BARGAL, ZUNINO, PETSIUK, ZHANG, SAENKO, MURINO, SCLAROFF: GUIDED ZOOM

Guided Zoom: Questioning Network
Evidence for Fine-Grained Classification

Sarah Adel Bargal*'
sbargal@bu.edu

Andrea Zunino*2
andrea.zunino@iit.it
Vitali Petsiuk’
vpetsiuk@bu.edu
Jianming Zhang?®
jlanmzha@adobe.com
Kate Saenko’
saenko@bu.edu
Vittorio Murino?-*
vittorio.murino@iit.it

Stan Sclaroff!
sclaroff@bu.edu

" Department of Computer Science
Boston University

2 Pattern Analysis & Computer Vision
Istituto Italiano di Tecnologia

3 Adobe Research

4 Department of Computer Science
University of Verona

Abstract

We propose Guided Zoom, an approach that utilizes spatial grounding of a model’s
decision to make more informed predictions. It does so by making sure the model has
“the right reasons” for a prediction, defined as reasons that are coherent with those used to
make similar correct decisions at training time. The reason/evidence upon which a deep
convolutional neural network makes a prediction is defined to be the spatial grounding, in
the pixel space, for a specific class conditional probability in the model output. Guided
Zoom examines how reasonable such evidence is for each of the top-k predicted classes,
rather than solely trusting the top-1 prediction. We show that Guided Zoom improves
the classification accuracy of a deep convolutional neural network model and obtains
state-of-the-art results on three fine-grained classification benchmark datasets.

1 Introduction

For state-of-the-art deep single-label classification models, the correct class is often in the
top-k predictions, leading to a top-k (k =2,3,4,...) accuracy that is significantly higher
than the top-1 accuracy. This accuracy gap is more pronounced in fine-grained classification
tasks, where the differences between classes are quite subtle [11, 12, 17, 28]. For example,
the Stanford Dogs fine-grained dataset on which we report results has a top-1 accuracy of
86.9% and a top-5 accuracy of 98.9%. Exploiting the information provided in the top-k

predicted classes can boost the final prediction of a model.
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Figure 1: Pipeline of Guided Zoom. A conventional CNN outputs class conditional prob-
abilities for an input image. Salient patches could reveal that evidence is weak. We refine
the class prediction of the conventional CNN by introducing two modules: 1) Evidence CNN
determines the consistency between the evidence of a test image prediction and that of cor-
rectly classified training examples of the same class. 2) Decision Refinement uses the output
of Evidence CNN to refine the prediction of the conventional CNN.

In this work, we do not completely trust a Convolutional Neural Network (CNN) model’s
top-1 prediction as it does not solely depend on the visual evidence in the input image,
but can depend on other artifacts such as dataset bias or unbalanced training data. Instead,
we target answering the following question: is the evidence upon which the prediction is
made reasonable? Evidence is defined to be the grounding, in pixel space, for a specific
class conditional probability in the model output. We propose Guided Zoom, which uses
evidence grounding as the signal to localize discriminative image regions and to assesses
how much one can trust a CNN prediction over another.

Since fine-grained classification requires focusing on details, the localization of discrim-
inative object parts is crucial. Supervised approaches utilize part bounding box annotations
[9, 30, 32] or have humans in the loop to help reveal discriminative parts [5]. Our ap-
proach does not require part annotations, thus it is more scalable compared to supervised
approaches. Weakly supervised attention based methods require training CNNs with atten-
tion module(s) [7, 18, 24, 36], while our approach is a generic framework able to improve
the performance of any CNN model, even if it was not trained using an attention module.

