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The use of contextual information is a vital ingredient in
the successful postprocessing of edge information. Edge
postprocessing is concerned with locating and labelling
consistent edge-structures given confused or noisy re-
sponse information. The available contextual informa-
tion exists in the form of measurements provided by the
gradient-vectors in pixel neighbourhoods and knowledge
of acceptable edge structure which is expressed symboli-
cally. We compare various approaches to the use of this
information.

Robust edge detection has been a goal of computer
vision for almost three decades. Edge-detection algo-
rithms reported in the literature are invariably multi-
stage. Early stages are concerned with the characterisa-
tion of the raw edge information; this frequently involves
filtering the raw pixel grey scale values to remove the
effects of noise or produce a multiscale representation
of the image data. Intermediate stages are concerned
with the localisation of the edge response. Finally, the
edges of physical objects are located by assigning labels
to structures which exhibit desirable properties such as
strong spatial connectivity. Canny [l] and Spacek [2]
adhere to this multistage philosophy. Both authors de-
rive filters for the optimal characterisation of step re-
sponses in the presence of noise. However, they adopt
rather different methods for the postprocessing of the
edge information. Canny performs non-maximum sup-
pression by interpolating gradient vectors from an image
neighbourhood and later draws upon connectivity infor-
mation in the hysteresis linking stage. Spacek, on the
other hand, imposes analytic continuity on the gradi-
ent magnitudes by fitting of a second-order polynomial
surface to achieve non-maximum suppression without
drawing directly on connectivity information.

The point that we wish to make in this paper is that
although the characterisation of raw edge information
has been addressed in a number of systematic ways,
the postprocessing of this information has been treated
less objectively. The postprocessing task is concerned
with locating and labelling consistent edge-structures
given confused or noisy response information. In prac-
tice it invariably draws on various sources of contextual
information such as the meaurements provided by the

gradient-vectors available in a neighbourhood of the im-
age or the symbolic information conveyed by the connec-
tivity of candidate edge structures. Although a number
of schemes reported in the literature, including those
described above, are certainly effective solutions to the
problem, they do not objectively quantify the available
contextual information. It is in this respect that con-
textual labelling schemes can be profitably applied to
the edge-detection problem. Our aim in this paper is
to stress the conceptual differences between the way in
which edge postprocessing techniques draw on the avail-
able contextual information and the objective quantifi-
cation of this information.

A host of contextual labelling strategies are described
in the literature. The bulk of these are encompassed
by the term relaxation. The common aim is to improve
the consistency of object classification. This is achieved
by utilising additional observational information in the
form of measurements pertaining to objects and prior
knowledge of the constraints which apply in a particu-
lar labelling application. The relaxation processes draw
on this information in a number of distinct ways. For
instance discrete relaxation is concerned with the up-
dating of object-labels so as to achieve global consis-
tency. Probabilistic relaxation, on the other hand, is
concerned with updating label probabilities using the
evidence provided by neighbouring objects. In a recent
series of papers [3,4,5] we have detailed some extensions
and improvements to the methodology of both types of
relaxation process. An important element of the work
has been the exploitation of the dictionary concept of
Waltz [6] for the representation of labelling constraints.

We have drawn extensively on the postprocessing of edge
information as an application vehicle to demonstrate the
utility of the improved relaxation methodology [3,4,5].
These studies have shown that the dictionary provides a
powerful way of representing the structure of the edge-
process. Our aim in this paper is to compare the relax-
ation methods with the alternative edge postprocessing
concepts reported in the literature. There are several
aspects to this comparison. Firstly, we show how the
different relaxation methods quantify and draw on the
available contextual information. Secondly, we analyse
how the same information is used by alternative post-
processing algorithms. On the basis of this analysis,
we select some algorithms for experimental comparison
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with the relaxation approaches; this demonstrates some
of the performance advantages of the relaxation meth-
ods.

DICTIONARY-BASED RELAXATION
The task addressed by relaxation processes is that of
assigning a symbolic label to each of an arrangement of
objects through the exploitation of contextual informa-
tion. In probabilistic relaxation the task is addressed as
one of recursively combining evidence for the different
competing labelling possibilities. In discrete relaxation,
on the other hand, it is addressed by iteratively updating
the symbolic label assignments to objects. In a recent
series of papers [3,5] we have shown how the dictionary
idea of Waltz can be used to represent the label process
in improved formulatations of discrete and probabilistic
relaxation. The aim of this section is to review these
improvements.

