
Surface re
ectance recovery under pointlight illuminationRobert B. Fisher Aristides P. GionisMachine Vision Unit, Department of Arti�cial IntelligenceUniversity of EdinburghEmail: frbf,aristideg@aifh.ed.ac.ukAbstractIn this paper, a novel algorithm for colour recovery is presented. Itassumes that the 3-D geometry of the scene is known. The spectralpower distribution of a point illumination source, and the responsefunction of the sensor are calibrated jointly. This algorithm has beenused for the colour recovery part of an integrated system, developedin our laboratory, for environmental modelling. The geometry of thescene is recovered using a laser stripe range-�nder and this informationis exploited by the colour recovery algorithm. A point light source,attached to the whole system, has been used for the illumination of thescene, in order to con�ne undesirable side-e�ects of the ambient light.The joint spectral power distribution of this point light source and theresponse function of the camera are obtained with o�-line calibration.1 IntroductionThe objective of this paper is to present a new algorithm for obtaining surface col-our information in a controled enviroment. The geometry of the surfaces depictedin the input intensity images is assumed to be known and the scene is illuminatedby a point light source whose spectral power distribution has been jointly calib-rated with the response function of the camera. The motivation for this work is theability of humans to perceive the colour of a surface as an invariant characteristicof the surface. This ability is known as \colour constancy".What is invariant for each surface, and depends only on its micro-structure,is the re
ectance of the surface (or colour descriptors), which is the percentage ofthe incident light that be re
ected from the surface as a function of wavelength.Therefore, the colour spectrum measured by a visual system (human eye or cam-era) is the product of its re
ectance spectrum by the spectrum of the incidentlight.The �rst attempt at explaining the human colour constancy mechanism wasmade by [8] and [11], who found that the vision system does not achieve perfectcolour constancy but it emphasize the changes in colour under illuminant andre
ectance changes. However, this mechanism is not yet well explained, but thereis evidence that several simultaneous mechanisms contribute to it [1]. More recentcomputational approaches, having as input the RGB responses of a colour camera,
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attempt to separate the re
ectance spectrum of a surface from the illuminationspectrum. However, without restrictions and limitations on the type of illuminanceand the surfaces that will be encountered, colour constancy is not, in general,possible [15]. The di�erent algorithms that have been developed usually imposesome of these restrictions and/or require additional information to eliminate them.Colour descriptors are powerful invariants that could be used for many applic-ations: an autonomous lawn-mower that continues its work as clouds appear, anindustrial system for object classi�cation based on their colour, a colour-indexingmatching system [16], or even a virtual reality system that renders an indoor en-vironment with di�erent illumination from the one that was present at the sceneacquisition time [5].The main points of the classical approach to the estimation of the surfacere
ectance (suggested by [15]) are that 1) the ambient light is used as illuminationsource and 2) a �nite-dimensional linear model is used to represent both surfacere
ectance and illumination source. The approach presented in this paper has themain di�erences that 1) a point light source is used for the illumination of thescene instead of ambient light and 2) the combined illuminant and sensor systemis calibrated on a pixel by pixel basis. This has been chosen in order to makeneglectable side e�ects of the ambient light, such as shadows, mutual re
ections,illuminant variations, and sensor sensitivity variations2 Previous work on colour constancyOne of the �rst computational theories for colour constancy was the retinex theory[13], the main assumption of which is that it applies to the planar Mondrian world.The Mondrian world consists of patches of di�erently coloured paper pasted ona planar background. The illumination across the Mondrian world is constrainedto vary smoothly. The main idea for the separation of the surface re
ectancefrom the illumination is that sharp changes in intensity of the images correspondto edges between the patches, i.e. surface re
ectance changes, while smootherchanges of the colour signal correspond to illumination changes. By ignoring thesmall intensity changes of the image, and accepting only the large ones, the surfacere
ectance can be reconstructed.More recent approaches to the problem make use of a �nite-dimensional linearmodel ([15], [2], [14], [7], [9], [6]), in which the surface re
ectance and the illu-mination are expressed as a weighted sum of a �xed set of basis functions. If wedenote the surface spectral re
ectance at the point x with R(�), we can express itas R(�) = nXj=1 �jRj(�)where the Rj(�) basis re
