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An efficient method of using explicit shape models of
objects in boundary instantiation is to apply one
dimensional edge searches in locations where
boundaries are likely to occur. In many important
cases, linear edge operators produce at best only
weak responses. We investigate here the use of three
different statistical measures applied over a sliding
'dipole’ as candidates for detecting weak boundaries.
Their  performance Is compared with an
implementation of the Canny operator as a benchmark
on synthetic images of step edges in random noise
and on certain difficult real images. In the former case
their performance compares favourably with the Canny
operator, while in the latter case they can produce
significant responses where the Canny operator
detects only weakly or not at all.

INTRODUCTION

In most applications of computer vision and image
processing, the correct location of the boundaries,
between different objects, or between object and
background is of central importance in achieving a
correct image interpretation. The literature abounds
with methods for detecting these boundaries, which
make use either of the different properties of the
regions on either side of the boundary, or the fact
that the boundary is characterised by a pronounced
grey-level discontinuity or edge.

The edge based approach is much favoured in
interpretation of unconstrained three dimensional
scenes, where the properties of regions may not
easily be predicted. Region based approaches are
often used in cases when the image is more
constrained, and may be considered to be two
dimensional, e.g. in remote sensing or microscopy.
Both approaches are based on models of the world
which are acknowledged to be flawed. Region
properties tend to be less well-defined near the very
boundaries they are used to detect, and edges are
often weaker on true boundaries than at other,
semantically irrelevant, points. Both region and
boundary methods tend to be applied without
reference to high level knowledge concerning the
likely location and properties of boundaries.
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Recent experience in our group has shown that
considerable improvements in boundary detection
can be made by directed, one-dimensional edge
detection. The direction comes from a model of
what is expected in the image, providing a prediction
of the positions and orientations of expected
boundaries. The exact boundary locations are
determined by one dimensional edge searches
across the predicted boundary. The confidence in a
detected edge point can be assessed by reference to
local and global models of the expected edge. This
approach has produced very encouraging results in
application fields as disparate as industrial
inspection! and histology of muscle sections2 . In
order to make this type of analysis applicable to a
wide range of applications, we require a robust
boundary cue locator which operates by one
dimensional search, avoids the problem of ill defined
edges and which does not depend critically on the
nature of the boundary. In this paper we describe
some operators which approach this requirement by
measuring properties of the distribution of image
values on either side of the boundary. We show that
using this approach, boundary detection performance
can be as good as or better than optimal methods of
edge primitive detection in terms of sensitivity and
accuracy, while allowing the flexibility of being
adapted to local models of the image.

BOUNDARY DETECTION OPERATORS

Given a prediction of where to look for a boundary, its
correct position is located by searching along a line
perpendicular to its putative orientation. To increase
signal to noise ratio, it is best to integrate the
response across some width perpendicular to this
line. The search therefore takes place within an
elongated rectangle, and we are seeking a partition of
the rectangle along its length which produces the two
most distinct distributions of image values. In order to
make appropriate comparison of the distributions of
image values on either side of the boundary, it is
important that equivalent areas are sampled. It is
also necessary to avoid confusion due to the
inclusion in the sampling of nearby boundaries with
other regions. The detector we have used is a
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into two poles, whose length and width can be varied
according to the grey level and geometrical model of
the expected edge. This dipole is scanned across the
edge; at each point on the scan the distributions in
either pole are sampled and compared in ways
described below.

Three different statistics have been implemented for
the comparison of the two poles: the entropy, the
standard deviation and the mean of the distributions.

The entropy dipole response to a perfect

step edge. The dipole (in this case of half length 10
pixels) is scanned across the window at the top (width

Figure 1.

30 pixels). The mark at the top of the window
indicates the true edge position ("best”), and that at
the bottom the edge position located by the dipole
("found”). The entropy value in pole A (Ea) as it
crosses the edge is shown in trace a, that of pole B
(Ep) in trace b, and that of the whole dipole ( E; ) in
trace c. Trace d shows the response of the operator
measure 2 xE; - (EA+ER).

