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Abstract

This paper addresses the problem of calibrating a camera mounted on a
robot arm. The objective is to estimate the camera’s intrinsic and extrinsic
parameters. These include the relative position and orientation of camera
with respect to robot base as well as the relative position and orientation of
the camera with respect to a pre-defined world frame. A calibration object
with a known 3D shape is nsed together with two known movements of the
robot. A method is presented to find calibration parameters within an opti-
misation framework. This method differs from existing methods in that 1)
it fully exploits information from different displacements of the camera to
produce an optimal calibration estimate, and 2) it uses an evolutionary algo-
rithm to attain the optimal solution. Experimental results on both synthetic
and real data are presented.

1 Introduction

Camera calibration involves establishing for a given camera configuration the rela-
tionship between 3D scene points and their corresponding 2D image coordinates.
It is essential for performing 3D metric measurements from images. A camera
calibration permits identification of the 3D ray of scene points which could have
produced a given 2D image point. Camera calibration consists of determining
both the intrinsic parameters that are the camera’s optical characteristics and
also the extrinsic parameters that describe the relative position and orientation of
the camera with respect to a coordinate system of interest. For a static camera,
the extrinsic parameters correspond to a single transformation: camera-to-world.
However, if the camera is mounted on a movable robot arm then the extrinsic pa-
rameters are composed of a camera-to-robot and a robot-to-world transformation.
The camera-to-robot transformation is a function of the motion of the robot arm.
The extrinsic parameters are important for making use of controlled camera mo-
tion within an active vision system as robot motion is usually specified in a robot
coordinate system while 3D metric measurements are derived from measurements
made with respect to the camera coordinate system.

A large body of work exists on camera calibration in both the photogrammetry
and computer vision communities. A survey of existing techniques was given by
Tsai [10]. The intrinsic parameters and the camera-to-world transformation are
usually estimated using a calibration object with known 3D reference points®in
the world. A method presented by Tsai [9] obtains the extrinsic parameters from
a system of linear equations and then recovers the intrinsic parameters. Faugeras
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and Toscani [4] suggested a different route whereby they first compute the per-
spective transformation matrix which relates 3D world coordinates to 2D image
coordinates and then use this to determine the intrinsic and extrinsic parameters.
Recently, self-calibration methods for determining the intrinsic parameters of a
camera have been developed by several researchers. They usually exploit camera
motion. Faugeras et al. [3] presented a method which is applicable to the general
case of unknown camera motion. Dron [1] developed a method using translations
of a camera while Du and Brady [2] developed a method using rotations. How-
ever, these self-calibration methods cannot estimate the extrinsic camera-to-world
parameters because they do not use 3D reference points. The extrinsic camera-
to-robot parameters are usually estimated using controlled robot motions. Two
known robot motions are required to obtain a unique solution. Shiu and Ahmad
[8] formulated this problem as a set of quadratically constrained linear regression
equations and solved it by a least squares technique. Tsai and Lenz [11] proposed
a simpler and more efficient closed-form method. Wang [12] developed a method
which was similar to Tsai and Lenz.

A difficulty of estimating intrinsic parameters is that existing methods seek the
solution through some intermediate unknowns that are composites of the intrinsic
parameters. Although the least square technique for estimating the intermediate
unknowns is linear, the procedure for recovering the intrinsic parameters from the
intermediate unknowns is not. Small errors in the estimation of the intermedi-
ate unknowns induce large errors in the intrinsic parameter estimation. However,
since the intrinsic parameters are invariant to camera location their estimation
can be improved by using several displacements of the camera. Most of the ex-
isting methods of calibration have closed-form expressions for the solution. These
methods are simple and efficient but can have numerical instabilities due to the
inadequacy of low level vision for extracting image features. It is necessary to use
optimization techniques to achieve more robust calibration results.

In this paper, we present a method for optimally estimating the intrinsic and
extrinsic parameters of a single camera by fully exploiting information from three
locations of the camera. The intrinsic parameter estimation can be improved by
the information redundancy inherent in the use of three locations of the camera.
We formulate the calibration problem as a non-linear optimisation problem. The
optimal solution is the one that minimizes the difference between estimated pro-
Jections of 3D reference points and the corresponding measured image coordinates
under the constraint that the orthogonality of rotation matrixes is preserved. An
evolutionary algorithm, a systematic multi-agent stochastic search technique, is
proposed to find the optimal calibration parameters.