ectances must be considered �xed and known, the weights�j are unknown, and the number of them, n, is referred to as the number of degreesof freedom in the model. Common values for the parameters of the model are n = 3(corresponding to red, green, and blue response channels), and � = 400; : : :770nm,(corresponding to the visible spectrum). In a similar way, the ambient light I(�)
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can be expressed by a linear model asI(�) = mXi=1 �iIi(�)with �xed, known basis lights Ii(�), and weights �i.The set of the basis functions for the re
ectance and the illumination shouldbe carefully chosen so as many materials and di�erent illumination conditions canbe expressed by them. Studies were conducted by Cohen [3] for the re
ectancefunction and by Judd et al. [12] for the illumination function, and the resultingbasis functions account for 99% of the overall variance.Many algorithms have been developed for the estimation of the re
ectanceweights �j , and illumination weights �i. Maloney and Wandell [14] showed howto estimate them and recover surface re
ectance under a number of di�erent con-ditions: 1) the illumination must be constant over a segment of the image, 2)su�cient colour information is available over the image, and 3) the number ofsensor channels n should be greater than m (the number of basis functions in theillumination model). This last limitation is important because it implies that wehave to use either n = 4 response channels for obtaining colour information inthe image (while humans appear to need only m = 2 spectral sources), or m = 2basis functions for the scene re
ectance (which are too few to represent the usuallyricher ambient light).Ho et al. [9] showed how one can avoid this \fourth" response channel by tak-ing additional information by a �ner sampling of the colour signal spectrum. Adi�erent method followed by Funt et al. [6] uses the mutual re
ection of surfacesnear the concave boundaries between these surfaces, as well as measurements frompoints that are not a�ected by mutual re
ection in order to get the extra inform-ation needed for reconstructing the surface re
ectance function.One of the common assumptions of the methods mentioned above is that theincident illumination remains constant across the scene. Recently, Finlayson etal. [4] showed how to achieve colour constancy using two RGB measurements ofthe same surface under two spectrally distinct incident illuminations.A di�erent approach was followed by Hurlbert [10], who demonstrated how tosynthesize the operator that transforms the re
ectance to the image irradiance byassociative learning from a set of examples. The algorithm has good performancein the restricted Mondrian world for which it was designed.3 Description of the problem and itsassumptionsAs we said before, the algorithm presented in this paper has been used as there
ectance recovery subsystem of a hand-held environment modelling system [5].The main purposes of this system is the 3-D geometry and re
ectance recoveryof the objects in the scene. The system consists of a camera, a laser striper, anda magnetic position sensor (Flock of Birds) that one can move rigidly on an ar-bitrary trajectory over the scene. As far as the re
ectance recovery is concerned,
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Figure 1: The point ~x(i; j) with surface re
ectance R�;~x, and surface orientation~n~x(i; j) is projected to the pixel (i; j) of a pinhole camera at ~c. The scene isilluminated by a point light source at ~l whose power distribution depends on thedirection ~b.the arbitrary motion of the hand-held unit over the scene under the ambient il-lumination introduce many side-e�ects like shadows and mutual re
ections. Inorder to eliminate these side-e�ects, a point light source has been attached on thehand-held unit and dominates the illumination conditions.The main drawback using point light source is that the incident illuminationpower per area unit varies over the scene. More speci�cally:� The incident illumination power per area unit at each scene point is propor-tional to the square of the distance between the surface point and the lightsource. Fortunately, the geometry of the scene is known and the distancebetween the points of the scene and the light source can be easily recovered.� The incident illumination power per area unit at each surface point dependson the orientation of the surface at this point.� The illumination power of the point light source is not uniformly distributedover the space. It would be uniform if an ideal point light was used, insteadof a commercial halogen light bulb. To solve this problem, we illuminate awhite planar surface and we build a map of the illumination power of thepoint light source as a function of space direction. Strictly speaking, this mapcontains information of the spatial distribution power of the light source, asit has been �ltered by the camera's response function.As we do not want the camera to dynamically adjust its response function, theautomatic gain control (AGC) is disabled.All 3-D vectors and points are de�ned in terms of a global coordinate system.Let us consider an intensity image; each pixel (i; j) of the image corresponds toa point of the real world ~x(i; j), with normal ~n~x(i; j) (see Figure 1). The linebetween the optical centre of the camera ~c, and the pixel (i; j) de�nes the viewingdirection ~v(i; j) towards this point. The vector from the point light source ~l to thepoint ~x(i; j) de�nes the light direction ~b, and the light intensity at this direction ~b