Entropy

The entropy of a probability density function is given

by E=-ZX p; In(p;) where p; is the probability of
occurrence of state i. It has frequently been used as
a threshold selection measure in region-based
segmentation, where its usefulness lies in the fact
that it acts as a measure of "peakiness” or
compactness of a distribution. A very narrow
distribution of states gives a low value for E, whereas
as broad distribution of roughly equally populated
states gives a high value. When a distribution is being
divided into two distributions on either side of a
threshold, for example, the division which minimises
the sum of the two entropies produces the intuitively
optimal result. In our case we are dividing a
distribution not by a threshold, but by spatially
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partitioning the area from which it is sampled.
However, the principle of producing the most
compact distributions from the region on either side
of the partition is still a useful one.

Figure 1 shows the behaviour of E, , Ex and Eg as the
dipole is scanned across a simple step edge, where
Ex and Eg are the entropies in poles A and B, and
E, is the total entropy in the window. Fortunately,
entropy is a self-normalising measure. The entropies
in each of the poles rises as that pole crosses the
edge; that is E, has a maximum on the right hand
side of the edge, Eg has a maximum on the left hand
side of the edge. Both have low values (0 in this
ideal case) when the partition is on the edge. E,; on
the other hand has a maximum when the partition is
on the edge. We calculate the signal 2 xE,; - (Ex +
Ep ) which rises sharply to a maximum on the edge.
Figure 2a shows the response of the entropy dipole
to a noisy edge

Figure 2. The response of the three dipole operators to
a step edge in gaussian noise. The edge amplitude is
1 grey level and the noise standard deviation is 7 grey
levels. Trace a is the entropy response, trace b is the
SD, and trace c the significance of means. Trace d is
a density profile along the window integrated across its
width.

Standard Deviation

The entropy measure responds to the shape of the
distribution but is costly to calculate. A cheap
alternative, which also responds to the shape of the
distribution and which is also self normalising, is the
standard deviation. In similar vein to the entropy, the

measure is 2 x SD.-(SDa+ SDg) and has a similar
response.



Mean

One way of looking at our approach is to say that we
are examining two distributions to determine whether
they appear significantly different. A straightforward
method of doing this is to examine the significance of

the difference in means given by
1
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Figure 2 shows the responses of each of these three
operators in locating a step edge with superimposed
noise in a case where the image signal to noise ratio
is low (0.14). All of these operators show the
capability of locating step edges in noise.

PERFORMANCE

To determine which of these operators has the best
properties of sensitivity and accuracy, we have
undertaken a systematic test of their responses to a
step edge in noise, varying the step size, noise
standard deviation and dipole width and length. As a
benchmark by which the responses could be
measured we included the response of the Canny
edge detector in the test.

The Canny Operator

The edge operator due to Canny? is widely regarded
as the best compromise between sensitivity and
accuracy in the detection of edge primitives. Indeed
it was designed to provide the optimum response to
a step edge amongst gaussian noise. It consists in
essence of a one dimensional gaussian smoothing of
the raw image in the direction parallel to the edge,
followed by a one dimensional derivative of gaussian
convolution across the edge. The widths of the
gaussians in the two directions are typically equal,
and the edge response is integrated across some
sampling width. Canny’s implementation provides for
detection of edges at different scales and
combination of the responses at different scales to
produce an edge map. Our requirement is not for an
edge primitive detector, but an edge locator. The
different scales at which the Canny operator can be
applied correspond roughly to the varying dipole size
of our detectors. We do not need to track the
response to the edge through scale space, we are
merely interested in the sensitivity and localisation
accuracy at a particular scale.

The Test

The images used consisted of 256 x 256 pixels with a
single vertical step edge extending the height of the
image, on which had been superimposed gaussian
random noise. The signal to noise ratio (edge
amplitude divided by the noise standard deviation)
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was varied from 0.14 to 1.33. The dipole widths and
(half) lengths were varied from 10 to 50 pixels in
steps of 10. In the case of the Canny operator
gaussian smoothing of standard deviation 1, 3, 5, 7
and 9 pixels was applied.

