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The shape of objects seen in images depends on the view-
point. This effect confounds recognition. We demon-
strate a theoretical framework within which it 1s possi-
ble to construct descriptors for both curves and surfaces,
which do not vary with viewpoini. These descriptors are
known as invariants.

We use this framework to construct invariant shape de-
scriptors for plane curves. These invariant shape de-
scriptors make it possible to recognise plane curves, with-
out explicitly determining the relationship between the
curve reference frame and the camera coordinate system,
and can be used to index quickly and efficiently into a
large model base of curves.

Many of these ideas are demonstrated by experiments on
real image data.

The fundamental problem of computer vision is that
shape measured in images depends not only on object
shape, but also on the position, orientation and intrinsic
parameters of the camera. If it is possible to define shape
descriptors that are unaffected by perspective transfor-
mations, then image measurements of these descriptors
can be matched to object properties regardless of camera
viewpoint. Shape descriptors with these properties are
known as invariants. This paper lays the foundation for
systematic application of invariants in vision.

Many properties are invariant to projection: for exam-
ple, straight lines project to straight lines and colinear-
ities and intersections are preserved. The exploitation
of these invariants has been responsible for the success
of polyhedral model based vision. However, for smooth
curves and surfaces, invariants such as zeroes of curva-
ture, the cross ratio and Gaussian curvature do not pro-
vide a sufficiently strong set of constraints for successful
model based vision. There has been a correspondingly
limited success in representing and recognising curved
objects. This paper shows how a rich invariant theory
for curves and surfaces may be constructed.

We believe that invariance is the essential prop-
erty of a shape description.

An invariant is defined in the context of a particular
transformation. Area and curvature are invariant under
translations and rotations in the plane, but not under
perspective projection. As the generality of the trans-
formation increases there 1s a corresponding increase in
the complexity of the invariant. The generality is loosely

determined by the number of parameters specifying the
transformation.

In vision we are principally concerned with perspective
projection. The invariants for plane objects subject to
rigid motion and perspective projection, and the appli-
cation of these invariants are the substance of this paper.
In section 1, we give a broad discussion of the mathemat-
ics and ideas underlying our use of invariant theory, and
demonstrate the construction of invariants for a broad
range of transformations. Although this does not cover
every case, most of the transformations that naturally
occur in vision are covered by this discussion. In par-
ticular, given a space and the transformations acting on
the space, we show how to count the number of indepen-
dent invariants of that action, and how to construct all
of them.

In section 2, we show briefly the usefulness of this the-
ory in model based vision. We demonstrate a projec-
tively invariant representation for plane curves, using
conic curves, and use this representation to build a sim-
ple and effective model based vision system.

A number of invariants are exploited in vision at present,
with varied success and coherence. [12] demonstrated the
value of using invariants of camera rotation in comput-
ing optical flow. [18] has also raised the issue of invariant
representations. However, wide applications of invariant
techniques to date have been limited because invariants
are used only where they are easily guessed, or exist al-
ready in the literature.

1 INVARIANT THEORY

We have used the term “transformation”, which is widely
accepted to refer to an effect that is invertible. The idea
is usefully generalised to that of a group action. Given
a group G and a space M, an action of G on the space
associates with each group element ¢ € G a map g :
M — M:

id(x)
(91 % g2)(z)

x (1)
(91(g2(x)) (2)
where g1, g2 € G, id is the identity element of the group,

and x is the group composition function. An invariant
of a group action is defined as follows:

Definition Consider a group G acting on a space,
M. The action of a group element g takes a point
p € M tothe point p’ = g(p). Aninvariant, I(p), is
a function of p alone with the property that I(p’) =
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I(p)h(g). Here h(g) is a function’ of g alone. A

scalar invariant is an invariant where h(g) = 1.

In what follows, we concentrate on scalar invariants, the
term invariant should be understood to mean scalar in-
variant, except where the context clearly indicates oth-
erwise.