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at unit distance is d�(~b). The measured image intensity at each pixel is m�(i; j),and the sensor's response function is s�(i; j). Finally, the incident illumination atthis point is I�;~x, and the surface re
ectance R�;~x. The surface is assumed to beLambertian.Two assumptions concerning the camera gain mechanism are made: First, weassume that the camera gain is described by a gamma function law g(x) = x
 , andsecond that the response function of the camera is uniform across all the pixels,i.e. s�(i; j) = s�, although this is generally not true.4 Underlying theoryThe incident irradiance on a surface point ~x(i; j) is :I�;~x = d�(~b) 1k~x(i; j)�~lk2 j~n~x(i; j) �~bjwhile, from the assumption that our world consists of Lambertian surfaces we havethat the irradiance at the surface is (see Section 1):E�;~x = R�;~xI�;~xand the measured colour is:m�(i; j) = s�(i; j)g(R�;~xI�;~x)Using the gamma function law for the gain function of the camera, and solvingthe above equations for R�;~x, we get:R�;~x = (m�(i; j)) 1
(s�(i; j)) 1
 d�(~b) k~x(i; j)�~lk2j~n~x(i; j) �~bjand using the assumption that the response of the camera is uniform, we �nallyhave: R�;~x = (m�(i; j)) 1
(s�) 1
 d�(~b) k~x(i; j)�~lk2j~n~x(i; j) �~bj (1)Equation (1) shows how we can estimate the surface re
ectance as a functionof the measured colour responses m�(i; j), the scene geometry (~x(i; j), ~n~x(i; j)),the geometry of the hand-held arrangement (~c, ~l), the direction and the spectralpower distribution of the point light source (~b, d�(~b)), and the characteristics ofthe camera (~v(i; j), 
, s�).5 Surface re
ectance recoveryIn this section, we discuss the estimation of all the parameters contained in theright-hand side of the Equation (1).The 3-D coordinates of the scene points ~x(i; j), and the orientation vectors~n~x(i; j) of the surfaces at these points are estimated by the laser stripe triangula-tion range-�nder, that is part of the hand-held scanner.
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The vectors ~v(i; j) are estimated using a simple technique for camera calib-ration: Two calibration planes with many marked features of known coordinatesin the world coordinate system are used. For each of these planes, a sample ofpixels that correspond to known 3-D coordinates can be found (i.e. the ones thatcorrespond to the marked features). The data sample of each plane is �tted toall pixels using a fourth degree polynomial approximation. Using two calibrationplanes, we obtain two points on the optical ray of each pixel, and therefore thevector ~v(i; j) itself.We compute the optical centre ~c of the camera as the intersection point of thevectors ~v(i; j) (in a least squares sense). The position of the point light source ~l isphysically measured.The gamma factor 
 of the gain function of the sensor is estimated usingimages of a white plane at di�erent known distances of the camera. Measuring theaverage intensity drop-o� over the distance we can solve for �nding the 
 factorthat minimises the error between the actual and the estimated intensity values.The light direction ~b can be easily estimated from:~b = ~x(i; j)�~lk~x(i; j)�~lkThe spectral power distribution d�(~b) of the point light source as a function ofthe light direction ~b is estimated as it is �ltered by the camera's response function,i.e. the compound term (s�) 1
 d�(~b) is computed as it appears in the Equation (1).This is done with o�-line calibration: an image of a white Lambertian plane atknown distance and orientation to the sensor is taken. If we denote by M�(i; j)the measured colour signal of the camera to this white plane, we know that, byde�nition, R�;~x = 1, and therefore:1 = (M�(i; j)) 1
(s�) 1
 d�(~b) � k~x(i; j)�~lk2j~n~x(i; j) �~bjSolving, we obtain: (s�) 1
 d�(~b) = (M�(i; j)) 1
 k~x(i; j)�~lk2j~n~x(i; j) �~bjThe direction vector ~b is expressed in terms of its spherical coordinates (�; �)(j~bj = 1), and a map is built that approximates in a locally linear way the function(s�) 1
 d�(~b) upon the (�; �) indices.Setting the camera's measured colour signal received from a Lambertian whiteplane equal to 1 implies that we choose the surface re
ectance of this plane torepresent the re
ectance of what we interpret as white. However, this is not anactual problem, since in any case the absolute brightness of the scene's surfacescannot be recovered: colour constancy is always recovered up to a scale factor.
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ectance of imagesof a specular image at di�erent of a specular image at di�erentdistances distancesFigure 2: Figure (a) shows the RGB intensity of a white surface as measured atthe raw images over images at di�erent distances. Figure (b) shows the estimatedre
ectance of the same images. The same experiment is presented for images atdi�erent orientations in �gures (c) and (d), and for a specular surface in Figures (e)and (f). The range of distances is limited between 12 and 20 cm because outsidethis range of distances the pixel values of the intensity images are near 0 or near255 and they can not be used reliable.



