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Abstract

Image caption generation is a long standing and challenging problem at the intersec-
tion of computer vision and natural language processing. A number of recently proposed
approaches utilize a fully supervised object recognition model within the captioning ap-
proach. Such models, however, tend to generate sentences which only consist of objects
predicted by the recognition models, excluding instances of the classes without labelled
training examples. In this paper, we propose a new challenging scenario that targets the
image captioning problem in a fully zero-shot learning setting, where the goal is to be
able to generate captions of test images containing objects that are not seen during train-
ing. The proposed approach jointly uses a novel zero-shot object detection model and
a template-based sentence generator. Our experiments show promising results on the
COCO dataset.

1 Introduction
Image captioning, the problem of generating a concise textual summary of a given image, is
one of the most actively studied problems standing at the intersection of computer vision and
natural language processing. Following the success of deep learning based object detection
approaches [7, 18, 31, 34, 35, 36, 49, 50, 51, 54, 64], there have been a recent interest in
generating visually grounded image captions by constructing captioning models that oper-
ate on the outputs of supervised object detectors [5, 29, 38, 67]. However, the success of
such approaches are inherently limited by the set of classes provided in the detector training
dataset, which is typically too small to construct a visually comprehensive model. Therefore,
such models are arguably unsuitable for captioning in uncontrolled images, which are likely
to contain object classes unseen at training time.

In the context of image classification, zero-shot learning (ZSL) has emerged as a promis-
ing alternative towards overcoming the practical limits in collecting labelled image datasets
and constructing image classifiers with very large object vocabularies. ZSL approaches typ-
ically tackle the problem of transferring visual and/or semantic knowledge from the seen
classes (training classes) to unseen classes (novel classes appearing at test time) by using
a variety of techniques and information sources, such as class attributes [1, 23], class hi-
erarchies [2, 52], attribute-to-class name mappings [12], label relation graphs [14]. While
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Figure 1: Our zero-shot captioning framework, which consists of two components: (i) zero-
shot object detector, and (ii) image caption generator. For inference, input image is fed
into the object detector, which provides the candidate objects and their representations. The
candidates are then given to the sentence generation RNN to obtain a sentence template,
which consists of textual and visual words. The final sentence is obtained by setting the
visual words according to the data obtained from the zero-shot detector.

ZSL remains as an unsolved problem, significant progress have been made in recent years in
zero-shot image classification [62]. Very recently, a few methods have also been proposed
for the zero-shot object detection (ZSD) problem [6, 13, 48].

In a similar manner, zero-shot image captioning (ZSC), where the goal is to create cap-
tions of images containing objects classes unseen at the training time, have the promise of
overcoming the data collection bottleneck in image captioning. However, we observe that
there is no benchmark directly tailored to study captioning in a true zero-shot setting, and,
there is no prior work explicitly towards addressing true ZSC. While there are few very recent
works on ZSC [38, 66], all these methods study the problem purely as a language modeling
problem and presume the availability of a pre-trained fully-supervised object detector over
all object classes of interest, to the best of our knowledge.

Following these observations, we argue that the true zero-shot captioning problem, where
some of the test objects have no supervised visual or textual examples, needs to be studied
towards (i) developing semantically scalable captioning methods, and, (ii) evaluating cap-
tioning approaches in a realistic setting where not all object classes have training examples.
To tackle this problem, we propose a novel ZSC approach that consists of a novel ZSD model
and a template-based [38] caption generator defined over the ZSD outputs. Our ZSD model
uses the class-to-class similarities obtained over the distributed word representations [42]
between each target class and all training classes. In order to address the generalized zero-
shot detection (GZSD) problem, where test images contain a mixture seen and unseen class
instances, we propose a scaling scheme to make scores of seen and unseen classes more
comparable, as illustrated in Figure 1. For experimental evaluation, we use the MS-COCO
dataset [33] with train and test splits where the model is trained over a strict subset of object
classes.

