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Abstract
The coefficients of a weighted summation of red, green and blue
intensities are shown to effect textural characteristics. Thus multi-
spectral images can be mutated into forms that facilitate their dis-
crimination by a given set of statistical texture measures.

1 Introduction

The segmentation of colour imagery is often seen as an extrapolation of monochrome
techniques, with the primary images being manipulated independently, and the re-
sults being combined in some way. However, success has been limited by the corre-
lations between red (R), green (G) and blue (B) images [1, 2], since by implication,
their respective segmentations are also highly correlated. The effectiveness of multi-
spectral texture features [3] is similarly curtailed. As a result, the decorrelation of
multi-spectral image data (using principal component analysis) has received much
attention [2, 3]. Adopting a different approach, many road tracking systems employ
labeled training samples to derive a single composite colour feature by classical dis-
criminant analysis [4]. As a logical extension, multi-spectral texture discrimination
is introduced by computing various texture statistics over each of the primary im-
ages, and then determining the Fisher linear discriminant [5]. However, there is a
sense in which the colour and texture features are not co-operating.

2 Overview

That textural characteristics can depend on the weighting assigned to each primary
image is demonstrated by examining the principal component images. The eigen-
vectors are computed by diagonalising the correlation matrix of a feature vector,
each row of which contains the red, green and blue responses at a particular pixel
location. The pixels in RGB space are projected onto each of the principal axes
in turn, and the resulting images are histogram equalised to avoid representational
problems. (Histogram equalisation can also remove the effects of unequal overall
brightness and contrast [6].) Figures 1 and 2 show two multi-spectral (tweed-like)
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textures captured by a CCD camera in conjunction with a set of gelatin filters, and
their principal components respectively.

The extent to which a pair of textures can be discriminated by a particular
feature set is determined by the separation of their respective probability density
functions. Here the feature set consists of a grey level mean statistic and five second
order grey level difference statistics [6] (which are computed over 32 pixel square
image blocks). A total of 53 training samples (originating from a preliminary seg-
mentation) were made available, 27 from one class and 26 from the other. Thus,
the number of features that can be employed at any one time is limited to five by
the “curse of dimensionality” [7]. The performance of a parametric (multi-variate
normal) Bayes classifier is predicted by the B-distance [8], which relates to an upper
bound on error probability [8]. The B-distances for Figures 1 and 2 are : red = 11.7;
green = 11.3; blue = 11.7; PC1 = 6.4; PC2 = 3.7; and PC3 = 26.0. So, in this case,
the third principal component is much the easiest to segment.

More desirable than using principal component analysis would be a method of
deriving a transformation that, given a particular set of texture measures, will find
the best RGB transformation for classifying two multi-spectral textures. If mean
grey level were the only available texture feature, then the problem could be solved
using the Fisher linear discriminant. However, that axis is not optimal when other
texture features are employed. The optimisation procedure is complicated further if
it is also necessary to find the most discriminating texture features. This is because
as the RGB transformation changes, the textures change, and consequently the
features that best discriminate between the two textures may also change. The use
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of a suboptimal feature selection algorithm should be avoided in order to prevent
the introduction of local minima. An exhaustive search is employed here.

The cost function applies the colour transformation C = ugR+u;G+u, B where
up, u; and us (the normalised red, green and blue coefficients) are the optimisation
parameters. The resulting image is histogram equalised, the most discriminatory
feature set determined, and the corresponding B-distance (i.e. the cost) is returned.
Despite the nonconvexity of the cost function, optimisation is by a direct descent
algorithm[9]. This was favoured over more sophisticated approaches, such as sim-
ulated annealing, for computational reasons. Thus the optimal solution is sacrificed.

3 Results

The optimisation results (for Figure 1) appear in Table 1. The final column indicates
which five of the six available features provided the best discrimination. Texture
feature 0 corresponds to the grey level mean, which, as well as being a useful tex-
ture measure, also provides a means of discriminating nontextured regions on the
basis of colour. Features 1 to 5 refer to grey level difference statistics : angular
second moment (1), contrast (2), entropy (3), mean (4) and inverse difference mo-
ment (5). Significant increases in B-distance were achieved from all weight starts
(including ten random starts not shown). Figures 3a and b show the natural con-
trast monochrome image (B/W) and the best of the transformed images respectively.

Table 1. Optimisation results

starting point minimum
type Wgr Wg | Wg B Whr We Wg B | Features
PC1 | 0.333 | 0.365 | 0.302 | 6.38 | -0.386 | 0.563 | -0.050 | 34.18 | 0,1,2,4,5
PC2 [-0.390 | -0.081 | 0.529 | 3.68 | -0.393 | 0.529 | -0.078 | 47.11 | 0,1,2,4,5
PC3 | 0.347 | -0.469 | 0.184 | 25.98 | 0.427 | -0.417 | 0.156 | 38.81 | 0,1,2,4,5
rnd 0.259 | 0.543 | 0.197 | 6.12 | -0.391 | 0.559 | -0.050 | 54.28 | 0,1,2,4,5
rnd | -0.372 | 0.384 | 0.244 | 13.58 | -0.581 | 0.255 | 0.163 | 21.11 | 1,2,3,4,5
B/W | 0.300 | 0.110 | 0.590 | 8.314 | -0.387 | 0.553 | 0.060 | 33.64 | 0,1,2,3,5

4 Conclusions

The use of multispectral imagery has resulted in a considerable improvement in dis-
crimination. It will be shown that in this example, it is sufficient for the size of
the texture measurement windows to be halved (16x16), which pays-off in the form
of improved boundary localisation. However, whether or not a particular transfor-
mation will remain effective at higher resolutions depends on several factors, most
importantly, on the sizes of the texture primitives in comparison with the size of
the measurement window. Rankings are therefore prone to change, e.g. B-distances
at the 16 pixel resolution include : PC3 = 8.03; B/W = 4.1; and the previous best
transformation = 7.9. Figure 4a shows the segmentation of a 64 by 64 pixel square
constructed from the textures in Figure 3a. Similarly, Figure 4b is derived from the
textures in 3b but segmented using half sized (16x16) measurement windows.
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| By A4 Figure 4. Image segmentations
(b) Best trans. a) B/W b) Best
0.3R+0.11G+0.59B  -0.39R+0.56G-0.05B 32x32 windows 16x16 window

The colour-texture fusion mechanism described here suggests that once the
RGB transformation has been determined, the texture statistics need be computed
only over a single composite image, and therefore, the number of training samples,
memory requirement, and processing time necessary to segment the image are no
more than would be required of monochrome techniques. In future the intention
is to compare the segmentation results achieved using this approach with those of
other techniques, such as multi-spectral texture features. Also requiring some atten-
tion is the sensitivity of some transformed images to small variances in the original
textures e.g. the left hand texture of the second principal component. This has
similarities with observations made by Lowitz [10] regarding pronounced statistical
noise on some principal images. He proposed a measure of metric content.
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