Representation of labelling task
We are concerned with finding the class identities Bj,
Vj £ M, of the objects which have index set M according
to a label set fi. For the edge labelling application, the
objects are pixels arranged on a regular square lattice.
The label set used to represent the edge states encodes
some limited directional information and is denoted by
Cl = {<—, "I", —•, l><f>}- The four arrows are orthogonal
to the gradient directions of physical edges and (j> repre-
sents the possibility that a pixel belongs to the non-edge
class.

The measurements available to the edge labelling task
exists in the form of directional derivatives of the image
in the directions of the pixel lattice axes. In both relax-
ation methods the measurements are characterised by
the label probabilities for each pixel. In [4] we present
a probabilistic model for the measurement process in
the edge application. The model has two important fea-
tures. Firstly, modelling of the measurement process is
confined to considering the way in which noise mani-
fests itself for non-edge pixels; it makes no assumptions
of the appearence of edge features in the image lumi-
nance function and is therefore not restricted to step
response. Secondly, the probability for the four edge la-
bels is apportioned in a way that avoids bias in favour
of edges propagating along the pixel lattice directions.

We denote the probability of label w .̂ on the object
indexed j at iteration n of the relaxation process by
Pn[9j = Wffj) where w$i €E fi. In the probabilistic re-
laxation method these probabilities are updated in an
evidence combining procedure. In discrete relaxation
the label probabilities are static with iteration number;
it is the label process that is updated to increase the
probability of global labelling.

The Dictionary Concept
Suppose that the object indexed j is directly interacting
with the objects which have index-set Ij, where Ij C M.

We are interested in constructing the dictionary of la-
bellings over the objects in this index set. The permis-
sible labellings for the neighbourhood Ij are listed in a
dictionary denoted by ©/̂  which is of length Z(Ij). Let
\gt denote the label on the object indexed I, correspond-
ing to the fcth entry in the dictionary Qjj, then we can
introduce the following shorthand notation for entries
in the dictionary

with the dictionary denoted by the set of consistent la-
bellings

We adopt the strict dictionary-model for the distribu-
tion of probability among label configurations. Accord-
ingly, the probability measure associated with any phys-
ically impossible configuration {0j = wgl, V7 € Ij} £ ©j,

is zero, le

(2)

The available probability mass is distributed uniformly
between the label configurations in the dictionary, ie
they are assumed to be equiprobable

l
(3)

For the edge application Ij is the 3x3 pixel neighbour-
hood. The constraints applying are that physical edges
are continuous, a single pixel wide and undergo changes
of direction infrequently. All labellings for the 3x3
neighbourhood satisfying these constraints have been
compiled in a dictionary. There are 181 such labellings.

Probabilistic Relaxation
Central to the original probabilistic relaxation approach
suggested by Rosenfeld, Hummel and Zucker [7] is the
iterative updating of the label probabilities for each ob-
ject using an evidence combining formula. The updat-
ing of the label probability draws on contextual infor-
mation through a support function for the object-label
assignment, ie Q'n)(0y = ugj). The original evidence
combining formula proposed by Rosenfeld, Hummel and
Zucker, is

(4)
One of our achievements in [3] has been the develop-
ment of the following support function which draws
on the dictionary of labellings for the entire context-
conveying neighbourhood Ij and has an improved ca-
pacity to model the label process

m - = <"«,)•
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1 1 1
(5)

Since at each update the current probabilities reflect
contextual evidence from increasingly large neighbour-
hoods, the repeated updating would eventually achieve
the desired objective of drawing global contextual infor-
mation from the complete network.

Discrete Relaxation
Our discrete relaxation procedure treats the label up-
dating procedure as global MAP estimation. It seeks
the configuration that maximises the quantity P(0,- =
Wfl̂ Vt G M\xi,Vi S M) by iteratively updating single
labels. There is a serious obstacle to modelling the
joint probability of labels P(9i = we^Vt € M) using
the dictionary concept. If the initial label assignments
are noisy or inconsistent, it may be impossible to create
dictionary configurations by single label replacements.
As a consequence it is difficult to determine the direc-
tion of optimal label update which increases the global
consistency; the discrete relaxation procedure becomes
deadlocked.