To sum up, this work aims to make a number conceptual, technical and experimental
contributions in image captioning, which can be summarized as follows: (i) we define a new
paradigm for generating captions of unseen classes, (ii) we propose a novel ZSD approach
that incorporates a probability scaling scheme for the generalized zero-shot object detec-
tion (GZSD) problem, (iii) we evaluate several caption evaluation metrics and discuss their
suitability for the zero-shot image captioning scenario.
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2 Related Work

Zero-shot Learning. Early work on ZSL focused on directly using attributes for transfer-
ring semantic information from seen to unseen classes [30]. More recent work studies other
knowledge transfer mediums, such as distributed word representations and hierarchies [2],
visually consistent word representations [12], as well as better knowledge transfer methods,
such as synthesized classifiers [9], semantic autoencoders [27], hierarchy graphs [14], dif-
fusion regularization [37], attribute regression [39] and latent space encoding [69]. There
are also studies that aim to reduce the bias towards seen classes, e.g. [56]. More recently,
data-generating models have been proposed for ZSL [43, 53, 60, 70].

Object Detection. Most recent object detection methods can be categorized into the follow-
ing two groups: (i) regression based approaches, and, (ii) region proposal based approaches.
Regression based approaches work on detecting the candidate objects and their locations
directly without any intermediate step [17, 31, 36, 49, 50, 55]. Region proposal based ap-
proaches firstly generate region proposals, and then classify each region proposal into candi-
date classes with a confidence score [11, 18, 19, 34, 35, 51, 54]. Recently, zero-shot object
detection methods are also emerging [6, 13, 47, 48]. Among these, Rahman et al. [48] use
semantic clustering loss for clustering similar classes. Demirel et al. [13] propose a hybrid
method to handle visually and semantically meaningful word vectors together. Bansal et
al. [6] propose a background-aware approach to learn a generalized zero-shot object detec-
tor. Rahman et al. [47] reshape embeddings so that visual features are well-aligned with
related semantics. As an alternative to zero-shot detection, [21, 22, 49] propose to transfer
knowledge from learned image classifiers to detectors, similar to weakly supervised learn-
ing [8, 10]. However, such approaches require labeled training images for all classes of
interest, which significantly reduces their suitability to zero-shot captioning.

The approach closest to our ZSD method is the one proposed by Demirel et al. [13]. Our
approach differs by (i) leveraging class-to-class similarities measured in the word embedding
space, instead of directly using the word embeddings, (ii) learning a class score scaling factor
to improve generalized zero-shot detection performance.

Image Captioning. Most recent image captioning are approaches are based on deep neu-
ral networks [25, 26, 29, 38, 40, 63, 68]. Mainstream methods can be categorized as (i)
template-based techniques [16, 29, 38] and retrieval-based ones [20, 26, 44, 57]. Template-
based captioning approaches generate templates with empty slots, and fill those slots by
using attributes or detected objects. Kulkarni et al. [29] use conditional random fields (CRF)
to push tight connections between the image content and sentence generation process before
filling the empty slots. Farhadi et al. [16] use triplets of scene elements for filling the empty
slots in generated template. Lu et al. [38] use recurrent neural network to generate sentence
templates for slot filling. Retrieval-based image captioning methods rely on retrieving cap-
tions from the set of training examples. More specifically, a set of training images similar to
the test example are retrieved and the captioning is performed over their captions.

In this work, we aim to generate captions that can include classes that are not seen within
in the supervised training set, where retrieval-based approaches are not directly suitable. For
this reason, we adopt a template-based approach that generates sentence templates and fills
the visual word slots with the ZSD outputs.

Dense captioning [24, 28, 65] appear to be similar to the zero-shot image captioning, but
the focus is significantly different: while dense captioning aims to generate rich descriptions,
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in ZSC our goal is to achieve captioning over novel object classes. Some captioning methods
go beyond training with fully supervised captioning data and allow learning with a captioning
dataset that covers only some of the object classes plus additional supervised examples for
training object detectors and/or classifiers for all classes of interest [4, 5, 58, 61, 66]. Since
these methods presume that all necessary visual information can be obtained from some pre-
trained object recognition model, we believe they cannot be seen as true zero-shot captioning
approaches.