Example 1: The plane rotation group acts on the plane,
by the mapping x’ = Rx, where R is a 2D rotation ma-
trix. Any function of the distance from the origin to a
point is invariant under the action of this group. Under
the action of this group combined with the multiplicative
group, (z,y) :— A(z,y), the function z? + y* is an in-
variant of weight 2. In the second case there is no scalar
invariant, however.

Example 2: Differential invariants are functions of the
position and derivatives of a curve at a point. The space
on which the group acts in this case is the position of a
point on a curve, and the values of various of the deriva-
tives of the curve at that point because, when a group
acts on a curve, it acts not just on the points of the curves
but on all its derivatives as well. Differential invariants
are clearly important in vision. Curvature, torsion and
Gaussian curvature, all invariants under Euclidean ac-
tions, have been widely applied. Differential invariants
for more general actions can be constructed using tech-
niques shown below. For example, a projective differen-
tial invariant for plane curves has been known for a long
time [18, 13]. However, this invariant is an extremely
large and complex polynomial in the derivatives of the
curve, and it is not known how useful in practice it will
be.

Example 3: A plane conic can be written as x' Ax, for
X = (z,y,z) and a symmetric matrix A, which deter-
mines the conic. A pair of coplanar conics has two scalar
invariants, which we will describe here. Given conics
with matrices of coefficients A and B, we define:

Inyy = Trace(A™!B)
Inps = Trace(B~'A)

Under the action, x = Tx, A and B go to A’ = T*'AT
and B’ = T*BT. In particular, using the cyclic proper-
ties of the trace, we find:

= Trace(T‘lA‘l(Tt)_thBT)
= Trace(A™'B)
= Ian
A similar derivation holds for I 32. We will use these

joint scalar invariants in section 3. Further examples of
invariants appear in [9].

1.1 Invariants and orbits

In this section, we demonstrate the rudiments of a the-
ory that allows us to deal with invariants using geometric

1In fact, a homomorphism of G.

ideas. This theory makes it possible to count invariants
and, as we shall see below, to determine invariants for
the action of a large number of different groups. The
groups for which we can construct invariants are con-
nected Lie? groups. We do not consider finite groups,
such as the crystallographic groups. Examples of con-
nected Lie groups include the n dimensional translation
group, which is an n dimensional manifold isomorphic
to ®", and the plane rotation group, which is a one di-
mensional manifold that looks like a circle (obvious from
the angular parametrisation of plane rotations). Con-
veniently, the Euclidean groups, which are the most im-
portant groups for vision applications, happen to be con-
nected Lie groups.

An orbit of the action of a group through a point z is
the set {g(z)|Vg € G}, for some z, where g(z) denotes
the action of g on z. Thus, to obtain an orbit, we take
a point in the space and apply the action of every ele-
ment of the group to it. Two orbits, one through z and
another through y, are either disjoint, or coincide com-
pletely - orbits cannot intersect one another. An orbit
could be the whole space (for example, take the space
to be a line; the natural action of the one dimensional
translation group translates points along the line, and so
it is possible to reach every point from every other point),
or it could be a “nice” submanifold of the space (for ex-
ample, take the space to be the plane; under the action
of the one dimensional translation group, each orbit is a
line consisting of all the points that can be reached by
translation in a fixed direction from a given start point).
In the first case, there are clearly only trivial scalar in-
variants, because every point in the space can be reached
from every other point, and hence the value of the scalar
invariant must be the same at every point. The second
case is more interesting, because there will be scalar in-
variants. In the second example, the invariant will be
the y-intercept of each line.

The two following points are essential:

e A scalar invariant is a function that is constant on
an orbit.

e The maximum dimension of any orbit is the dimen-
sion of the group.

