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Abstract
A binary classification problem is solved by acting on the combined
evidence of several early vision modules. Each module gives an
opinion as to the identity of an individual image element, and a
consensus is reached by a trained Multi-Layer Perceptron (MLP).

1 Introduction

Images of three dimensional scenes can be interpreted using various cues, such as,
texture, stereopsis, shading etc. However, combining their results can be difficult.
Firstly, opinions generated by a particular module must be weighted in accordance
both with its reliability, and with the amount of independent information upon which
the opinions were based. In addition, some fusion techniques require an opinion to be
expressed as the posterior probability of a particular event, however, a more general
form of expression would be desirable e.g. as an unnormalised probability, or as a
measure of belief arising from an arbitrary distribution. Normally, a probabilistic
output representation is favoured. Labeling is trivial, while coherence of image
features can be enforced by probabilistic relaxation. The MLP will be shown to
satisfy all of the above constraints.

2 Multi-Layer Perceptron

The nodes in a standard MLP are layered - an input layer, a number of hidden
layers and an output layer. There is full connectivity between the nodes of adjacent
layers and no connectivity between non-adjacent layers. Each processing unit (i.e.
excluding input nodes) computes the weighted sum of its inputs, one of which, the
bias, can be considered as a weight from a dummy unit whose output is always one.
A transfer function F (normally a sigmoid) is applied to the summation. Formally,
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where Xj, y,- and Wij denote the input to neuron j , the output from neuron i, and
the weight between nodes i and j respectively. Training is by repeated presentation
of a series of input patterns together with their corresponding target classes. The
mapping from input to target space is learned by minimising

where y and d represent the observed and target vectors respectively, and n is the
number training vectors. The learning rule is given by

where t denotes the iteration, t is the learning rate, and a is the momentum.

3 Data Fusion

For a binary classification network, Dodd (1990) proved that squared error min-
imisation can cause outputs to approximate probabilities, provided that the output
is an unbiased estimate of the probability (say a one from c coding) and that the
training data is a representative sample of the pattern space. The quality of this
approximation may be degraded by inadequate architecture or convergence to local
minima. However, the chances of this happening can be reduced by searching for
suitable network architectures and repeated training from random weight starts.

A three channel sensor system has been simulated. The image from each channel
was represented by a different pair of textures bounded by a diagonal line running
from the top left to the bottom right hand corner. The images were processed in turn
by a texture discrimination program resulting in three grey level encoded posterior
probability maps. These represent the opinions of three independent vision modules.

The MLP was trained on 240 off-diagonal image blocks, with each training
vector consisting of three input probabilities, one from each channel, together with
a target class label (zero or one). The trained MLP was tested on the probability
images shown in Figures la,b and c. The types of texture used in their construction
correspond with those used in the training set, though the samples are different.
Note that expert "a" is least reliable, and that the labeling convention adopted by
expert "b" is not in agreement with its counterparts. The MLP output is shown
in Figure Id. A 0.5 probability threshold reveals 9 classification errors in the fused
segmentation, while the input channels contain 65, 35, and 31 errors respectively.

The more general problem of combining correlated measures of belief was tested
by training the MLP with weighted summations of the original probability maps,
whose distributions were subsequently scaled and offset by differing amounts. The
test data is shown in Figures 2a, b and c. A comparison between Figures Id and 2d
shows that performance has been unaffected. The mapping has been learned and
the outputs are still probabilities.
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Figure 1. Independent input channels a, b and c. Fig.Id MLP output

Figure 2. Correlated measures of belief a, b and c. Fig.2d MLP output

4 MLP Architectures

The classification error incurred when applying a trained MLP to its original training
set will decrease as the number of nodes increases i.e. as the decision boundary
becomes more complex. When applied to the test set, performance will increase
until some optimum configuration is found, beyond which the decision boundary
has modeled noise and consequently lost its ability to generalise. The experimental
results from several architectures are tabulated below.

Table 1. MLP architecture performance (ten random weight starts)

image
data

independent

correlated

network
config.

31-10
31-10

3I-2H-1O
31-10
31-10

3I-2H-1O

transfer
function

linear
logistic
logistic
linear

logistic
logistic

training
lowest

J2 error2

4.91
0.96

<0.01
4.90
0.90
0.80

testing

£ error2

13.29
9.39
10.21
13.41
8.89
10.48

labeling
error
7.08%
3.75%
4.58%
7.92%
3.33%
5.00%

From these preliminary results it appears that the best architecture has three input
nodes, no hidden nodes (though one has been masked) and one logistical output
node. This happens to be the simplest network that produces outputs guaranteed to
look like probabilities (i.e. in the range zero to one). Performance might be improved
by adjusting the learning rate (0.1), momentum (0.9) or transfer function, however
there is no guarantee that any fine tuning will be applicable to other problems.
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5 Comparison with Standard Classifiers

To determine whether or not the MLP is learning a mapping that is readily deter-
minable by conventional methods, its performance is compared with those of the
nearest class mean (NCM) (with Mahalanobis distance metric) and the k nearest
neighbour (KNN) classifiers. In the latter, k is odd and ~ \/n, where n is the to-
tal number of training samples. The Euclidean distance metric is used. However,
to combat the effects of variability between features, and a nonorthogonal feature
space, experiments have also been conducted on both standardised and orthogo-
nalised data.

Table 2. MLP, NCM and KNN performances

image
data

independent
correlated

classification and sum squared error rates
NCM

(M'obis)
7.5% 18.0
7.5% 18.0

KNN
raw

5.0% 10.8
11.3% 19.9

stand.
5.0% 9.9

10.0% 19.7

orthog.
5.4% 10.8
5.8% 11.2

MLP
(3I-lO,logistic)

3.8% 9.4
3.3% 8.9

6 Conclusions

The advantage of the NCM classifier is its immunity to the effects of correlated
features, however, it has the disadvantage of being parametric and of not producing
classifications in the form of posterior probabilities. The KNN classifier is non-
parametric and theoretically, when supplied with an infinite amount of training
data, its performance is optimal. In practice, however, the KNN classifier relies
on having an effective distance metric, and consequently performance drops when
features exhibit widely differing variances or are highly correlated. Attempts to
alleviate these problems by standardisation or principal component analysis can
be effective in certain situations, but in general they cannot be relied upon. In
particular, standardisation is only appropriate if the spread of feature values is due
to normal random variation and not the presence of subclasses. MLPs are subject
neither to the restrictions of a parametric model, nor to the problems arising from
the computation of distances in feature space. Although there are situations when
the KNN classifier will out perform an MLP, it is the MLPs general purpose nature
that makes it appealing.

To summarise, the multi-layer perceptron has shown itself to be robust to differ-
ences in expert reliability and sensitive to correlations between experts. In addition,
the outputs of a binary classification network can be interpreted, under certain con-
ditions, as probabilities. This is not dependent on the inputs being probabilistic.
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