The paper is organised as follows: In section 2 a camera model is described and
the calibration problem is stated. In section 3 the calibration problem is formu-
lated as a nonlinear optimization problem. In section 4 the determination of the
initial intrinsic and extrinsic parameters for the optimization task is considered.
In section 5 an evolutionary algorithm is presented to find the optimal calibra-
tion parameters. Experimental results on synthetic and real data are provided in
section 6 and a summary in section 7 concludes the paper.
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(a) (b)
Figure 1: (a) GETAFIX: Surrey VSSP Group Robot Head (b) Calibration Chart

2 Camera Model and Problem Statement

The accuracy of scene measurement is a function of the complexity of the camera
model adopted. The best result is obtained when a complete model including
nonlinear distortions due to imperfections and misalignment of the optical system
1s used. In this paper a pinhole camera model without correction for lens distortion
is used. Given a 3D point M, its image m is the intersection of the image plane and
the line through M and the optical center C'. The optical axis is the line which goes
through optical center C' and is perpendicular to the image plane. The camera
coordinate system X_.Y.Z. is defined such that its origin is the optical center,
the Z axis is the optical axis and the X and Y axes are parallel to those of the
image coordinate system. Consequently the coordinate of a 3D point (z., y., z.)
with respect to the camera coordinate system and its image coordinates (u, v) are
related by

wu f/su 0 Ug 5o
wy | = 0  f/sw w Ye (1)
w 0 0 1 2,

where w is an arbitrary scalar and the elements in the 3 x 3 matrix are composed
from the camera’s intrinsic parameters: f is the focal length of the camera, s,
and s, are horizontal and vertical pixel size units and (u, vo) is the the principal
point of the camera, i.e., the intersection between the optical axis and the image
plane. Since the focal length f cannot be separated from pixel size s, or s, the
calibration deals with the ratios k, = f/s, and k, = f/s,. Thus four intrinsic
parameters have to be estimated.

In this paper the problem of calibrating a movable camera is considered. In our
laboratory the camera is one of two which form the GETAFIX stereo robot head,
see Figure 1 (a). For the purpose of the current paper the robot is only allowed to
rotate about a vertical axis and a horizontal axis, pan and tilt. These movements
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Figure 2: Relationship among coordinate systems for two robot locations.

are specified as pure rotations about the z and y axes of the robot coordinate
system. The camera is rigidly attached to the robot, i.e., the relative position and
orientation between the camera and robot remains unchanged as the robot moves
to different locations. For calibration the chart shown in Figure 1 (b) is placed in
view of the camera. The transformation between two coordinate systems, say W
and C, is described by a homogeneous transform matrix, H,,. i.e. coordinates of

a 3D point in system C, (z., Y., 2c), are related to coordinates (zy,, yw, 2y ) in W
by

(zCs ycrzm 1]8 - ch(xwvng Zw, l)t (2}
where superscript t denotes transpose and

r1 riz Tz 4

| ra1 Tz Tz i3
Hye = r31 Taz Tas I3 (3)
0 0 0 1

R ={rij} and T = (¢1,15,13)" are the rotation matrix and the translation vector,
respectively, from system W to coordinate system C.

In this paper calibration is achieved by making controlled motions of the robot
and observing the changes in the image coordinates of the calibration chart. Fig-
ure 2 shows the relationships between various coordinate systems, world W, robot
G and camera C, for two robot locations.

In order to achieve camera calibration, two known movements of the robot
are made to obtain three different locations of the camera. The problem to be
addressed can now be stated as follows:

given n (n > T) reference points in the world coordinate system (z;,y;, 2i),
(i = 1,---,n) and their image coordinates for three different camera locations
(uij,vij), (1 = 1,2,3, j = 1,---,n), and given two known motions of the robot
H iy and H g3, estimate both the intrinsic f, ky, ky, uo, vo, and extrinsic
camera parameters H ., Hy.1.



523

3 Optimal Calibration Formulation

The standard methods for determining the intrinsic and extrinsic parameters of
the camera-to-world transformation are in closed-form expressions given by Tsai
[9] and Faugeras and Toscani [4]. The accuracy of the closed-form solution to the
intrinsic and extrinsic parameters depends on several factors: (i) the uncertainty
of image feature coordinates; and (ii) the non-linearity of analytical methods for
computing the parameters. Since the parameters are recovered from intermediate
unknowns non-linearly then small errors in the estimation of the intermediate
unknowns may result in large errors in parameter estimates. Thus, it is desirable
to improve the estimate using optimization techniques.

