we find that typical errors
for the orientation of lines is less than a degree, and for the
normals of circular arcs subtending more than a radian, the
errors are less than 3 degrees in the CAD generated images
and only about twice that for images acquired from natural
scene. The positional accuracy of features and curvature seg-
mentation points has also been evaluated, errors are typically
of the order of a few millimetres which maybe argues well for
the adequacy of Tsai’s camera calibration method more than
anything else.
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Figure 6. Geometrical descriptions.

In (a) both 2 and 3 dimensional descriptions, with respect to
the left hand image, are shown. Primitives of the GDB that are
flagged as 2D, as a result of the fact that no depth data has been
recovered for them by the stereo algorithm (perhaps as a result
occlusion), are displayed bold. It is important to note that these
exist only as descriptions in the image plane and not as descriptions
in the world. In (b) again both 2 and 3 dimensional data are
shown, but on this occasion circular sections (in three dimensions
and not only in the image plane) of the GDB are the ones that have
been highlighted by displaying them bold. Before segmentation each
edge list is smoothed either by diffusion (see Porrill [1986]) or by
the approximately equivalent gaussian (sigma 2.5).

SMM: The Scene and Model Matcher.

The matching algorithm (see Pollard et al [1986] for
details), which can be used for scene to scene and model to
scene matching, exploits ideas from several sources: the use
of a pairwise geometrical relationships table as the object
model from Grimson and Lozano-Perez [1984; 1985], the
least squares computation of transformations by exploiting the
quaternion representation for rotations from Faugeraus et al
[1984; 1985], and the use of focus features from Bolles et al
[1983). We like to think that the whole is greater than the
sum of its parts!

The matching strategy proceeds as follows:

1) a focus feature is chosen from the model;

2) the S closest salient features are identified (currently
salient means lines with length greater than L);

3) potential matches for the focus feature are selected;

4) consistent matches, in terms of a number of pairwise
geometrical relationships, for each of the neighbouring
features are located;

5) the set of matches (including the set of focus features) is
searched for maximally consistent cliques of cardinality
at least C, each of these can be thought of as an implicit
transformation.

6) synonymous cliques (that represent the same implicit
transformation) are merged and then each clique is
extended by adding new matches for all other lines in
the scene if they are consistent with each of the matches
in the clique. Rare inconsistency amongst an extended
clique is dealt with by a final economical tree search.

7) extended cliques are ranked on the basis of the number
and length of their members.

8) the transformation implicitly defined by the clique is
recovered using the method described by Faugeras et al
[1984].

The use of the parameters S (the neighbours of the focus
feature), and C (the minimum subset of S ) are powerful
search pruning heuristics that are obviously model dependent.
Work is currently in hand to extend the matcher with a richer
semantics of features and their pairwise geometrical relation-
ships, and also to exploit negative or incompatible information
in order to reduce the likelihood of false positive matches.

The pairwise geometrical relationships made explicit in
the matching algorithm can be used to provide a useful index-
ing scheme. Each primitive has associated with it a 1 dimen-
sional hash table quantised by @ (their angular difference),
each element of which includes a list, sorted by their absolute
minimum separation, of pointers to look up table entries that
lie within the associated 6, bucket (this can be searched
rapidly using a binary search). This scheme allows relation-
ships found in one scene description to be compared rapidly
with relationships present in the other.

An example of the performance of the matching algo-
rithm is given in figure 7.

TIED: the integration of edge descriptions.

The geometrical information recovered from the stereo
system described above is uncertain and error prone, however
the errors are highly anisotropic, being much greater in depth
than in the image plane. This anisotropy can be exploited if
information from different but approximately known positions
is available, as the statistical combination of the data from the
two viewpoints provides improved location in depth. From a
single stereo view the uncertainity can only be improved by
exploiting geometrical constraints. A method for the optimal
combination of geometry from multiple sensors based on the
work of Faugeras et al [1986] and Durrant-Whyte [1985] has
been developed (for details see Porrill et. al. [1986b]), and
extended to deal both with the specific geometrical primitives
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Figure 7. Matching scene descriptions.