Guided Zoom zooms into the evidence used to make a preliminary decision at test
time and compares it with a reference pool of (evidence, prediction) pairs. The pool is con-
structed by accumulating (evidence, prediction) pairs for correctly classified training exam-
ples, providing additional free supervision from training data. As demonstrated in Fig. 1, our
approach examines whether or not the evidence used to make the prediction is coherent with
training evidence of correctly classified images. This is performed by the Evidence CNN
module, which aids the Decision Refinement module to come up with a refined prediction.
The main goal of Guided Zoom is ensuring that evidence of the refined class prediction is
more coherent with the training evidence of that class, compared to evidence of any of the
other candidate top classes (see Fig. 2). By examining network evidence, we demonstrate
improved accuracy and achieve state-of-the-art results on three fine-grained classification
benchmark datasets.
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Figure 2: A conventional CNN is used to obtain salient image regions that highlight the
evidence for predictions, together with the predicted class conditional probabilities. In our
model, fine-grained classification decisions are improved by comparing consistency of the
evidence for the incoming test image with the evidence seen for correct classifications in
training. In this demonstration, although the conventional CNN predicts with highest proba-
bility the class YellowThroatedVireo, Evidence CNN is able to provide guidance for predict-
ing the ground-truth class YellowBreastedChat (highlighted in blue) due to visual similarity
of the evidence of this class with that of the generated evidence pool.

2 Related Work

Evidence Grounding. The evidence behind a deep model’s prediction for visual data
results in highlighting the importance of image regions in making a prediction. Fong et al.
[6] exhaustively perturb image regions to find the most discriminative evidence. Petsiuk et
al. [19] probe black-box CNN models with randomly masked instances of an image to find
class-specific evidence. While such methods are bottom-up approaches, others are top-down
and start from a high-level feature representation and then propagate down to the image level
[21,22, 23,29, 31, 37]. For example, Selvaraju et al. [21] exploit a weighted sum of the last
convolutional feature maps to obtain the class activation maps. Zhang et al. [31] use network
weights and activations to obtain class activation maps, then highlight image cues unique to
a specific class by eliminating evidence that also contributes to other classes.

The result of evidence grounding is often referred to as saliency. Saliency is being widely
used for many computer vision tasks including spatial semantic segmentation [15, 27, 38],
spatial object localization [31, 33], and temporal action localization [1]. Saliency has been
less exploited for improving model classification. Cao et al. [3] use weakly supervised
saliency to feed highly salient regions into the same model that generated them to get more
prediction probabilities for the same image and improve classification accuracy at test time.
In contrast, we use weakly supervised saliency to examine whether the obtained evidence is
coherent with the evidence used at training time for correctly classified examples. Zunino et
al. [39] use spatial grounding at training time to improve model classification by dropping
neurons corresponding to high-saliency patterns for regularization. In contrast, we propose
an approach to improve model classification at test time.

Fine-grained classification. The key module in fine-grained classification is finding
discriminative parts. Some approaches use supervision to find such discriminative features,
i.e. use annotations for whole objects and/or for semantic parts. Zhang et al. [32] train part
models such that the head/body can be compared; however, this requires a lot of annotation
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of parts. Krause et al. [13] use whole object annotations and no part annotations. Branson et
al. [2] normalize the pose of object parts before computing a deep representation for them.
Zhang et al. [30] introduce part-abstraction layers in the deep classification model, enabling
weight sharing between the two tasks. Huang et al. [9] introduce a part-stacked CNN which
encodes part and whole object cues in parallel based on supervised part localization. Wang
et al. [26] retrieve neighboring images from the dataset, those having similar object pose,
and automatically mine discriminative triplets of patches with geometric constraints as the
image representation. Deng et al. [5] include humans in the loop to help select discriminative
features. Subsequent work of Krause et al. [14] does not use whole or part annotations, but
augments fine-grained datasets by collecting web images and experimenting with filtered
and unfiltered versions of them. Wang et al. [25] use an ontology tree to obtain hierarchical
multi-granularity labels. In contrast to such approaches, we do not require any object or part
annotations at train or test time and do not use additional data or hierarchical labels.