British Machine Vision Conference

(a) (b)

(c) (d)
0

50

100

150

200

250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

50

100

150

200

250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(e) (f) (g) (h)Figure 3: Images (a) and (c) shows the raw images of the same coloured surface attwo di�erent positions. Images (b) and (d) show the recovered re
ectance of thesurface in each case. The quality of the estimated re
ectance is counted in termsof the invariance of the RGB values of the images (b) and (d). Figures (e)-(h)correspond to images (a)-(d) respectively, and show the measured intensity andthe estimated re
ectance across a vertical line cutting the same coloured stripes ofthe tested board. These values correspond only to the red channel of the camera,but similar results appear for the other two channels.
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6 Experimental resultsIn order to test the validity of the algorithm independent of the quality of thescene geometry obtained by the range-�nder, we estimate the surface re
ectance ofplanar surfaces for which we can �nd analytically the position and the orientationof their points. Dealing only with planar surfaces does not a�ect the quality ofthe reported results, since all the calculations are local.A number of images of some planar surfaces is taken at di�erent distances andorientations. Changes of the illumination falling on the images caused di�erencesin the measured intensity of regions that correspond to the same surface. Sincewe did not have any way to precisely measure the real re
ectance of the testedsurfaces, the quality of the results is judged by comparing the surface re
ectancevalues estimated from each image. In the ideal case they should be the same,expressing the invariant characteristic of the surface re
ectance.Figure 2(a) shows the RGB signal intensity as measured in the raw images of aplanar white surface at di�erent distances and the same orientation. The range ofdistances is 12-20cm. Outside this distance range the images became too bright ortoo dark and the re
ectance recovery algorithm is not e�ective. In this �gure, wecan see that the measured RGB signal intensity drops as the distance increases.The RGB re
ectance estimated by the algorithm is shown in Figure 2(b).The same experiment is repeated for images the surface at di�erent orienta-tions and the same distance. The results are shown in Figures 2(c) and 2(d). Thistime, the recovery is not quite as successful and this is probably happens becauseof the imperfect Lambertian nature of the used surface. Other materials of dif-ferent surface type and colour were tested and similar results were found, withpoorer results correspond to the less Lambertian nature of surfaces. An exampleis presented in the Figures 2(e) and 2(f), where the re
ectance of a quite specularsurface is recovered in an obviously unreasonable way.Finally, Figure 3 gives a visual percept of the algorithm in action. Images (a)and (c) show two di�erent images of a surface consisting of many colour patches.Images (b) and (d) present the estimated re
ectance of the surface in each case.The invariance of the re
ectance for each colour patch is apparent, even given thegray-level print out of the images.7 Discussion conclusionWe have presented a new approach to estimate the re
ectance of Lambertiansurfaces. A light has been used for the illumination of the scene and the theoreticalanalysis shows how the re
ectance of the objects in the scene can be recovered asa function of the 3-D scene geometry, the direction and the power of the incidentlight to the objects, and the gain mechanism of the camera. It turns out that goodresults can be obtained with careful calibration of the hand-held unit geometry andthe spectral power distribution of the point light source. The estimated re
ectanceis quite sensitive to the 
 factor of the gain function of the camera, and betterestimation of the 
 value can further improve the results.
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