The intrinsic parameters and camera-to-robot transformation are invariant to
different locations of the camera. Thus it is possible to exploit the redundancy of
data obtained from three locations of the camera to improve the estimation of these
parameters. This can be achieved by directly estimating them using optimization
techniques with an initial estimate.

In order to reduce the number of parameters to be optimized and preserve the
orthogonality of the rotation matrix, the rotation matrix can be represented by
three independent parameters: the angles of rotation («, 3, v) around the z,y and
z axes respectively i.e.

cosflecosy  sinasinficosy + cosasiny —cosasinficosy + sinasiny

R= | —cosfBsiny —sinasinfsiny —cosasinfisiny + sinacosy
sinf3 —stnacosf cosacosf
as where sinf = rsy, tan(a) = —r3a/raz and tan(y) = —ra;/r11. Thus the
parameters to be estimated are
rP= ‘{km ky, uo, UD‘Rgc‘Tgc:chlsTwcl} (4)

This is a 16-dimensional parameter space.

The calibration problem is formulated as a non-linear minimization problem.
The optimal solution is the one that minimizes the difference between projections
of 3D reference points using calibrated parameters and the actual corresponding
image coordinates. Consider the j-th 3D point in the world coordinate system
(zj,yj,2;). It can be seen from equation (3) that the corresponding image coor-
dinates in the three camera coordinate systems are respectively:

(%15, 35,215, 1) = Huei(25, 95, %, 1) (5)
(225, %25, 225, 1) = HyeH 12 H ;) Huer(2j, 95,25, 1) (6)
(ISjuijg 235 l)t = chH92§3H91g2H;c]chl{xj1 Yjs2j» 1): (7)

In each camera coordinate system, (z,;, ¥ij, zi;)!, (i = 1, 2, 3) is related by its image
coordinate (u;j,v;;)* by

L —up and v = kv&"— —
Zij Zij

U;; = ku
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Therefore the optimal calibration parameters p can be found by performing the
following non-linear minimization.

p= Min, f(p)
where

3 n

F®) =Y lwij — 2ij/7:5)* + (vi5 — w35/ 5)°] (8)

i=1 j=1

It is note that this criterion has a clear physical meaning as the minimization of a
Euclidean distance in the image plane.

4 Setting Initial Calibration Parameters

Firstly we describe an alternative closed-form solution to the intrinsic parame-
ters and the camera-to-world transformation. Given n 3D points in the world
coordinate system (&, yi,2;)(i = 1,---,n) and their corresponding image coordi-
nates (uj, vi), (i = 1,---,n), the following equations can be derived by combining
equation (1), (2) and (3) and assuming that t3 # 0

[ . ray/t
uyxr; uiyr urzy —I -1y -2 . | r31§£3 —y
UpTp Uala UpZa —Ta —Y» —2zo —1 32/%3 —tly
| raz/ts _
1 (kuri1 + ra1uo)/ts [=| (9)
< (kur12 + rasug) /i3
k t
[ UnZn UnYn UnZn —Zn —Ya —2zn —1] (kur13 + razug)/ts un

(kuty + uots)/ta

where R = {r;j} and T = (t,t2,13)" are the camera-to-world rotation and trans-
lation. For n > 7, this yields an overdetermined system of linear equations. The
seven unknowns a; = ra;/ts, as = raafts, az = raz/ts, as = (kyryy + rajug)/ts,
as = (kuyri2 + r32u0)/t3, as = (kuriz + rasuo)/ts, ar = (kuti + uot3)/t3 can be
obtained using a standard linear least squares technique. Since the rotation ma-
trix R is orthogonal, i.e. RRT = RTR = I in which there are six independent
relations, the degree of freedom of I is three. Using the orthogonality property,
the calibration parameters can be obtained from the eleven intermediary variables
a;,i=1,---,7 as follows.

lts| = (a} + a3 + )~ ?

where the sign of t3 can be determined by the actual setup of the calibration chart.

r3i = a;/ts, (1=1,2,3)

up = talasra + asrsz + agras)

ky = +/(taag —raino)? + (taas — rasug)? + (t3as — rasug)?
rii = (t3aiys —raive)/ke, (1=1,2,3)

ty, = ta(ar —w)/ky
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Other calibration parameters vg, ky, t2 and rz;,i = 1,2,3 can be obtained in a
similar way.

