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Abstract

This work proposes an end-to-end approach to estimate full 3D hand pose from stereo
cameras. Most existing methods of estimating hand pose from stereo cameras apply
stereo matching to obtain depth map and use depth-based solution to estimate hand pose.
In contrast, we propose to bypass the stereo matching and directly estimate the 3D hand
pose from the stereo image pairs. The proposed neural network architecture extends
from any keypoint predictor to estimate the sparse disparity of the hand joints. In order
to effectively train the model, we propose a large scale synthetic dataset that is composed
of stereo image pairs and ground truth 3D hand pose annotations. Experiments show that
the proposed approach outperforms the existing methods based on the stereo depth.

1 Introduction
3D hand pose tracking has many applications in human computer interaction, video games,
sign language recognition, augmented reality, etc. Solution based on depth sensors has been
proven working very well in various conditions [1, 9, 10, 11, 17, 20, 22, 24, 25, 26, 27,
31]. However, due to the hardware constraints, the depth sensors are power consuming,
expensive and un-portable, and thus their adoption is limited. To get around the hardware
constraints, some recent works proposed methods based on RGB sensors. However, because
of the intrinsic scale/depth ambiguity, the methods based on monocular RGB images [2,
14, 19, 23, 33, 35] can only estimate “pseudo” 3D hand pose, which are root relative and
scale normalized and the coordinates in the world space cannot be recovered. To estimate
full 3D hand pose and leveraging the portability of the RGB sensors, pioneering works are
proposed to estimate 3D hand pose from stereo images [18, 34]. Specifically, Zhang et al.
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proposed a dedicated stereo matching pipeline to generate high quality depth map for hands
and leverage existing depth base solution to estimate 3D hand pose [34]. Also using stereo
cameras, Panteleris et al. proposed a model-based solution to fit the 3D hand pose directly
from stereo pairs, bypassing the need to estimate depth map [18]. Although these methods
took advantage of the more portable stereo cameras, they are still impractical for real-time
application on embedded devices, due to the large computational complexity of performing
stereo matching [34] or model fitting [18]. To improve 3D hand pose tracking for portable
embedded devices, in this paper, we propose an end-to-end approach to estimate the full 3D
hand pose from stereo cameras.

While the end-to-end deep learning-based approach has become the mainstream for
body/hand pose estimation using monocular RGB images, it is non-trivial to extend them
to stereo RGB images. There are a few unique challenges to work with stereo image pairs.
Firstly, there is no extensive datasets to properly train and evaluate the methods. The dataset
proposed in [34] was designed to evaluate depth-based solution, so the variance in the dataset
is limited. To tackle this challenge, we propose a large scale synthetic dataset. The synthetic
stereo RGB pairs are rendered using two virtual cameras with the same camera parameters
as in the public STB dataset. The rendering software enumerates variances in hand poses,
hand shapes, lighting conditions and skin colors.

Secondly, unlike monocular images, it is more restrictive to apply geometric transforma-
tions to the images, because some geometric transformations (such as rotation) breaks the
assumption in the rectified stereo system. However, extensive data augmentation is critical
to train well performing neural networks. To tackle this challenge, we propose a two stage
training procedure to train the networks sufficiently. Namely, we first train the weights re-
lated to 2D estimation with extensive data augmentation, and then train the weights related
to 3D estimation with allowed data augmentation.

To the best of our knowledge, this work is the first to estimate full 3D hand pose from
stereo cameras in an end-to-end framework, so we focus on establishing the evaluation pro-
tocols and tackle the unique challenges in this task. To summarize our contributions, 1) We
propose a large scale synthetic dataset to estimate full 3D hand pose from stereo cameras.
2) We propose an efficient and flexible framework to extend the existing 2D pose estima-
tion networks to estimate the sparse disparity on hand joints. 3) We show that our proposed
end-to-end approach outperform the methods based on stereo depth.

2 Related Work
Depth based 3D hand pose estimation works very well in various conditions. There are three
kinds of methods based on depth solution, generative [1, 10, 17, 20, 27], discriminative [9,
11, 26, 31] and hybrid [22, 24, 25]. Recent works using deep learning techniques pushed
the frontier even further, such as the iterative feedback [16], cascade spatial attention [32],
region ensemble network [5], generative adversarial network (GAN) [28], HandPointNet [3],
etc.

In recent years, researchers are seeking more portable solutions, primarily based on
monocular RGB images, such as the hand pose prior [35], depth map as weak supervi-
sion [2], variational methods [23], cycle GAN [14], model fitting approach [19], privileged
learning [33], graph CNN [4] etc. Unfortunately, monocular RGB images have their in-
trinsic scale/depth ambiguity, so the methods based on monocular images can only estimate
“pseudo” 3D hand pose that are root relative and scale normalized.
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Figure 1: Overview of our method for 3D hand pose estimation from stereo cameras.