3 Method
In this section, we describe the proposed ZSC model, and its components. It consists of a
ZSD model that leverages the class-to-class similarities obtained over the distributed word
representations, and a template-based image captioning model that generates sentence tem-
plates using a recurrent neural network.

In the rest of this section, we explain the details of the model components and then
describe how we build the final ZSC model by using these components.

3.1 Zero-Shot Object Detection
In zero-shot object detection, the goal is to learn a detection model over the examples given
for the seen classes, denoted by Ys such that the detector can recognize and localize the
bounding boxes of the instances of all classes Y = Ys ∪Yu, where Yu represents the set of
unseen classes. For this purpose, we use the YOLO [50] architecture as our backend, and
adapt it to the ZSD problem.

In the original YOLO approach, the loss function consists of three components: (i) the
localization loss, which measures the error between ground truth locations and predicted
bounding boxes, (ii) the objectness loss, and, (iii) the recognition loss. The original recog-
nition loss `cls is the squared error of class conditional probabilities at each cell, in a grid of
size S×S (S = 13, by default):

`cls(x) =
S2

∑
i=0

1i
object ∑

c∈Ys

(t(x,c, i)− f (x,c, i))2 (1)

where the target indicator mapping t(x,c, i) is 1 if the cell i of image x contains an instance
of class c and otherwise 0. f (x,c, i) is the prediction score corresponding two the class c and
cell i. 1i

object = 1 if an object instance appears in cell i, and otherwise 0.
Following the approach in [13], we adapt the YOLO model to the ZSD problem by

re-defining the prediction function as a compatibility estimator between the cell embeddings
and class embeddings, so that novel test classes can be predicted at the test time based purely
on their class embeddings:

f (x,c, i) =
Ω(x, i)T Ψ(c)

‖Ω(x, i) ‖‖Ψ(c) ‖
(2)

Here, Ω(x, i) denotes the cell embeddding obtained for the image cell i for the input image x,
and, Ψ(c) represents the class embedding for the class c. Unlike the approach in [13], which
uses word embeddings (or attributes) of class names directly as the class embeddings, we

Citation
Citation
{Anderson, Fernando, Johnson, and Gould} 2017

Citation
Citation
{Anneprotect unhbox voidb@x penalty @M  {}Hendricks, Venugopalan, Rohrbach, Mooney, Saenko, and Darrell} 2016

Citation
Citation
{Venugopalan, Anneprotect unhbox voidb@x penalty @M  {}Hendricks, Rohrbach, Mooney, Darrell, and Saenko} 2017

Citation
Citation
{Wu, Zhu, Jiang, and Yang} 2018

Citation
Citation
{Yao, Pan, Li, and Mei} 2017

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{Demirel, Cinbis, and Ikizler-Cinbis} 2018

Citation
Citation
{Demirel, Cinbis, and Ikizler-Cinbis} 2018



DEMIREL, CINBIS, IKIZLER-CINBIS: IMAGE CAPTIONING WITH UNSEEN OBJECTS 5

use the vector of class-to-class similarities in the word embedding space to obtain the class
embeddings to obtain more compact and descriptive class embeddings. More specifically,
we define the class embedding for the class c as the vector of similarities between c and each
reference training class c̄:

ϕ(c)T
ϕ(c̄)+1 (3)

where ϕ(c) denotes the distributed word representations [42] for class c.
In this work, we need to obtain a generalized zero-shot detector, where both training and

test classes appear at the test images, as opposed to zero-shot detection as in [13]. However,
there can still be a significant bias towards the seen classes, as the unseen test classes are not
directly represented in the training set. We aim to overcome this problem by introducing a
scaling coefficient α for the unseen test classes as follows:

f (x,c, i) =

{
α f (x,c, i), if c ∈ Ȳs

f (x,c, i), otherwise
(4)

Here, Ȳs represents the selected subset of classes from the training classes Ys to simulate
the unseen class scores. In order to learn the coefficient α , we first train the ZSD model
over all training classes without α , freeze the network, select a subset of the training classes
as unseen classes, and remove (i.e. set to zero) the corresponding similarities in the class
embeddings. Then, in this setting, we train only α to make the scores among all training
classes comparable. At test time, α is used as a scaling factor only for the unseen classes.