Other approaches are weakly supervised. Such approaches only require an image label,
and our approach lies in this category. Lin et al. [16] demonstrate the applicability of a
bilinear CNN model in the fine-grained classification task. Recasens et al. [20] propose a
distortion layer based on saliency to improve the input image sampling that demonstrates
improvement for the fine-grained classification task. Sun ef al. [24] implement an atten-
tion module that learns to localize different parts and a correlation module that enforces
coherency in the correlations among different parts in training. Fu et al. [7] learn where to
focus by recurrently zooming into one location from coarse to fine using a recurrent attention
CNN. In contrast, we are able to zoom into multiple image locations. Zhang et al. [34] use
convolutional filters as part detectors since the responses of distinctive filters usually focus
on consistent parts. Zhao et al. [35] use a recurrent soft attention mechanism that focuses on
different parts of the image at every time step. This work enforces a constraint to minimize
the overlap of attention maps used in adjacent time steps to increase the diversity of part
selection. Zheng et al. [36] implement a multiple attention convolutional neural network
with a fully-connected layer, combining the softmax for each part with one classification
loss function. Cui et al. [4] introduce a kernel pooling scheme and also demonstrate benefit
to the fine-grained classification task. Jaderberg et al. [10] introduce spatial transformers for
convolutional neural networks that learn invariance to translation, scale, rotation and more
generic warping, showing improvement for the task of fine-grained classification.

In contrast, our approach assesses whether the network evidence used to make a pre-
diction is reasonable, i.e. if it is coherent with the evidence of correctly classified training
examples of the same class. We use multiple salient regions, thus eliminating error propaga-
tion from incorrect initial saliency localization, and implicitly enforce part-label correlations
enabling the model to make more informed predictions at test time.

3 Guided Zoom

Guided Zoom uses the evidence of a prediction to improve classification performance
by comparing the coherence of such evidence with a pool of “reasonable” class-specific
evidence. We now describe how Guided Zoom utilizes multiple discriminative evidence,
does not require part annotations, and implicitly enforces part correlations. This is done
through the main modules depicted in Fig. 1: Evidence CNN and Decision Refinement.
Evidence CNN. Conventional CNNs trained for image classification output class condi-
tional probabilities upon which predictions are made. The class conditional probabilities are
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the result of some corresponding evidence in the input image. From correctly classified train-
ing examples, we generate a reference pool P of (evidence, prediction) pairs over which the
Evidence CNN will be trained for the same classification task. We recover/ground such evi-
dence using a top-down spatial grounding technique: contrastive Excitation Backprop (cEB)
[31]. Starting with a prior probability distribution, cEB passes top-down signals through ex-
citatory connections (having non-negative weights) of a CNN. Recursively propagating the
top-down signal layer by layer, cEB computes class-specific discriminative saliency maps
from any intermediate layer in a partial single backward pass. This is done by setting the
prior distribution in correspondence with the correct class to produce a cEB saliency map
for it as described in the experiments section. We extract one 150x150 pixel patch from the
original image around the resulting peak saliency. This patch highlights the most discrimi-
native evidence. However, the next most discriminative patches may also be good additional
evidence for differentiating fine-grained categories.

Grounding techniques only highlight part(s) of an object. However, a more inclusive seg-
mentation map can be extracted from the already trained model at test time using adversarial
erasing. Inspired by the adversarial erasing work of Wei et al. [27] in the domain of object
segmentation, we extend its application to the domain of image classification by providing
a data augmentation technique for network evidence. We augment our reference pool with
patches resulting from performing an iterative adversarial erasing of the most discriminative
evidence from the image. We notice that adversarial erasing results in implicit part localiza-
tion from the most to least discriminative parts. Fig. 3 (right) shows the patches extracted
from two iterations of adversarial saliency erasing for sample images belonging to the class
Chihuahua from the Stanford Dogs Dataset. All patches (parts) extracted from this process
inherit the ground-truth label of the original image. By labeling different parts with the same
image ground-truth label, we are implicitly forcing part-label correlations in Evidence CNN.

Including such additional evidence in our reference pool gives a richer description of the
examined classes compared to models that recursively zoom into one location while ignoring
other discriminative cues [7]. We note that we add an evidence patch to the reference pool
only if the removal of the previous salient patch does not affect the correct classification of
the sample image. Erasing is performed by adding a black-filled 85x85 pixel square on the
previous most salient evidence to encourage a highlight of the next salient evidence. This
process is depicted in Fig. 3 (left) for a sample bird species, dog species, and aircraft model.