We have overcome the deadlock problem by introduc-
ing a new conceptual ingredient: We regard inconsistent
labellings as corrupted dictionary items. The develop-
ment of this idea requires a physical model of the la-
bel corrupting process. We have adopted a particularly
simple model in which label errors are independent and
occur with class-independent label probability Pe. Ac-
cording to the model the number of label errors on each
neighbourhood system follows a binomial distribution.
This has the attractive feature that the likelihood of ob-
served label configurations is determined by their con-
gruency with dictionary items. Following Hummel and
Zucker [8], the label process measures the effect of label
replacements on all neighbourhood systems containing
the object of interest. Consider the effect of label re-
placement 6j = co at the object indexed j . The con-
gruency measure between the dictionary item indexed
k and the newly constructed label configuration on the
neighbourhood system Ir ( where j S 7r) is

where e(i,j) = 0 if i — j and e(i,j) = 1 if %' ^ j . Under
the memoryless label corruption assumption the label
process is modelled by the following criterion function

t>r V~* -Kir.i.k) lj\

where a = (1f«,^ and br = (1 - Pe)\*'\. With these
ingredients, the label update procedure is stated as a
decision rule which assigns 9}- to class W03 if

j = w)

THE ROLE OF CONTEXT

In this section we discuss how different edge postprocess-
ing methods draw on the available edge information. We
contrast techniques which aim at objectively quantising
contextual information, such as dictionary-based relax-
ation and Markov models, with heuristic approaches.
An important aspect of this comparison is an analysis
of how the schemes draw on observational information
and knowledge pertaining to edge structure.

Dictionary-based relaxation

According to probabilistic relaxation, raw gradient in-
formation is regarded as evidence that should be com-
bined. The information used in this process are the
label probabilities in a 3x3 neighbourhood and the dic-
tionary of consistent labellings. The process proceeds
recursively until eventually the probabilities converge
on a hard labelling; this is taken as the final interpre-
tation of the edge information. The updating of label
probabilities can be interpreted as an implicit filtering
of observations.

Discrete relaxation regards the label probability for the
object under consideration as one component of the ev-
idence for a label assignment; the second component re-
flects the consistency of surrounding label assignments.
By contrast with the probabilistic relaxation method,
the label probabilities remain static and the dictionary
is used to guage the consistency of the assigned label
configurations; this draws on the label assignments to
the nine 3x3 neighbourhoods that form the 5x5 pixel
window. In addition to the label and measurement pro-
cesses, the method incorporates a label error process
which is assumed to be memoryless. The label error
probability may be used to control the discrete relax-
ation procedure; by incrementally reducing Pe inconsis-
tent labellings are increasingly penalised. Contextual
information is propagated not by combining evidence in
object neighbourhoods but by updating the label pro-
cess.

Other Relaxation Approaches

The model described above should be contrasted with
those adopted by Berthod and Faugeras [11] and by
Zucker et al [12] in their applications of probabilistic
relaxation to edge-labelling. According to both of these
approaches, the initial label probabilities are assigned
on the basis of the responses to a set of directional dif-
ference masks; no attempt is made to justify the way
in which the raw measurements originate from realistic
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edge or noise processes. A second point of contrast is
the limited use of prior knowledge in the form of prob-
abilities for labels on pixel pairs. In the work of Zucker
[12], these probabilities took the form of heuristic com-
pat ability coefficients in the range -1.0 to 1.0; these coef-
ficients were chosen to encourage continuous edges and
suppress corners. A similar goal orientated approach
was adopted by Berthod and Faugeras [ll] who derived
a set of probabilities with the objective of encouraging
continuous straight edges. Our method exploits more in-
formation concerning the structure of the edge-labelling
application and draws on it in a less biased way.

Markov Models
Geman and Geman [13] have developed a stochastic re-
laxation method that seeks the MAP labelling using a
simulated annealing technique. The method has been
applied to image segmentation. A Markov field is used
to model boundary and region components of the label
process. This model draws on an index of connectivity.
However, since the Markov model admits any occurring
boundary configuration with finite probability it is not
faithful to the dictionary idea; this restricts the capacity
of the label process to model consistency. It is difficult
to assess independently the effectiveness of the bound-
ary and region processes.

An interesting edge postprocessing technique has been
reported by Haralick [14]. The method draws on a
facet model characterisation of edge response and uses a
Markov chain concept to model the label process. The
Markov chain allows the label probabilities to be com-
puted recursively by distinguishing between the causal
past and future of continuous edge structures. The la-
bel process is defined on Markov chain and draws on
pairwise relationships between adjacent edge labels; an
independent decision is required to assign the edge di-
rection. There is no dictionary concept underlaying the
approach; connectivity is encouraged by the chain in-
dexing of pixels.