3.2 Template-based Image Captioning
We aim to generate accurate captions for images containing classes not seen during training.
For this purpose, we use a template-based captioning method which provides the sentence
templates whose visual word slots are to be filled in using the ZSD outputs. For this purpose,
we use the slotted sentence template generation component of the Neural Baby Talk (NBT)
approach [38].

The NBT method generates sentence templates which consist of the empty word slots
by using a recurrent neural network. Moreover, NBT incorporates the pointer networks
idea [59] to obtain a content-based attention mechanism over the grounding regions. There
are two word types in NBT method: textual and visual words. Textual words are not related
to any image region, therefore the model provides only dummy grounding for them. The
template generation network uses the object detection outputs to fill empty visual word slots.

In our approach, the ZSD model and the sentence template generation component of
NBT is trained over the seen classes. The ZSD outputs over all classes are used as input to
the NBT sentence generator at test time.

4 Experiments
In this section, we present our experimental analysis for the ZSD component of our ZSC
approach and the ZSC outputs themselves. For this purpose, we first define the COCO
dataset splits that we use and the the word embeddings used for computing the class-to-class
similarities in Section 4.1. We present the experimental results for the ZSD component in
Section 4.2, and, those for the complete ZSC model in Section 4.3. Finally, we present
ablative studies in Section 4.4.
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4.1 Dataset
We use the COCO image captioning dataset [33] in our experiments. As discussed in Sec-
tion 2, there are several zero-shot captioning studies that assume that image-caption training
example pairs are provided only for a subset of the object classes during training, while pre-
suming the availability of visual training examples for all classes [4, 5, 38, 58, 66]. We refer
to them as partial zero-shot methods and consider them as upper-bounds (golden baselines)
for our true ZSC problem definition. In order to compare against these methods, we use the
same COCO dataset splits used by the respective publications.

The details of the COCO splits are as follows: from the 80 classes, we select 8 of them
as unseen classes (bottle, bus, couch, microwave, pizza, tennis racket, suitcase, and zebra).
During training, we use the subset of the COCO training images that do not contain any
instances of these unseen classes. For evaluation, we use the validation set split prepared
by [5].

Word embeddings. To obtain the class-to-class similarities required by our zero-shot de-
tector, we use the 300-dimensional word2vec embeddings of class names [41]. For the
classes with multiple words, we use the average word embeddings. For the NBT component
of our ZSC approach, we use 300-dimensional GloVe [46] word embeddings for template
generation, as in the original NBT model.

4.2 Zero-Shot Object Detection
For training the ZSD component of our approach, we train the YOLO [50] based network for
160 epochs, with the learning rate set to 0.001 and a batch size of 32. The detector training
is conducted on COCO object detection dataset using only the training examples of selected
72 seen classes. Then, we select 64 of these 72 classes as seen and remaining 8 of which as
unseen, and learn the α scaling factor.

We evaluate the proposed zero-shot detection approach in ZSD and Generalized ZSD
(GZSD) settings. For the ZSD evaluation, we use the COCO validation images that consist
of only unseen object instances and by feeding only unseen classes as target classes to the
detector. The results are shown in the first column of Table 1. On average, the method yields
31.4% mean average precision (mAP) score, which can be interpreted as a promising result
considering the difficulty of the zero-shot detection problem.