Figure (a) shows a stereo view of the object/scene (here
obtained from a version of the IBM WINSOM CSG body modeler).
GDB data extracted for two views of this object are depicted in (b)
and (c) respectively. Each description consists of approximately 50
above-threshold GDB line primitives. The ten focus features chosen
in view (b) obtained a total of 98 potential matches in view (c). Set-
ting S to 7 and C to 4 only 78 independent implicit transformations
result. After extension the best consistent transformation included 9
matched lines. The best rigid rotation and translation (in that order)
that takes view (b) to view (c) is computed by the least squares
method discussed by Faugeras er al (1984) in which rotations are
represented as quaternions (though for simplicity the optimal rota-
tion is recovered before translation). In figure (d) view (b) is
transformed into view (c) (the error in the computed rotation is 0.7
degrees) and matching lines are shown bold, the vast majority of
the unmatched lines are not visible in both views (often as a result
of noise).
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Figure 8. Geomstat: statistical combination.

Orne application of GEOMSTAT is the acquisition of accurate and
complete wireframe models of objects or environments from multi-
ple stereo views. To allow the problem to be linearised SMM is
used to give a first estimate of the transformation that takes one
scene description into another. This suboptimal transformation is
applied to each description in the first view to bring them into near
correspondence with those in the second. Subsequently the con-
straints that lines from one view match with lines in the other are
imposed in turn and the [statistical] estimate of their positions
updated. Each merge results in minor modifications to the current
estimate of the transformation, with the final result being optimal
(due to the fact that the anistropies of the stereo process have been
taken into account). This process can be repeated to incorporate
subsequent views resulting in ever improved statistical estimates of
the structure of the object. Figures (a), (b) and (c) show details
from real stereo views of our test object. These are matched by
SMM, optimally combined, and have obvious geometrical con-
straints imposed (eg perpendicularity, intersection, parallelity etc)
with the result given in (d).



recovered by the GDF and the enforcing of constraints
between them. The method is used in the application being
described to integrate the edge geometry from multiple views
to create the object model (see figures 8 and 9), and to obtain
the statistically optimum estimate of the position and direction
cosines of the target object coordinate frame after the match-
ing stage has been completed. The latter is done by enforcing
the constraints that the axes of the coordinate frame are paral-
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Figure 9. The integration of linear edge geometry from multiple
views.

Figure (a) illustrates the 3D data extracted from eight views of
the object to be modelled (produced from IBM WINSOM CSG
body modeler image data). To ensure a description of the model
suitable for visual recognition and to allow greater generality we
combine geometrical data from the multiple views of the object to
produce a primitive visual model of it Their combination is
achieved by incrementally matching each view to the next. Between
each view the model is updated, novel features added and statistical
estimation theory used to enforce consistency amongst them (here
only through the enforcement of parallelism and perpendicularity).
Finally only line features that have been identified in a more than a
single view appear in the final visual model (see (b)).

The positions of extremal boundaries are viewpoint dependent
and their treatment requires a degree of subtlety not yet present in
our vision system, firstly to identify them, and secondly to treat
them appropriately in the matching and geometrical integration
processes. Clearly, though not position invariant, in the case of
cylinders at least the relative orientation is stable over view and this
information could be exploited. In the figures here, both the circu-
lar arcs and the extremal boundaries are displayed for largely
cosmetic purposes.
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lel to all the lines they should be, that they are mutually per-
pendicular, and intersect at a single point The result of the
application of this stage of the process is the position and atti-
tude of the object in the world coordinates. Figure 10 illus-
trates the SMM matching the compiled visual model in a
number of scenes. The information provided by matching
gives the RHS of the inverse kinematics equation which must
be solved if our manipulator is to grasp the object (see figure
11).

Figure 10. Object location.