Assuming n training samples, for each sample s’ where i € 1,...,n we have [+ 1 evidence
patches in the reference pool ef), . ,ef. Patch ef) is the most discriminative initial evidence,
and €}, ... ,e; is the set of the / next discriminative evidence patches where / < L and L is the
number of adversarial erasing iterations performed (L = 2 is used in our experiments). For
example, €} is the third most-discriminative evidence, after the erasing of ¢}, and ¢/ from the
original image. We then train a CNN model, the Evidence CNN, on the classification of the
generated evidence pool P.

Decision Refinement. At test time, we analyze whether the evidence upon which a pre-
diction is made is reasonable. We do so by examining the consistency of a test (evidence,
prediction) with our reference pool that is used to train Evidence CNN. We exploit the visual
evidence used for each of the top-k predictions for prediction refinement. The refined pre-
diction will be inclined toward each of the top-k classes by an amount proportional to how
coherent its evidence is with the reference pool. For example, if the (evidence, prediction)
of the second-top predicted class is more coherent with the reference pool of this class, then
the refined prediction will be more inclined toward the second-top class.

Assuming test image s/, where j € 1,...,m and m is the number of testing examples,
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original [ =0

Figure 3: Adversarial Erasing. Left: Sample image from each dataset to demonstrate
the extraction of patches during two rounds of adversarial erasing: finding the first (I =
0), second (I = 1), and third (I = 2) most-salient evidence. For example, the most salient
evidence for the bird image is the head, followed by the tail, followed by the right wing.
Right: Implicit part detection obtained as a result of two iterations of adversarial erasing for
three images from the dog class Chihuahua. Assigning the same class label to the different
parts of a single dog image enforces implicit part-label correlation.

s/ is passed through the conventional CNN resulting in v/, a vector of class conditional
probabilities having some top-k classes cy,...,c; to be considered for the prediction refine-
ment. We obtain the evidence for each of the top-k predicted classes eO’C‘ yeon ,e{)’c", and
pass each one through the Evidence CNN to get the output class conditional probability vec-

tors v{)’cl yeen ,v{)’ck. We then perform adversarial erasing to get the next most salient evidence

e/“!,...,e/* and their corresponding class conditional probability vectors vi*! ... v/, for
le€1,...,L. Finally, we compute a weighted combination of all class conditional probabil-
ity vectors proportional to their saliency (a lower / has more discriminative evidence and is
therefore assigned a higher weight w;). The estimated, refined class cﬁe is determined as the
class having the maximum aggregate prediction in the weighted combination. Algorithm 1

presents the steps used for decision refinement.

4 Experiments

In this section, we first present the fine-grained benchmark datasets we use to evaluate
Guided Zoom. We then present the architecture and setup of our experiments, followed
by a discussion of our experimental results. We note that although the datasets provide part
annotations, we only use image-level class labels.

Datasets. We report experimental results on three fine-grained classification benchmark
datasets following [4, 7, 24, 35, 36].

e CaltechUCSD (CUB-200-2011) Birds Dataset [28] is a fine-grained dataset of 200
bird species consisting of ~12K annotated images, split into ~6K training images and
~6K testing images.


Citation
Citation
{Cui, Zhou, Wang, Liu, Lin, and Belongie} 2017

Citation
Citation
{Fu, Zheng, and Mei} 2017

Citation
Citation
{Sun, Yuan, Zhou, and Ding} 2018

Citation
Citation
{Zhao, Wu, Feng, Peng, and Yan} 2017

Citation
Citation
{Zheng, Fu, Mei, and Luo} 2017

Citation
Citation
{Welinder, Branson, Mita, Wah, Schroff, Belongie, and Perona} 2010


BARGAL, ZUNINO, PETSIUK, ZHANG, SAENKO, MURINO, SCLAROFF: GUIDED ZOOM 7

Algorithm 1: Decision Refinement

Input: s/, j € 1,...,m testing images, pre-trained conventional CNN, pre-trained
Evidence CNN, Grounding Method (GM), weights w,wy,...,wr,

Output: Refined class for s/: ¢/, ;
Procedure:
1 For every test example s/, j € 1,....m
2 v/0:= conventional CNN(s/)

