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Abstract

This work proposes a methodology for the analysis of the uncertainty
in the localization of objects when considering uncertain image data,
camera and object geometry parameters. The uncertainty is propa-
gated through an extended static Kalman filter initialized with the
parameters used for the localization and updated with new matched
features obtained by back-projecting onto the image. At the end of
the process, a better estimate of the object pose with its uncertainty
is given along with a new estimate of the used uncertain object fea-
tures and the camera parameters. The methodology is now in use in
an object localization system.

1 Introduction

The role of uncertainty is very important where a measure of the position and ori-
entation of a modeled object in space is required. Besides providing information
on the reliability of the data, the reason for using the uncertainty of the sensory
data is for improving the estimate of the parameters we want to measure. This
improvement is obtained by combining pieces of information derived from differ-
ent sensory data according to their uncertainty. Durrant-White [9] introduced a
method for uncertainty propagation, even in presence of deterministic relations be-
tween different observed features. By this approach, however, the determination of
the a posteriori covariance matrix is difficult. Studies on uncertainty propagation
analysis have already appeared in the Computer Vision literature (e.g. [17] [10]
[6], [13]). In many of the presented approaches, uncertainty in the image features
has been regarded as the main source of uncertainty. However, we notice that
uncertainty in both the projection parameters of the camera and in the object
geometry is often more relevant than uncertainty in the image features.

In the present work we propose a methodology for the uncertainty propagation
in the localization of modeled objects. The uncertainty sources considered include
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(i) the image data, (ii) the projection parameters of the camera and (in) the object
geometry. The propagation from the last two uncertainty sources had not been
studied in previous works. Uncertainty on the geometric features of the object
model are not only due to unpredictable deviations from their nominal values in
man-made objects, but they are also due to the adoption of simplified model, as
in modeling a smoothed edge as sharp (see Fig. 1). We show that when all these
uncertainty sources are taken into account, a better estimate of the object pose is
obtained, both in term of estimate and variance. As in other studies, such as [7],
the deviations from the nominal values are assumed to be normally distributed.

The technique adopted to analyse the uncertainty propagation is based on the
Static Extended Kalman Filter. Equivalently, a non-linear weighted least squares
technique (such as the Levenberg-Marquardt Method [12]) could have been used,
with weights inversely proportional to the variance of the employed data.

A system that employs the proposed method has been implemented. Basi-
cally it aims to localize polyhedral objects from single images using a minimal
sub-pattern matching algorithm developed by Caglioti [5]; it will be shown how
the proposed method helps improve the pose estimate of the localized object in
the presence of uncertainty on image features, object geometry and projection
parameters.

The rest of the paper is organized into two main sections: Section 2 describes
the methodology we use, and Section 3 gives a concrete example and some exper-
imental results.

2 Uncertainty Propagation Analysis

In this section we first describe how we represent the uncertainty of the image,
objects and camera parameters. Then we explain how the proposed methodology
is well suited to the minimal sub-pattern matching problem. Finally we show how
the uncertainty propagation is carried out for the general case in which image,
object and camera parameters are uncertain.

2.1 Uncertainty Model of the Image Features

An image of the scene is taken by a calibrated camera and some features are
extracted from it.

Let us call p G 5Rm the vector of the parameters denning these features. Be-
cause of the nature of the image acquisition process, p is affected by uncertainty
that can be described, under very general assumptions (see [11], [1], [7], [9], [8]
and [10]) with a probability distribution function fg(p)-

The foundation of our approach is based on representing uncertainty of p by its
covariance matrix Ap with an assumed normal probability distribution N(p, ^p)-
The advantage of this assumption is that there are well-known statistical tools for
estimation and decision problems (e.g. Kalman filter and x2 test). The estimation
of Ap can be carried out using specific techniques (e.g. [9],[1], [4],[16]).
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Figure 1: Effect of lighting on a smoothed edge (left). By considering as uncertain the
straight edge in the polyhedral model (right) it is possible to account for this effect

2.2 Object Uncertainty

The problem of the propagation of the uncertainty of the object geometric fea-
tures involved in the localization has not been studied previously. However we
believe that by introducing the object model uncertainty, a deeper analysis and
comprehension of the scene is obtained.

Let us consider an object as composed of certain features that can each be rep-
resented as a point q, G $tk in the ̂ -dimensional space of the feature parameters.
Some reasons for introducing object model uncertainty are the following:

1. Real objects in a scene normally exhibit small but unpredictable deviations
from the nominal geometry especially for man-made and large scale industrial
production objects.