The first point follows from the definition. The second
point allows us to count the number of invariants. In par-
ticular, to specify a closed & dimensional submanifold of
p dimensional space, we must “fix” p — k coordinates;
for example, to specify a surface in three space, one co-
ordinate must be constant, and to specify a curve, two
coordinates must be constant. In turn, this means we
have p — k functions that are constant on this subman-
ifold, and, if the submanifold is an orbit, we then have
p — k invariants. This means that there can be at most

?Loosely speaking, a Lie group has a smooth parametrisation,
and these parameters determine the group. An important feature
is the fact that group elements in a neighbourhood of any point
can be obtained from tangent vectors at that point, by a process
called exponentiation.



curve plane orthographic | Affine projective plane orthographic | Affine projective
(no. of Euclidean | projection projection | mappings Euclidean | projection projection | mappings
d.o.f.) group (5 d.o.f.) (6 d.o.f.) (8 d.o.f) group (5 d.o.f.) (6 d.o.f.) (8 d.o.f)
(3 d.of.) (3 d.o.f.)
conic (5) 2 0 0 0 (2 4 | 5 | 7 |
cubic (9) 6 4 3 1
quartic (14) | 11 i S 6 Table 2: The number of derivatives required for a scalar differen-
2 coplanar . . . p L. .
comios: (10) 7 5 4 9 tial invariant under a variety of groups important in vision. This

Table 1: The number of functionally independent scalar invari-
ants for plane algebraic curves under a variety of groups important
in vision. By “orthographic projection”, we mean that the plane
on which the curve lies is subject to rigid motions in three space,
and then projected onto the image plane using orthography. This
case has only 5 degrees of freedom because the image curve is com-
pletely unaffected by changes in the distance to the object plane.

Dim(Space)— Dim( LargestOrbit) invariants. Any fune-
tion of these functions is a scalar invariant, and any other
scalar invariant is a function of these functions alone. We
shall show how this geometric view of invariants can be
employed to derive invariant functions.

This argument works as well for differential invariants of
parametrised curves. In this case, however, it is essen-
tial to consider reparametrisations as well as geometrical
camera actions. This is because it 1s usually impossible
to identify a unique starting point or parametrisation
measure from image data giving an arbitrary projection
of a curve. If we consider a plane curve and n of its
derivatives, we have a space of 2 + 2n degrees of free-
dom. If the final expression involves derivatives of the
curve up to the n’th, it will also involve derivatives of
any reparametrisation up to the n’th. As a result, we
need consider only n derivatives of the reparametrisa-
tion, but we obtain a reparametrisation group that uses
up n degrees of freedom. Assume that the dimension of
the “geometric” group of camera actions is m. To obtain
a scalar invariant, we must have m 4+ n < 2 + 2n, from
which expression we can determine n. Note that we need
not consider reparametrisation effects when we construct
the invariants of algebraic curves under the action of ex-
ample 3, because the action is on the coefficients of the
curve, and does not involve any parametrisation.

This counting argument makes it possible to predict the
number of scalar invariants we expect under different
group actions. In table 1, we give the number of scalar
invariants we expect for a plane polynomial of a given
order under a number of different groups important in
vision. In table 2, we give the number of derivatives we
expect to be required for a differential invariant, under
the action of these same groups.

In vision applications the full projective group is uncom-
mon and the main effect is that of the Euclidean group
acting on an object, which then undergoes perspective
distortion. Although the counting argument suggests
that more invariants will be available under these cir-
cumstances, because the group is smaller, it is in fact not

invariance both to “geometric” actions and reparametri-
sation.

in general possible to predict the result of a Euclidean
movement from the curves observed on the image plane.
This means that, although the Euclidean group acts on
the object, it does not act on the image curves, with
resultant complications.

1.2 Constructing invariants

Viewing invariants as functions that are constant on or-
bits provides a conceptually simple procedure for con-
structing them. The gradient of any function that is
constant on a submanifold must be normal to that sub-
manifold. Thus, for a scalar invariant ®, if the vector
fields V;(x) span the tangent space to the orbit passing
through z for all z in the parameter space, then:

V:V® =10,V

and the scalar invariants can be obtained by solving these
equations.