Non-maximum Suppresssion

The idea of edge localisation through the suppression
of non-maximum response was introduced by Rosenfeld
and Thurston [16]. Given the edge magnitude and direc-
tion at each pixel, the underlying concept is to draw on
additional information from the surrounding 3x3 pixel
neighbourhood for the existence of localised edge struc-
ture. This is achieved by examining the gradient mag-
nitudes for pixels perpendicular to the edge direction
for the pixel under consideration. If these magnitudes
are consistent with a local maximum of the gradient,
then the edge hypothesis is retained. The method there-
fore draws on a model for idealised edge magnitude pro-
files in the measurement domain of gradient magnitudes;
the information used consists on one edge direction and
the edge magnitudes for three selected colinear pixels.
There have been numerous extensions and refinements

of this basic idea. For instance Canny [1] uses a method
that interpolates the gradient magnitudes in a 3x3 pixel
window to determine the gradient-vectors of the local
maxima.

Surface models

The literature reports several approaches to edge de-
tection that draw on surface models of the image lumi-
nance function. Nalwa [9] locates edges by fitting pro-
files which are motivated by considerations of the image
sampling procedure. Haralick [10] on the other hand
has proposed an edge-detection scheme which draws on
a facet model. These methods are effectively non-linear
filtering techniques which produce an alternative char-
acterisation of the edge information.

Spacek [2] has extended the surface modelling idea to the
gradient magnitudes. The method is effectively a hybrid
non-maximum suppression technique. Sets of twelve
neighbouring gradient magnitudes are represented by a
second order surface the parameters of which are de-
termined by a least-squares fit. The coefficients of the
polynomial surface are used to determine the maximum
value of the derivative of the image luminance function
in the direction of the gradient of the pixel under con-
sideration. By virtue of the fitting procedure, Spacek's
method gives sub-pixel acuity in the detection of the
gradient maxima.

Labelling Techniques

The simplest postprocessing of the localised gradient
maxima is performed using binary thresholding. The
edge labels obtained by binary thresholding can be used
as input to Hilditch skeleletonisation [15] to produce
edge structures of a single pixel width. In this way the
labelled edge map can draw on connectivity information.
Although Hilditch edge-thinning draws on a dictionary,
it does not incorporate any evidential index for the ex-
istence of edge structures.

Canny [1] also draws on connectivity information in his
multi-threshold hysteresis linking scheme. Edge-pixels
are initially labelled if their response exceeds a high
threshold value. Pixels laying above a weaker response
threshold are then admitted provided they belong to
edge segments which are connected to the initially la-
belled pixels. Hysteresis linking admits more evidence
than Hilditch skeletonisation since it uses two context-
sensitive thresholds.

EXPERIMENTAL COMPARISON

The space available here is too limited to present an
exhaustive comparison of the postprocessing techniques
listed above. We shall concentrate on demonstrating
the robustness of the various approaches to image noise.
We will not attempt to demonstrate the relative per-
formance of the techniques on different filtered charac-
terisations of the the image data. For the purposes of
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experimentation we have therefore used noisy synthetic
and natural images.

Figures 1 and 2 show the labellings obtained by the dis-
crete and probabilistic relaxation methods for a syn-
thetic image in which the signal to noise ratio is 25:8;
both labellings are relatively free from contamination by
extraneous noise artefacts and display good connectiv-
ity properties. For comparison, Figures 3 and 4 show
the gradient maxima obtained using non-maximum su-
pression and Spacek's surface model. The output of non-
maximum supression is very sensitive to image noise and
contains many isolated edge points; there is little to be
gained from further processing. Spacek's result certainly
provides a basis on which to improve using labelling
techniques; since the edge response is already localised,
there is no point using skeletonisation. Figures 5 and
6 show the results obtained by applying binary thresh-
olding and hysteresis linking. The important point to
note about these labellings is that although hysteresis
linking removes isolated noise pixels, it has a tendency
to encourage extraneous edge structure.

Figures 7, 8, 9, and 10 show the results obtained when
probabilistic relaxation, discrete relaxation, Canny's al-
gorithm and Spacek's surface model are applied to a
noisy natural image. The same observations hold as in
the synthetic case. The probabilistic relaxation method
appears most robust and extracts the most meaningful
connected edge structures.

CONCLUSIONS

Dictionary-based relaxation methods provide a power-
ful way of objectively quantifying the contextual infor-
mation pertaining to the edge postprocessing problem.
Whereas alternative concepts draw on limited contex-
tual information restricted either to the measurement
or to the structural domain, the relaxation approaches
simultaneuously exploit both kinds of information. Ex-
perimental studies show that the probabilistic relaxation
method is more robust to raw noise than the alterna-
tives. This has the benefit that it can be applied directly
to raw edge information without the need to filter the
effects of noise with the consequent band-limitation of
image features. In noise-free images most of the post-
processing techniques perform in a satisfactory way.
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