For the GZSD evaluation, we use the COCO val5k split, which contains both seen and
unseen class instances. We separately compute mAP scores over the seen and unseen classes.
As the final scalar performance metric, we use the harmonic mean (HM) of seen and unseen
class mAP scores, following its use in generalized zero-shot classification evaluation [62].
The GZSD results without and with alpha scaling are presented in the last two rows of
Table 1, respectively. It can be seen that, with alpha-scaling, the unseen class mAP increases
from 0.3% to 7.3% mAP but the seen class mAP drops from 27.4% to 19.2% mAP. These
results are as expected considering the fact that alpha-scaling acts as a prior that promotes the
detection of unseen classes over the seen ones. Overall, the harmonic mean score increases
from 0.7% to 10.6% mAP using alpha-scaling, which suggests that alpha scaled detector is
more suitable for being used as a component of the ZSC model.

Finally, we note that these zero-shot detection results are not comparable to the previ-
ously reported COCO ZSD results of Bansal et al. [6] since the splits that we take from [5]
(primarily for ZSC evaluation purposes) are different from those used in [6].
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Exp. Type Test bottle bus couch microwave pizza racket suitcase zebra U-mAP(%) S-mAP(%) HM
ZSD U 5.2 53.3 35.1 23.9 44.4 36.4 9.1 43.7 31.4 - -
GZSD w/o α S+U 0 0 2.7 0 0 0 0 0 0.3 27.4 0.7
GZSD S+U 0.8 21.4 4.9 1.2 4.8 0.7 9.1 15.8 7.3 19.2 10.6

Table 1: Our ZSD and Generalized ZSD (GZSD) results. The first row shows the ZSD results
where the detector is evaluated over the images containing only unseen classes, without
computing the seen class scores. The last two rows show the GZSD results where both seen
and unseen class scores are computed on the full COCO val5k split. HM: Harmonic Mean.

Method bottle bus couch microwave pizza racket suitcase zebra Avg. F1 METEOR SPICE
NBT-baseline 0 0 0 0 0 0 0 0 0 18.2 12.7
Our Method 2.4 75.2 26.6 24.6 29.8 3.6 0.6 75.4 29.8 21.9 14.2

Partial zero-shot captioning methods (upper-bound)
DCC [5] 4.6 29.8 45.9 28.1 64.6 52.2 13.2 79.9 39.8 21.0 13.4
NOC [58] 17.8 68.8 25.6 24.7 69.3 68.1 39.9 89.0 49.1 21.4 -
C-LSTM [66] 29.7 74.4 38.8 27.8 68.2 70.3 44.8 91.4 55.7 23.0 -
Base+T4 [4] 16.3 67.8 48.2 29.7 77.2 57.1 49.9 85.7 54.0 23.3 15.9
NBT+G [38] 14.0 74.8 42.8 63.7 74.4 19.0 44.5 92.0 53.2 23.9 16.6
DNOC [61] 33.0 77.0 54.0 46.6 75.8 33.0 59.5 84.6 57.9 21.6 -

Table 2: Our ZSC results with comparison to upper-bound partial ZSC methods.

4.3 Zero-Shot Image Captioning

For the ZSC experiments, we use our detection model in the GZSL setting. We obtain
the candidate object regions by setting the class confidence threshold of the ZSD detector
to 0.5, in order to retain only confident detections, as needed by the template-based caption
generator. We prepare the same experimental setup described in [38], and exclude the image-
sentence pairs which consist of unseen classes. To establish a fair comparison, we use the
NBT method [38] for learning the language model.

For comparison, we define the NBT-baseline by training a seen class only YOLO detector
and feeding its outputs to the captioning model. For evaluation, we use the METEOR [15],
SPICE [3] and Average F1 metrics to evaluate the NBT baseline, the proposed method and
the upper-bound partial ZSC methods, on the validation split of [5].

In Table 2, we see that the proposed approach obtains 29.8% average F1 score, which is
computed by averaging per-class F1 scores. For the F1 score, a generated sentence is counted
as correct only if the sentence contains the name of the unseen class of interest in an image
containing at least one instance of that class. Here, an image is considered as a positive
example only if it contains at least one instance of the unseen object of interest. We observe
that the obtained F1 score of the proposed ZSC approach is promising but relatively lower
than those of the upper-bound partial ZSC methods, which is not a surprise considering that
they are built upon supervised detectors over all classes.