Vector fields that span the tangent space to the orbit
passing through & for all z in the space on which a group
acts, are well known in the theory of Lie groups. These
fields are known as the infinitesimal generators of the
group’s action. To find the infinitesimal generators at a
point, we compute the effect of an infinitesimally small
group action®. As a result, we have a mechanical process
for constructing invariants of a connected Lie group’s
action:

e Construct the infinitesimal generators of the
group’s action, V;.

e The invariants are the solution of the set of partial
differential equations, V;.V® = 0, Vi

This process constructs a function that is locally invari-
ant: this means that it will be constant on connected
components. For a connected group, the function is then
a scalar invariant. If the group is not connected, like the
general linear group, it is possible for the function to
be constant on the connected component, but to have
different values on distinct connected component. This
means that invariants of groups that are not connected

3This can be done by taking a set of vectors that span the
group’s tangent space (also known as its Lie algebra) and for each
V; in this set, exponentiating eV;, and computing the action of
the resulting group element. We then differentiate the result of
this action by ¢, and set ¢ to zero. The details of this process are
explained in [14].



are significantly more difficult to compute. We deal only
with connected groups, and can largely ignore these dif-
ficulties.

1.2.1 Example: Coplanar lines under projective
mappings.

Parallel coplanar lines are easily dealt with. A set of
lines is parallel on the projective plane if they intersect
in a single point. Such lines and collinear points on the
projective plane are dual. As a result, four parallel lines
yield four collinear points, for which the cross ratio is a
well known projective invariant.

The invariants for a system of five general coplanar lines
require slightly more work. A line in homogenous coor-
dinates is given by axg + bxy + cxs = 0. We represent
this line as a = (a,b,¢). Clearly, we cannot observe a
change in scale factor a — Aa and this must be taken
into account in deriving the invariants.

We represent the projective group as the set of matrices
with determinant one. The group acting will be the pro-
jective group, and five copies of the reals as a multiplica-
tive group (the lines must be scaled separately, because
we cannot observe their individual scalings). The total
dimension of the group is 13, and five lines have collec-
tively 15 degrees of freedom, so we expect two invariants.
Given a line a and a group element G, the action of G on
a is given by G'a. The infinitesimal generators are:

a10y, + 420y, + azdy, + a4dy, + a5y, ,
a10;, + a30,, + a3, + a40., + as0.,,
b104,b204,b304,b40,,b50,,,
b19., + b20,, + b30., + b0, + b50..,
€104,€204,€30a,€404, 50,

105, + 20y, + €305, + €40, + ¢50,,
@18, — b10b, + @204, — b20s, + azda, — b3, +
a48,, — ba8y, + az0,, — b3, ,
a194, — €10;, + a28,, — ¢20,, + agds, — c30., +
a43q, — €48, + a50q, — c59,,

Scaling considerations are dealt with by the following five
infinitesimal generators:
agé'a, + t‘)gab‘ + C,'acl

Write 1; for {a;, b;,¢;}T, and Iijx for the determinant of
the matrix {l;,1;,1; }. The invariants are found to be:

In = (laz1ds01)/(La211531)

and

In = (lao11532) /(1432 1591)

2 APPLICATION TO OBJECT
RECOGNITION

In this section, we show that algebraic invariants can
be used to recognise planar, curved objects, or objects
containing planar curves. Recognition using algebraic
invariants requires that image data can be represented
using algebraic curves, with the following erucial frame
independence property:

Given an observation of a data set in a trans-
formed frame, the representation computed
for this set is exactly the original representa-
tion transformed according to the change of
frame.

This frame independence property means that we can
associate an algebraic curve with the data set in a pro-
jectively invariant manner. The algebraic curve becomes
a projectively invariant representation. A representation
with this independence property need not be a good ap-
prorimation to the data. It is then possible to compute
algebraic invariants of the fitted curve, and use these as
projectively invariant descriptors for the curve. For ap-
plications in model based vision, it is far more important
that a representation be projectively invariant than that
it be a good approximation. In [6], we showed how a rep-
resentation with this frame independence property could
be constructed, using a theorem we call “the invariant
fitting theorem”. We use the techniques of this paper
here.