2. In certain cases it is possible to account for the use of simplified object
models by assigning uncertainty to the not properly modeled features. For
example, Figure 1 shows the case of a smoothed edge modeled as sharp.
Giving proper uncertainty to the edge in the polyhedral model (i.e. according
to its curvature), we can allow for the unpredictable shift of the edge in the
image due to changes of lighting conditions.

The approach we propose is to treat every unknown disturbance due to the
object parametrization by considering the uncertain object parameters as normally
distributed . /V^, Aq ;).

2.3 Uncertainty of Camera Calibration Parameters

Practically all calibration methods (e.g. [15]) involve the treatment of a fairly
great number of observations and thus, from the Central Limit Theorem, all the
estimated parameters are provided as Gaussian variables. In this paper we refer
to the camera parameters as a vector f = N(f,Af).
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2.4 Localizing by Sub-patterns and Improving Hypothesis
Confidence

Let P = {pi £ 5Rm} and Q = {qj £ Mk} be the sets of image and object features
respectively. Following some criteria, clusters (patterns) of image features are put
in correspondence with clusters of objects, and possible object position hypotheses
are produced by a proper localization algorithm. Indicating by y £ 2 an image
pattern P, by e £ 2 ^ an object pattern and by f the vector of sensor parameters,
a localization algorithm L can be expressed as

j . . -, j not_matched
L(y,e,l) =>• | position vector x £ » 6

In this paper we consider a generic L that uses only the 6 parameters strictly
necessary to localize. Several efficient algorithms of this kind have been proposed
(e.g. [3] or [5]) but all yield poor precision due to the small amount of information
used.

The assumption of small uncertainty of image, objects and sensor parame-
ters allow us to use nominal values for the generation of nominal object position
hypotheses, that is x = Z(y, e,f).

After the initial estimate of the position, the object features are projected onto
the image; let us call this set of projected feature P1 = A(x, Q,f) .

Further matches between real images features pj £ 2 and projected features
pf £ 2 can be used to improve our knowledge of the object position. A proper
statistical test 5(-, •) is applied to each pair (pj,Pj) to determine whether the
correspondence is correct. As we shall see in the next section, after each kth

positive test, (pj)k is fed into an Extended Kalman filter that yields an improved
estimate of the pose along with its uncertainty. Moreover, within our framework
of uncertain objects, some objects and camera parameters could also be inserted
in the state vector of the filtering process.

2.5 Uncertainty Propagation with Uncertain Images,
Model and Calibration Parameters

The model of the visual observation can be expressed as:

y = /i(x,e,f) + v , (1)

where
y: vector of image parameters (the observation);
e: vector of model parameters;
f: vector of camera parameters;
x: the object position-orientation vector;
h: camera projection vector-like function (e.g. perspective transformation);
v: a small additive noise affecting the extraction of image features.

Once the correspondence hypothesis between an image pattern and a model one
has been generated, a nominal value y, x, e and f of the corresponding uncertain
vectors is available through L. Relation 1 can be linearized in proximity of the
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nominal value. If 8 indicates the variation with respect to the nominal value,
then:

where J = ffe

= J<5x + H6e + K6f + v (2)

_ ah and K =
9 e = - ' " l x,e,f

Let s be the vector s = [ x f e ] . As above, we assume s = iV(s,As),
as we intend to propagate the normal Gaussian uncertainty of image and cam-
era parameters through the linearized inverse camera projection. Such a linear
transformation combines Gaussian variables and yields Gaussian variables.

2.5.1 Initialization of the Covariance Matrix

Consider equation 2, linearized in the proximity of the nominal values of the
uncertain parameters. Suppose that the minimal localization algorithm L has not
yet been applied: both the covariance matrix Ae of the model geometry parameters
and A/ of the camera parameters are given along with their respective estimates,
while both the position estimate and the covariance are still unknown. Therefore
we can apply a modified version of the Kalman Filter equations ([9],[14]) in which
the a priori information matrix Aj1 of the position parameters is supposed to be
zero (i.e. no information about x is available).

By applying a matrix inversion Lemma (see [14]), the following a posteriori
covariance matrix As of the state vector s is obtained:

A, =

The estimate of the state vector s, after the localization, is given by s = [ x f e ] .
The a posteriori covariance matrix shows that a correlation arises between

x and both f and the initial value of e, while no correlation between f and e
is introduced. In addition, the covariance matrices of the f and e parameters
are left unchanged: this means that no information on them is derived from the
localization. This is due to the zero a priori information about x: the whole of
the information derived from the localization is "absorbed" by x.