For each point in parameter space 10 measurements
of edge position were made at completely separate
positions along the edge. (Thus for some of the
broader supports more than one noise image was
required.) The measurement consisted of scanning
the dipole across the whole width of the image and
measuring the responses of the dipole and Canny
operators. In the case of the Canny operator the
output of the smoothed one dimensional derivative
was integrated along the edge direction. In all
cases, the detected edge position was taken to be
the position of absolute maximum response.

The measurements made on each scan were:

The distance of the located edge from the true
edge.
The response at the position of the true edge.
The response at positions distant from the true
edge.

From these measures at each point in parameter
space we have:

A (sparse) histogram of localisation error.
A distribution of response signal.
A distribution of response noise.

From which we derive :

Sensitivity (signal mean - noise mean)/(noise
standard deviation)

Localisation accuracy : The mean localisation
error

The standard deviation of

the localisation error.

Localisation precision :

Results

Derived performance values were obtained over a
range of dipole widths and half-lengths. In each case
the Canny smoothing standard deviation used as an
equivalent to the detector length is such that two
s.d.'s is about equal to the dipole half-length. The
two cases are not directly comparable in terms of the
contributions of their support regions, and the
decision to adopt a particular combination of support
sizes as being equivalent is a fairly subjective one.
The two standard deviation cut off was selected,
since the gaussian weighting is certainly significant
within this boundary, and indeed for some distance
beyond it. The Canny results are included to give
some idea of the scale of values.

Figures 3 to 5 show examples of some results at a
particular scale. They show how the derived values



vary with the signal to noise ratio of the image using a
dipole width of 30 pixels and a half length of 20. An
s.d. of 9 was used for the corresponding Canny
operator.
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Figure 3. Sensitivity of the dipole operators compared
with the Canny operator as a function of the image
signal to noise ratio (edge amplitude divided by noise
s.d.). The dipole width and edge integration width is
30, the dipole half length is 20 and the s.d. of the
smoothing gaussian in the Canny case is 9.

Figure 3 shows the variation in sensitivity of the
different operators. Not surprisingly, the sensitivity of
all the operators increases steadily with the signal to
noise ratio of the image. Against the Canny
benchmark, the performance of the entropy dipole is
poor, particularly at low signal to noise values. The
significance of means dipole is better at low signal to
noise, having about 60% of the Canny response. The
SD dipole has very similar sensitivity to Canny at very
low signal to noise ratios, becoming increasingly
better as the signal to noise ratio increases above
0.25.
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Figure 4. Edge localisation accuracy (mean error) for
the 30 x 20 (9) support. (See figure 3).0ff scale
values at low image signal to noise are not shown.
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Figure 5. Edge localisation precision (standard
deviation of the error) for the 30 x 20 (9) support. (See
figure 3).0ff scale values at low image signal to noise
are not shown.



Figures 4 and 5 show the variation of localisation
accuracy and precision using the 20 x 30 pixel
support. Both accuracy and precision give a
measure of how reliably the edge is located, and the
graphs show similar behaviour. Both give good
values (< 1 pixel), down to some signal to noise
threshold at which the localisation becomes quickly
unreliable. In the case of the entropy dipole, the
threshold is rather higher than for Canny. SD and
significance of means dipoles have slightly higher
thresholds than Canny. Notice that this threshold can
occur at values of sensitivity which appear fairly high.

With smaller support sizes, similar behaviour is
observed. All the sensitivities are reduced, of course,
and the threshold at which localisation accuracy
becomes unreliable is higher. The sensitivity of the
SD dipole at a signal to noise ratio in the image of
unity, using a 10 x 10 pixel support, is about twice that
of the Canny operator, compared to about five times
as in figure 3.