3 tot):i=wx/0

4 Forteccy,...,cy, the top-k classes of v/0
5 eé"t:= GM(s/) w.r.t. class ¢
Jit. ; Jit
6 vy := Evidence CNN(ey")
7 tot/[t] == tot 1] + wo + v} [t]
8 Forlel,...,L
9 Adversarially erase e{’_tl from s/
10 e{"t:: GM(s/) w.rt. class t
1 V'li .= Evidence CNN (e'l-’t)
12 tot/[t] := tot [t] + wy +v]"[r]

Jo_ j
3 ¢, = argmax(tot))
C1:Ck

o Stanford Dogs Dataset [11] is a fine-grained dataset of 120 dog species. This dataset
includes ~20K annotated images split into ~12K and ~8.5K images for training and
testing respectively.

e FGVC-Aircraft [17] is a fine-grained dataset of 100 different aircraft variants consist-
ing of 10K annotated images, split into ~7K training images and ~3K testing images.

Architecture and Setup. To validate the benefit of Guided Zoom, we first purposely
use a simple CNN baseline with a vanilla training scheme. We use a ResNet-101 [8] network
as the conventional CNN and baseline, extending the input size from the default 224x224
pixel to 448x448 pixel following [7, 14, 24]. The 448x448 pixel input image is a random
crop from a 475x475 pixel input image at training time, and a center crop from a 475x475
pixel input image at test time. The reference pool is generated by extracting evidence patches
from training images using a cEB saliency map computed at the res4a. We also then use the
more complex MA-CNN architecture [36] to demonstrate the generic nature of Guided
Zoom. This follows the same input image sizes used for ResNet-101, and compute cEB
saliency maps at the conv3_1 layer.

For the Evidence CNN, we use a ResNet-101 architecture, but use the standard 224x224
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Part / Whole  Multiple Top-1
Method Annotation  Attention Accuracy (%)
DVAN [35] X v 79.0
PA-CNN [13] v v 82.8
MG-CNN [25] v v 83.0
B-CNN [16] X X 84.1
RA-CNN [7] X X 85.3
PN-CNN [2] v v 85.4
OSME + MAMC [24] X v 86.5
MA-CNN [36] X v 86.5
ResNet-101 X X 82.3
. Guided Zoom (ResNet-101, k=3) X v 85.0
5 Guided Zoom (ResNet-101, k=5) X v 85.4
©  Guided Zoom (MA-CNN, k=3) X v 87.6
Guided Zoom (MA-CNN, k=5) X v 87.7

Table 1: CUB-200-2011 Birds Dataset. We compare our classification accuracy with state-
of-the-art weakly-supervised methods (do not use any sort of annotation apart from the image
label) and some representative methods that use additional supervision such as part annota-
tions for fine-grained classification of this dataset. We indicate which methods use multiple
parts, and which focus on a single part using the multiple attention flag. Using part anno-
tations implicitly entails multiple attention. We present results for our approach for k=3,5
using the top 3 (or 5) candidate classes to refine the final prediction.

pixel input size to keep the patches close to their original image resolution. This is a random
crop from a 256x256 pixel input image at training time, and a center crop from a 256x256
pixel input image at test time. For both the conventional and Evidence CNNs, and for all the
three datasets, we use stochastic gradient descent, a batch size of 64, a starting learning rate
of 0.001, multiplied by 0.1 every 10K iterations for 30K iterations, and momentum of 0.9.

We demonstrate the benefit of using evidence information from the top-3 and top-5 pre-
dicted classes, so we set k = 3,5 in our experiments. We perform two rounds of adversarial
erasing in testing; we set L =2, and w = 0.4,wg = 0.3,w; = 0.2, and w, = 0.1 giving lower
weights to less discriminative evidence.

Results. In this section, we demonstrate how training our Evidence CNN module benefits
from implicit part detection, a direct consequence of adversarial erasing that extracts the next
most-salient evidence. Our framework targets providing complementary zooming on salient
parts and use them for decision refinement.