Compared to the upper-bound techniques in terms of METEOR and SPICE metrics, our
method obtains better results than DCC [5] and NOC [58] methods, however lower than
the other upper-bound methods, which benefit from using supervised object classification or
detection models over all classes. Compared to the NBT-baseline, we observe significant
improvements in terms of all metrics, which highlights the importance of ZSD for the true
ZSC problem.

Figure 2 gives qualitative ZSC results, where the seen (italic typeface) and unseen (bold
typeface) class names are denoted. Overall, these results are encouraging as the single final
model shows (partial) ability to generate captions with both seen and unseen classes, even in
images where a group of seen and unseen class instances appear jointly.
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A small white dog sitting
on a couch.

A red bus is driving down
the street.

A couple of zebra standing
in a field.

A tennis player is about
to hit a tennis racket.

A white plate topped with
a piece of pizza.

A kitchen with a microwave
and a counter.

A bus is parked on the
side of the street.

A bird sitting on top of a
metal pole.

A bunch of banana that are
on a table.

Figure 2: Image captioning results of images which consist of seen and unseen classes.

4.4 Ablative Studies
In this section, we measure the effect of the ZSD method on ZSC success in a more detailed
manner. For this purpose, we compare our method with the NBT-baseline method, using the
same split as in Section 4.3, by evaluating in terms of METEOR [15], SPICE [3], ROUGE-
L [32], BLEU [45] metrics and the F1 score.

We present the results in Table 3. According to these results, we get the average F1
= 0 in NBT-baseline as expected, as it is unable to caption with any unseen object instance.
However, we observe that the results of the NBT-baseline and the proposed approach are very
close to each other, especially in terms of BLUE and ROUGE-L metrics, despite the inability
of the NBT-baseline to incorporate any unseen class in the captioning outputs. These results
suggest that these metrics are not suitable for the ZSC scenario.

According to Table 3, METEOR and SPICE metrics give slightly more indicative re-
sults for ZSC. We note that the METEOR metric uses n-gram based synonym matching and
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Method BLEU1 BLEU2 BLEU3 BLEU4 METEOR SPICE ROUGE-L F1 Scores

NBT-baseline 65.8 47.5 34.1 24.4 18.2 12.7 48.2 0
Our Method 67.0 48.3 34.5 24.5 21.9 14.2 48.9 29.8
Table 3: Zero-shot captioning evaluation results in terms of various performance metrics.

�: A yellow and black train
traveling down the road.
F: A yellow and black bus
driving down a road.

�: A couple of elephants
standing next to each other.
F: A couple of zebra standing
next to each other.

�: A piece of cake on a
white plate.
F: A piece of pizza on a
white plate.

Figure 3: Zero-shot image captioning results using the NBT-baseline (�) and the proposed
approach (F). Bold typed words represent visual words given by the detectors.

the SPICE metric uses scene-graph based synonym matching. On the other hand, remain-
ing metrics use n-gram precision, n-gram recall, tf-idf weighted n-gram similarities without
synonym matching. Therefore, we may preliminary conclude that using synonym matching
contributes to obtaining more meaningful ZSC evaluations.

Finally, we show a qualitative comparison between the NBT-baseline and our method
in Figure 3. These results show how the NBT baseline generates captions with somewhat
similar but inaccurate objects due to its inability to handle unseen class instances.

5 Conclusion
An important shortcoming of current image captioning methods aiming to learn with class-
restricted caption annotations is their inability to operate in a fully zero-shot learning setting.
These methods generate captions for images which consist of classes not seen in captioning
datasets, but they still assume the availability of a a fully supervised object classifier and/or
detector over all classes of interest. To initiate research towards overcoming this important
weakness in captioning research, we define the zero-shot image captioning problem, and pro-
pose a novel approach that consist of a zero-shot object detector and a detector-driven caption
generator. Our experimental results based on the COCO dataset show that our method yields
promising results towards achieving true ZSC goals. In addition, the qualitative results show
that proposed architecture is able to generate natural looking and visually grounded captions
in several challenging test cases.
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