For two sets of coplanar data points, the joint scalar in-
variants of section 2, example 5, computed from projec-
tively invariant conic approximations are constant what-
ever the camera viewpoint. These joint scalar invariants
vield a projectively invariant descriptor, for any data
set. In practice, this descriptor is stable, and has suf-
ficient dynamic range to be useful (see [6]). Further-
more, by computing these joint scalar invariants for a
pair of curves from two different views, and comparing
the results, we can successfully tell whether the curves
are coplanar or not by checking if the invariants have
changed significantly [6].

Since we have a projectively invariant fitting system, any
pair of plane curves can be represented using these joint
scalar invariants. Thus, joint scalar invariants can be
used to distinguish between model instances, even if the
model does not contain plane conics. Given an object
that has a pair of coplanar curves that will both be vis-
ible at the same time, one may compute the joint scalar
invariants for the conics fitted to these curves. These
invariants then form a projectively invariant description
of this set of plane curves. It is then possible to find in-
stances of a model in an image by fitting conics to every
available curve, computing the joint scalar invariants for
each pair of conics, and then extracting those pairs of
curves that have the appropriate set of joint scalar in-
variants. In fact, this program prunes candidate curves
in the same way that the label recognition program does.



This model based vision system is intrinsically fast, and
capable of indexing into large model bases quickly (sev-
eral examples appear in figure 1: in figure 2, we use
invariants to index into a parametrised model base). It
is sensitive to occlusion, however ([15] discusses noise is-
sues that appear in fitting conics to small numbers of
data points).

These techniques for recognising planar objects can be
applied to 3D objects which happen to have a collection
of plane curves. We have used the invariant for four par-
allel lines, discussed briefly in section 1.2.1, to recognise
pallets in images. Figures 3 and 4 demonstrate this ap-
proach. Further techniques for recognising 3D objects by
using simple concepts from algebraic geometry to exploit
the strong relationship that exists between a polynomial
surface and its outline, are described in [9].

3 DISCUSSION

We have shown a selection of applications of techniques
from invariant theory to vision. In particular, these tech-
niques make it possible to index into large model bases
quickly.

Many extensions and ramifications on this work are pos-
sible. In particular, we have shown a framework within
which it is possible to compute the invariants of a wide
variety of group actions. Our invariant fitting theorem
makes it possible to exploit invariants, such as the joint
scalar invariants of a pair of conics, that depend on the
global properties of a data set. This theorem is impor-
tant, because it ensures that the fitted curve is, in a
sense, unaffected by the frame in which the curve is fit-
ted. This property is essential in applying invariants
that have non-local support. Algebraic curves of higher
order possess a richer invariant theory that has yet to be
exploited.

The representation we have been using is extremely
sparse; one number for a pallet, two numbers for a gear.
As a result, ambiguities are likely. One way of increasing
the representation’s robustness to ambiguities involves
computing joint invariants for systems of curves - for ex-
ample, using four or five conics to describe an object.
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List of figures

1. Output of model based vision system. Note that
outline curves used to model the gear, the spanner
(wrench) and the scissors were not conics; thus, this
approach works for non-conic data in cluttered scenes.

2. Invariant models can be parametrised, and the model
parameter recovered directly from the image. Here a
model of a pair of scissors is parametrised by the angle
between the blades. The value of the joint scalar in-
variant of the two conics representing the handles for
different different values of the model parameter is eas-
ily calculated. The model and its parameter is then
recovered by testing the joint scalar invariants of pairs
of curves against the predicted range of invariants for
the parameter, and solving for the angle. We show
here two examples for a pair of scissors: because errors
in fitting propagate to make the solution for the angle
from the invariant imprecise, we have chosen to specify
the angle qualitatively.

3. The model used for a pallet consists of the four parallel
lines shown in the figure above. These lines yield a
single invariant.

4. Two pallets found in a real image, by finding sets of

four parallel lines and marking those sets that have the
correct value of the invariant.



sci 5sm-s_npen_a_{_i §—25 _egr‘emgbs :

il

Figure 3 Figure 4