Table | presents the results for the CUB-200-2011 Birds dataset. Utilizing the top-3
class predictions together with their associated evidence, Guided Zoom boosts the top-
1 accuracy from 82.3% to 85.0%. Utilizing the top-5 class predictions together with their
associated evidence, Guided Zoom boosts the top-1 accuracy from 82.3% to 85.4%. Being
a generic framework, we implement Guided Zoom to the image stream of the multi-zoom
approach MA-CNN, obtaining state-of-the-art results on the CUB-200-2011 dataset.

Table 2 presents the results for the Stanford Dogs dataset. Utilizing the top-3 class pre-
dictions together with their associated evidence, Guided Zoom boosts the top-1 accuracy
from 86.9% to 88.4%. Utilizing the top-5 class predictions together with their associated
evidence, Guided Zoom boosts the top-1 accuracy from 86.9% to 88.5%. We achieve
state-of-the-art results on the Stanford Dogs dataset.
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Part/ Whole  Multiple Top-1

Method Annotation  Attention Accuracy (%)
DVAN [35] X v 81.5
OSME + MAMC [24] X v 85.2
RA-CNN [7] X X 87.3
., ResNet-101 X X 86.9
S Guided Zoom (ResNet-101, k=3) X v 88.4
S Guided zoom (ResNet-101, k=5) X v 88.5

Table 2: Stanford Dogs Dataset. We compare our classification accuracy with state-of-
the-art weakly-supervised methods (do not use any sort of annotation apart from the image
label). We indicate which methods use multiple parts, and which focus on a single part using
the multiple attention flag. Using part annotations implicitly entails multiple attention. We
present results for our approach for k=3,5 using the top 3 (or 5) candidate classes to refine
the final prediction.

Part / Whole  Multiple Top-1
Method Annotation  Attention Accuracy (%)
B-CNN [16] X X 84.1
MG-CNN [25] v v 86.6
RA-CNN [7] X X 88.2
MDTP [26] v v 88.4
MA-CNN [36] X v 89.9
ResNet-101 X X 87.5
" Guided Zoom (ResNet-101, k=3) X v 89.1
5 Guided Zzoom (ResNet-101, k=5) X v 89.1
O Guided Zoom (MA-CNN, k=3) X v 90.7
Guided Zoom (MA-CNN, k=5) X ve 90.7

Table 3: FGVC-Aircraft Dataset. We compare our classification accuracy with state-of-the-
art weakly-supervised methods (do not use any sort of annotation apart from the image label)
and some representative methods that use additional supervision such as part annotations for
fine-grained classification of this dataset. We indicate which methods use multiple parts,
and which focus on a single part using the multiple attention flag. Using part annotations
implicitly entails multiple attention. We present results for our approach for k=3,5 using the
top 3 (or 5) candidate classes to refine the final prediction.

Table 3 presents the results for the FGVC-Aircraft dataset. Utilizing the top-3 class pre-
dictions together with their associated evidence, Guided Zoom boosts the top-1 accuracy
from 87.5% to 89.1%. Utilizing the top-5 class predictions together with their associated ev-
idence, Guided Zoom boosts the top-1 accuracy from 87.5% to 89.0%. Guided Zoom
boosts the top-1 classification accuracy of MA-CNN obtaining state-of-the-art results on the
FGVC-Aircraft dataset.

Guided Zoom outperforms RA-CNN on all three datasets. From this we can conclude
that our multi-zooming is more beneficial than a single recursive zoom. In addition, we
demonstrate that Guided Zoom further improves the performance of the multi-zoom ap-
proach MA-CNN. Being a generic framework, Guided Zoom could be applied to any deep
convolutional model for decision refinement within the top-k predictions.
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Conclusion

In this work, we propose Guided Zoom, which utilizes explicit spatial grounding to refine
a model’s prediction at test time. Our refinement module selects one of the top-k model
predictions having the most reasonable (evidence, prediction) pair, where “most reasonable"
is defined as the most consistent with respect to a pre-defined pool of training (evidence,
prediction) pairs. The pool is populated by iteratively grounding and adversarially erasing
the evidence for a correct prediction made by a conventional CNN. Guided Zoom achieves
state-of-the-art results on three fine-grained classification benchmark datasets.
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