Real Images

Experiments with test images provide confidence that
the dipole operators are likely to be reasonable
candidates for providing boundary cues. The model
of a step edge among random noise, however, is not
an ideal one for the cases in which we would like to
apply these operators, namely to diffuse or weak
edges among structured noise. Experiments with a
number of images, particularly of biclogical material,
indicate that one or other of the dipole operators can
give a strong response at faint or noisy boundaries
where the Canny operator responds only weakly or
not at all. Obviously cases can be found in which
these operators fail to detect a boundary, but in such
cases the Canny operator also fails. There is no
clearly best candidate among the three dipole
operators. The significance of means response is
consistently similar to that of the SD operator, and
consistently more noisy, making it clearly the worst.
Whether the best results are obtained by the entropy
or SD operator depends on the image in question,
notwithstanding the poor showing of the former on
the noise images. The difficulty in modeling real
cases means that it is difficult to make an objective
assessment of performance or to demonstrate
power in boundary location. Further study may allow
us to find methods of determining the most
appropriate operator for particular cases. For
illustrative purposes we present some examples of
edge responses.
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Figure 6. Detection of a weak edge in a chromosome
image. The search region is indicated by the bracketed
window.

a — Entropy dipole response

b - SD dipole response

¢ - Significance of means dipole response

d - Canny response

e - Projected density profile along the search line
The arrow indicates the edge position determined from
a. The dipole width is 7 pixels and half length is 10
pixels. The corresponding standard deviation for the
Canny operator is 5.

Figure 6 shows a search for a difficult edge in a
chromosome image. A shape model predicts the
existence of a boundary in a certain direction. The
search is confused by the existence of strong edges
in addition to the weak true edge. The responses of
all four operators under test are shown. The dipole
operators, including the entropy dipole give significant
responses while the Canny operator produces no
response. Figure 7 is part of a radiograph of a hip
prosthesis. The required boundary is that between the
bone and the retaining cement. The edge in this case
can be very indistinct, but dipole search with a large
support can provide important cues to its position. No
case has been observed in which a boundary which
can be detected by the Canny operator cannct be
detected by one or more of the dipole operators.



Figure 7. Part of a radiograph of a hip prosthesis. The
required boundary is that between the bone and the
cement holding the prosthesis in place. Indicated
responses etc. as for fig.6.

It is important to notice that the image signal to noise
ratio at the edge is quite high in both of these cases :
about 2.3 for the chromosome image and about 1.9
for the radiograph. Even if we choose to model the
boundary detection using a step edge amongst noise,
our working region in real images is likely to be well to
the right of, or beyond, the scale of figures 3, 4 and
5

DISCUSSION

The approach taken in designing the dipole operators
described here is that something is known about the
location and orientation of a boundary between two
regions and that its true position can be determined
by measuring some statistic of the distribution of
image values on either side of the edge. De Sousa*
has described a similar application of sliding statistical
tests to radiographs and natural texture images. One
of his measures was identical to the significance of
means dipole described here, which has consistently
shown behaviour similar to that of the SD dipole, but

more noisy. Several authors 5 ¢ have considered
using a comparison of medians or other order
statistics to detect edges. These methods are all
used in the context of edge preserving smoothing to
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reduce impulse noise. We did not consider this to be
an appropriate model for the type of boundary
detection we wish to achieve.

Three statistics whose properties seem reasonable
for the task have been implemented and tested
systematically on an artificial image, with the Canny
operator acting as a benchmark. This test of
sensitivity and accuracy was an exacting one since
the Canny operator is optimised in one sense for the
detection of step edges among gaussian noise. The
performance of the entropy dipole was disappointing,
but that of the significance of means dipole was
better. The SD dipole gave encouraging resuits,
being about as accurate as the Canny operator and in
many cases much more sensitive.

The application of the dipole detectors to difficult
real-world images has shown that one or more of
them can provide useful boundary cues in cases
where linear edge detection fails - the very cases in
which model based instantiation is most necessary.
Despite its poor showing in detecting model step
edges, the entropy dipole appears to retain some
promise as a boundary cue operator in real-world
images.
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