2.5.2 Exploiting Further Information

From the initial estimate of s we can calculate the expected image of the object
using the h function of paragraph 2.4. In order to decide whether an image fea-
ture pk matches one of the homologous object feature qk, it is compared to the
projected feature whose expected value is given by pk = h(x,qk,f), where x, qt,
f are the current estimates of the position, the model features and camera param-
eters. As additional features are recognized to be part of the object image, the
object position x and also both calibration parameters f and model geometry are
updated. In general, all these parameters are a posteriori correlated.

- | - i» .AyI^ . )\J ) —J J V A j —J X l A

- A / K 7 ^ 7 ) " 1 A/ 0
-AeH

T(JT)-1 0 Ae
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Let Qjb = [ Jjj. Kk Hk ], where Jk, Kk, Hk are the jacobian matrices of
p£ with respect to x, q*., f respectively. From equation 2, the covariance matrix
of p£ is:

Api = [Qt] • As • [Q,]T

A statistical test 5 can be used to decide if image features (pj)fc match object
features (qj)k- An example of 5 is the Mahalanobis distance [14], which gives the
following matching criterion:

Once a match has been found, the estimates of x, e, f are updated along with
their covariance matrix. Suppose that there are ./V of these matches and that each
Pi (that is the kth observation) is statistically independent of the previous k-1;
otherwise, a procedure for obtaining a pk independent from the past but containing
all the information necessary to update the estimate is straightforward (e.g. [2]).
The updating algorithm for the supplementary matched features is the following:

for *=1 to N I ks = A5 - AsQl(QkAs3l + ApJ
{ s ̂ - N ( s , A, )

By these equations, not only the object position x is updated, but the supple-
mentary matches between model and image features yield also new information
about both the calibration parameters and the model geometry.

The procedure is general, but it is easy to derive the case in which f or e or both
are not updated. In particular it is obvious that an improvement of calibration
parameters should be pursued only in the case the object is well known (Ae = 0).
In the case Ae ^ 0 there is no reason for estimating new camera parameters.

3 Experimental Results

We describe a system developed to experiment with the methodology proposed in
Section 2; both simulation and real-image experiments will be described.

3.1 Overview of the Experimental System
The system addresses the sub-case of localization of polyhedra in a complex scene
acquired by a single calibrated camera using an algorithm developed by Caglioti
[5]. Both image and camera parameters are considered uncertain (2.1 and 2.3)
and a Gaussian uncertainty is given to the object models (see 2.2). The raw image
is first processed by a Canny edge detector and later is segmented into straight
edges whose uncertainties (due chiefly to spread and discretization of points) are
represented by normal distributions around their nominal (p,$) parameters (see,
e.g., [10] [4] [17]); the method we used to actually compute this uncertainty has
been described in [4].

At this point we create all possible pairings of image and object patterns that
comply to certain qualitative constraints (e.g. concavity-convexity angles); in the
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present implementation, the number of these pairs is of the order of the number
of model patterns.

Each correspondence hypothesis is translated by the localization algorithm [5]
into a possible (since the process may fail) object position hypothesis, expressed
in Euler coordinates with respect to the camera reference frame.

Now the filtering process starts with the initialization of the Kalman filter
as explained in 2.5.1; it should be noticed that Ay also refers to coordinates of
intersection between edges and hence simple geometric transformations of the plain
(p,d) uncertainties are done ([11], [17]).

After the initialization, the process of improving the pose estimate goes on by
back-projecting the object onto the image plane, looking for additional matches
(Section 2.4) and applying the Extended Kalman filter equations, as shown in
2.5.2.

3.2 Experimental Results: Simulation

A simulation experiment consists of taking an object model, rototranslating it
with known Euler coordinates and projecting it onto the image plane with given
camera parameters; all edges are given {p,d) uncertainty. For brevity, we expose
here only two different sets simulations (Figure 2).

Both sets have in common the kind of object, its position in the space and
the (camera) parameters of the perspective projection. Six points of the object
base (see Frame 4 and 8) have been given an equally distributed Gaussian un-
certainty along their reference axis. Frames 1,5 show the two images along with
the initial pose estimates; frames 2,6 give the final estimate not considering object
uncertainty and frames 3,7 show the final pose estimate including object uncer-
tainty, whose final uncertainty ellipses are displayed in frames 4 and 8. The focal
length uncertainty was taken into account in both cases. The position is given as
(<f),0,ip,px,py,Pz), with angle measured in radiants and lengths in millimeters.