Secondly we can obtain a closed-form solution to the camera-to-robot trans-
formation once we have the camera-to-world transformations for three different
locations of the camera. For each camera location the camera-to-world trans-
formations is estimated H ., Hye, and Hy.,. This permits calculation of the
transformations between different camera locations, i.e., H.y.2 and H.5.3. The
transformation algebra yields the following relations among transformations re-
lated by the robot motions:

RclcERgc = RgcRylgi’ (10)
(Rclc:? = I)Tgc = R_chglg'.? = Tere2 (11)
where (Rg142,Ty142) is the transformation between two locations of the robot. It
has been shown that [8, 10, 12] the (R, Tyc) can be uniquely determined when
two displacements H . .2 and H 9.3 are available. Let the rotation R be specified
by an axis k and an angle . The rotation axis and angle for R,. can be obtained

from equation (10) [10, 12] as follows:

(ﬁcleQ = J'c_|;1_5r2) X (N'c'.’c3 = ’CgEgS)
Kge =
“(RclcE - Rg]gE) x (Nc2c3 - ’59233)”

“’cclc2 s Kgng“
”(Egc X (mclcQ + Nglg?))”

[|Ke2es — Kgagal|
ge X (Ke2e3 + I"".‘.1'2!:1':?‘))||

gyc = sgn((Ke1e2 — RglgE)t(Ngc X (Ketez + -‘59192))7"1“-1(

+sgn((Keoe3 — ’ngga)t(-"'-gc X (Kezes + -“cg'.!gla})t‘]'""'*_l(”(“.c

where sgn(e) is the sign function, i.e., sgn(z) = 1 if z > 0 and sgn(z) = —1 if
z < 0. Once R, is estimated Ty, can be obtained from equation (11) using a
standard least squares technique.

5 Minimization by an Evolutionary Algorithm

The success of the calibration method based on optimization framework depend on
the existence of algorithms for minimizing the objective function in equation (8).
The minimization of the nonlinear function is a difficult task because the function
is not convex and contains complex local minima. Gradient-descent methods are
not suitable for this task because: (i) they are susceptible to becoming trapped
at local minima; and (ii) the gradient information of the objective function is
not available. Simulated annealing is an optimization method to escape the local
optima via a stochastic search mechanism, but it is not efficient as it performs an
essentially serial and random search in the solution space.

Recently, evolutionary algorithms [5] have been studied for solving complex op-
timization tasks. Evolutionary algorithms are population-based search methods:
successive populations of candidate solutions are generated in a stochastic manner
and optimization is performed by multi-agent stochastic search. Although evolu-
tionary algorithms have been shown to be promising in many applications (see [6]
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and references therein), it is still new to researchers in computer vision community.
Our aim here is to propose an evolutionary algorithm to find the optimal solution
to the calibration problem.

Given an initial solution of 16-dimension p = (p(1), - - -, p(16)) obtained from an
analytical method described in previous section, we first form an initial population
P = {p,,p,, - -,pn}, where N is the size of population, by perturbing the initial
solution along 16 directions respectively. We propose an evolutionary algorithm
which has the following two operators:

1. Mutation: For each candidate solution p; € P,i = 1,---, N, we generate a
new candidate solution p} by perturbing it in terms of the following function

pi(§) = pi(5) + N(0, A f(p;)), j=1,---,16 (12)

where ) is the scale factor controlling the perturbation size and N(u,a?) is a
Gaussian variable with mean p and variance o2,
2. Selection: For each pair of candidate solutions p; and p{, we select one of
them which has lower cost f as a member of next generation of the population.
The evolutionary algorithm performs optimization by repeating the above op-
erations until a stopping criteria are satisfied. The stopping criterion is that the
lowest cost fnin remains the same for a sufficiently long time. The mutation op-
erator leads to an increase in the diversity of the population induced through a
stochastic operation. Thus, the mutation provides a capacity to escape local min-
ima during search. In contrast, the selection operator retains the best candidate
solutions in the population, which guarantees asymptotic convergence. The combi-
nation of the above mutation and selection operators leads to the global minimum
of the objective function in equation (8). More detailed theoretical analysis of
general evolutionary algorithms can be found in [7].

6 Experimental Results and Discussion

Firstly we need set up the parameters in the evolutionary algorithm. In the ex-
periments described below, we set the population size N = 5 and the perturbation
size A = 0.6. Under these parameters the evolutionary algorithm converges within
20 generations.