Given the simple visual model that has been constructed in the
previous sections it is possible to match it, using SMM, to an
instance of the object in a cluttered scene. Three examples are illus-
trated here. In each of (a), (b) and (c) the dark lines depict the pro-
jection of the object model into the scene geometry after being
transformed by the rotation and translation produced by the match-
ing process (SMM) and the geometry integration process (TIED).
To give some idea of the scale of the matching search problem, the
object model contains 41 features and the scene in (a) contains 117.
Some 10 model focus features, chosen on the basis of length,
resulted in the expansion of only 292 local cliques. The latter were
required to be of magnitude at least C=4 from S=7 neighbouring
features. The largest extended clique found by the matcher con-
tained 13 matched lines. Figure (c) depicts the scene viewed by the
camera rig in figure 1.
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Figure 11, Closing the loop.

Figures (a) and (b) show the arm grasping the object and the
scene with the object removed. Model matching for this scene (from
which the grasp position is calculated) is illustrated in figure 10(c).

REYV: The regions, edges, vertices graph.

One may regard the system as generating a sequence of
representations each spatially registered with respect to a
coordinate system based on the left eye: image, edge map,
depth map and geometrical description. In the initial stages of
processing a pass oriented approach may be appropriate but
we consider that it is desirable to provide easy and convenient
access between the representations at a higher level of pro-
cessing. The REVgraph is an environment, built in Franz
Lisp, in which the lower level representations are all indexed
in the same co-ordinate system. On top of this a number of
tools have been and are being written for use in the develop-
ment of higher level processes which we envisage overlaying
the geometrical frame with surface and topological informa-
tion. Such processes will employ both qualitative and quanti-
tative geometrical reasoning heuristics. In order to aid debug-
ging by keeping a history of reasoning, and increase search
efficiency by avoiding backtracking, the REVgraph contains a
consistency maintenance system (CMS), to which any
processes may be easily interfaced. The CMS is our imple-
mentation of most of the good ideas in Doyle [1979] and
DeKleer [1984] augmented with some our own. The impor-
tance of truth maintenance in building geometrical models of
objects was originally highlighted by Hermann [1985]. Details
of the REVgraph and CMS implementation may be found in
Bowen [1986]. Figure 12 illustrates a prototype wireframe
completion algorithm and figure 13 some useful pairwise rela-
tionships that are made explicit within the REVgraph environ-
ment.
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Figure 12. Wireframe completion.

The prototype wireframe completion algorithm links straight
edges together to form T-junctions or vertices as appropriate. Incon-
sistencies between such labelings are identified and handled by the
CMS. In this case the ambiguity is slight only 6 possible solutions
(contexts) result, two of which are shown above (with vertices
labeled V and T-junctions labeled T). The context on the right was
adjudged by the program to be the most complete, while the one on
the left contains a rather dubious T-junction where there should be a
vertex (marked on the far left of the modeled object). The sea}rch
space was bounded by some simple heuristics, using evaluations
over the various CMS contexts, which is why a few lines are left
incomplete where insufficient depth information is available. Note
that incorrect decisions are possible, for example the edge along the
right hand side of the base of the cylinder which forms a vertex
with the block on its right.
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Figure 13, Pairwise relations.

The formation of a pairwise relations table is a utility in the
REVgraph. It generates pairs of lines and the geometric relations
between them according to certain user requests. In figure (a) all the
lines perpendicular to the arrowed line have been generated, and in
ﬁgur)e (b) all the lines parallel to it (that is to within a certain toler-
ance).

Conclusions

We demonstrate the ability of our system to support
visual guided pick and place in a visually cluttered but, in
terms of trajectory planning, benign manipulator workspace. It
is not appropriate at this time to ask how long the visual pro-
cessing stages of the demonstration take, suffice it to say that
they deliver geometrical information of sufficient quality, not
only for the task in hand but to serve as a starting point for
the development of other visual and geometrical reasoning
competences.
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