Set A (1-4) Edge 1 has a 4% shift from its nominal position in the object
reference frame. It can be easily seen that the final estimate with deterministic
model (2) is actually worse than the initial one (1) because of the shift of Edge
1 in the object that is not accounted for in the model. With object uncertainty
we get an almost perfect estimate (3) and also the instance of the object has been
properly updated (4).

Set B (5-8) Here Point 6 has a 5% shift-up with respect to the nominal
prototype and the simulated focal length is significantly different (10%) from the
true one; this causes an enlargement of the expected image with respect to the
actual one. Due to the combination of two disturbing factors, the final estimate
without object uncertainty is rather bad (6), even poorer than the inital one (5).
Conversely, including the object uncertainty we get a very good final estimate of
the pose (7); the only error is (as expected) in the distance since, in order to "fit"
the object into the image taken with a smaller focal length, the system "put it
slightly further". In the model instance (10) Point 6 has been correctly updated
according to the image data and its uncertainty has considerably diminished.

Even so few examples show that the inclusion of the object uncertainty helps
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Actual Position: 0.617 0.561 0.644 10.935 201.33 -19.94
Actual Foclen: 1387

Model with Edge 1 shifted up vertically
Simulation witn correct focal lenght (1387)

\

Model with Point 6 shifted up vertically
Simulation with incorrect focal length (1500)

\

Initial Position Estimate
Position: 0.6467 0.5701 0.6016 10.9 201.2 -19.56

Variance: 0.0097 0.0058 0.027 13 1300 4.4

Initial Position Estimate
Position: 0.6815 0.573 0.583 11.25 216 -19.44

Variance 0.012 0.0067 0.0031 13 15O0 4.7

Position: 0.6509 0.5949 11.13 196.5 -19.05
Variance: 8.1e-O5 3.8e-O5 0.0001 0.038 4.1 0.091

Position: 0.6722 0.5768 0.574 11.53 212 -18.08
Variance: 0.00062 0.00016 O.O0078 0.24 31 0.29

Position: 0.6396 0.5696 0.6153 10.91 200.5 -19.69 ->
Variance: 0.0027 0.00021 0.0032 0.29 21 0.97 J

Position: 0.6389 0.5738 0.6313 11.09 219.1 -19.6
Variance: 0.001 9.7e-O5 0.0015 0.11 57 0.24

Edgel

Point 6

Figure 2: Two sets of simulation experiments.

improve the pose estimation in presence of external disturbance (like a wrong
knowledge of the camera parameters and slightly different geometry of instances
of objects in the scene) and reduces the sensibility of it under different conditions
(e.g. compare 3/7 and 2/6 in Set A and Set B).

3.3 Experimental Results: Real Images

The uncertainty propagation method illustrated in Sec. 2 has also been tested on
real images, such as the bottle with smoothed side edges shown in Figure 3(left)
with superimposed edges.
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0
0

Figure 3: Experimental results with a real image of a smoothed-edge bottle

Figure 3(middle) shows the final estimate of the bottle body superimposed to
the segmented image without taking account of camera and object uncertainty. It
can be easily seen how the top and the right side have a poor fit with the image.
The line uncertainty alone, which is well below 1 pixel, cannot account for this
displacement. However, this displacement can be accounted for if the uncertainty
both in the calibration parameters and in the object model is considered, as shown
by the final estimate of the object pose in Fig. 3(right). Small circles indicates
zones in which the improvement is relevant.

True
Det.
Unc.

<t>
90.0

92.47
92.59

0.65
1.81

e
0.0

1.73
1.22

1.08
2.92

<P
-60.0

-61.36 10.56
-60.63 1 2.26

Px
0.0

0.27
0.25

1.63
2.42

Py
116.0

113.00
115.25

3.01
3.04

P*
0.15

1.00
0.34

0.87
0.58

The table shown above gives the true values and the estimates of the position
(pairs of value and standard deviation) with deterministic model and camera pa-
rameters (DET) and with uncertainty (UNC); angles are in degrees and lengths in
centimeters. The overall improvement in the estimate is evident and, in particular,
the standard deviation is more in accordance with the real error, while it is much
smaller in the case in which only line uncertainty is considered. This shows the
inadequacy of an uncertainty model that neglects the uncertainty in either the
projection parameters or the model geometry.

4 Conclusions
This paper analyses the effect of different uncertainty sources in object localiza-
tion. Of the considered uncertainty sources - namely image features, camera
projection parameters and object geometry - only the first one was considered
in previous approaches to uncertainty propagation. Simulation results had shown
how the position estimate benefits from taking all the three above uncertainty
sources into account. Experimental results have demonstrated the application of
the methodology to the localization of real objects.
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