Synthetic data was used to test the validity and evaluate the performance of
the proposed method. 3D reference points were chosen and three synthetic images
were simulated corresponding to the two movements of the robot. Uniform random
noise from the interval [0, k] is added independently to both the u and v coordinates
of the projections. Accordingly, the maximum perturbation of point location is
k+/2 pixels. The proposed method was tested under several noise conditions k =
0.5,1.0,1.5,2.0. The accuracy of the method was taken as the average distance
between the projection of reference points and the actual image data. From the
results obtained, conclusions about accuracy as a function of level of noise and the
size of robot movements can be made. When noise level is low, i.e., k < 1 and their
is a relatively large robot rotation angle (> 5°) then the proposed method provides
good estimation, i.e. the average error is within 1 pixel. When robot rotation
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Intrinsic Parameters World/Camera Transformation
ke I kv ] w | o o | B 1 2 | ta i ty | tz
Initial Estimate Initial Estimate

13829 | 13850 | 25.0 | 21.0 | -0.0472 | -0.7553 | -0.2787 | -32 | -118 | 968
13686 | 13765 | -5.4 | 11.3 | -0.1557 | -0.7278 | -0.3745 | -25 | -189 | 938
13950 | 13865 | 18.8 | -3.7 | -0.1166 | -0.6468 | -0.3495 | -92 | -189 | 915
Final Estimate Final Estimate

1 | 13834 | 13835 | 8.8 | 5.5 | -0.0473 | -0.7552 | -0.2787 | -26 | -151 | 956
Robot/Camera Transformation

@ J:] -y te ty ts
Initial Estimate | 0.00056 | 0.26274 | -0.00031 | 203.4 | 198.7 | 164.6
Final Estimate [ -0.00014 | 0.26173 | -0.00041 | 200.5 | 201.3 | 161.4

w| 2| = =

Table 1: Result of the intrinsic and the extrinsic parameters, N is the index of
camera locations
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Figure 3: Recovered co-planar points at different viewpoints

angles are small the noise has a strong effect on the estimation of the camera-to-
robot transformation. This is reasonable because small rotations mean that the
coefficient matrixes of equations (10) and (11) are close to linearly dependent.
Experiments on real data were performed with the Surrey active stereo head.
Calibration for one camera is considered. The robot can perform pure rotations
with respect to the robot coordinate system around its z-axis and the y-axis inde-
pendently. The motion of the robot is driven by a stepper motor with accuracy of
140 steps per degree i.e. 0.0072°/step. Two robot motions were considered: a 5°
rotation around the z-axis followed by a 5° rotation around the y-axis. The cam-
era viewed a calibration chart consisting of a regular array of black squares. The
corners of the squares are chosen as the reference points and their correspond-
ing image points are detected using standard edge detection and corner finding
method. There is an uncertainty of 1 — 2 pixels for the locations of the corners.
Table 1 shows the result of the intrinsic and extrinsic parameters for a set of
real data using the closed-form method. 1t can be seen that the estimated intrinsic
parameters differ for different locations of the camera. The average value of the
intrinsic parameters was used as the initial estimate to the proposed evolutionary
algorithm. The estimated camera-to-world and robot-to-camera transformations
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were used as the initial extrinsic parameter estimates. Table 1 shows the cali-
bration result using the evolutionary algorithm. The root mean square distances
using these final estimates were 0.7, 1.0 and 0.7 pixels, respectively. Thus the
evolutionary algorithm has considerably improved the estimation of the intrinsic
and extrinsic parameters.

In order to show the accuracy of calibration parameters in inferring 3D in-
formation, both cameras of the stereo head were calibrated using the proposed
method. The transformation between cameras was then calculated by combining
the extrinsic parameters of each camera. Figure 3 shows the projections of the
recovered co-planar reference points from different viewpoints. It can be seen that
the recovered reference points are located on the same plane, which implies that
the estimation of intrinsic and extrinsic parameters is reasonably good.

7 Conclusions

It has been shown how to estimate the intrinsic and extrinsic parameters of a cam-
era mounted on a robot arm within an optimization framework. The method fully
exploits information from two accurate movements of the robot arm. An evolution-
ary algorithm was proposed to find an optimal calibration estimate. Experimental
results obtained on both synthetic and real data demonstrate its usefulness.
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“Vision as Process IT".
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