Also, to estimate the real 3D hand pose using portable devices, there are methods based
on stereo cameras. There are two methods using stereo camera that are most relevant to
our work. The first one is the approach proposed by Zhang et al., based on a dedicated
stereo matching pipeline that designed specifically for hand pose estimation using manually
designed features [34]. The other one is the approach proposed by Panteleris et al. [18],
based on a model fitting algorithm. Both methods are computationally complex, because of
the stereo matching process [34] or the model fitting algorithm [18].

Existing works on deep learning for stereo images are also relevant to this work [8, 12,
21]. Most of the existing works used deep learning to improve stereo matching, and use the
generated depth for upstream tasks. In this work, we propose to bypass the stereo matching
and perform the high level tasks directly.

3 Our Method

3.1 Formulation
An illustration of the proposed framework to estimate full 3D hand pose from stereo cameras
is shown in Figure 1, which can be formulated as the following function,

e : (Il ∈ RH×W×3, Ir ∈ RH×W×3) 7→ Y ∈ RJ×3, (1)

where W and H denote the width and height of the input images (respectively), Il and Ir ∈
RH×W×3 denote the rectified image pairs from the stereo cameras 1, J denote the number of
joints on hand (in our experiments, J = 21), and Y denote the coordinates of the hand joints
in the left camera world coordinate space (without loss of generality, we assume left and
right rectified stereo camera system).

It is more intuitive for neural networks to estimate measures that are defined directly on
the image space [13], so in our framework, instead of estimating world space (x,y,z), we
choose to estimate the 2D location and the disparity that are well defined in the image space.
Specifically, in a left/right stereo camera system, the joint coordinates Y =(x,y,z)∈RJ×3 can
be decomposed into the 2D location (u ∈ [1,W ]J , v ∈ [1,H]J) and the disparity (d ∈ [0,W ]J)
by a fixed transformation gc : (u,v,d) 7→ (x,y,z). Under the assumption of pinhole camera
model, the transformation Y = gc(u,v,d) is defined as follows,

z = fx×B/d; x = (u− tx)/ fx ∗ z; y = (v− ty)/ fy ∗ z (2)

where fx, fy, tx, ty and B are constants defined by the stereo camera system. Specifically, fx
and fy denote the focal length expressed in pixel units, tx and ty denote the principal point

1For example, OpenCV has a function named stereoRectify to rectify stereo cameras.
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(usually the image center) and B denote the baseline parameter (i.e., the distance between
the two cameras). Next, we formulate the model to estimate (u,v,d) from the stereo pair.

As with other pose estimation system based on neural networks, the input images are first
cropped and resized so that the target is roughly in the center before feeding into the neural
network. For monocular image input, the image is cropped according to a bounding box
(u0,v0,w0,h0), where (u0,v0) and (w0,h0) are the top-left corner and the size of the crop
bounding box, respectively. Then, the cropped image is resized to the network input size
(Wn,Hn). For stereo image pair input, we propose to process the left image in the same way
as in the monocular image case, but the right image is cropped with the shifted bounding box
(u0− d0,v0,w0,h0), where d0 is the global disparity. The reason of using shifted bounding
box to crop the right image is to make sure the hand is inside both of the cropped images.
Note that different from the traditional stereo matching algorithm, the preprocessed disparity
contain negative values because of the shifted right box. How to obtain the initialization
parameters Φ0 = {u0,v0,w0,h0,d0} are explained in the Section 4.1. Let us denote this
preprocessing step as gp : (Il , Ir) 7→ (I′l , I

′
r).

A properly trained neural network then takes the preprocessed image pairs (I′l , I
′
r), and

generate local estimation of 2d location (u′,v′) and disparity d′. The details of this neural
network are explained in Sec. 3.2 and the loss functions to train this network are explained in
the Sec. 3.3. Let gn denote the neural network inference: gn : (I′l , I

′
r) 7→ (u′,v′,d′). Because

the neural network inputs are preprocessed, the estimation are relative to the preprocessing
parameters. The denormalization process gd : (u′,v′,d′) 7→ (u,v,d) to recover the global
estimation are defined as follows,

u = u′/Wn ∗w0 +u0; v = v′/Hn ∗h0 + v0; d = d′/Wn ∗w0 +d0 (3)

In summary, the system to perform full 3D hand pose estimation from stereo cameras are
decomposed by preprocessing step gp, neural network inference gn, denormalization gd , and
inverse camera projection gc, i.e., e = gc ◦gd ◦gn ◦gp. In the next sections, we introduce the
neural network to implement gn and the loss functions to train the neural network.

3.2 Network Architecture

The neural network gn : (I′l , I
′
r) 7→ (u′,v′,d′) can be extended from any 2D keypoint regressor

(e.g., Hourglass [15], CPM [29], Simple [30]) by adding components to estimate the dispar-
ity. Any 2D keypoint regressor can be expressed by two components, feature extraction and
prediction head, both of which are implemented with basic CNN building blocks. Denote
the feature extraction block as h f : I′ 7→ f ∈ RH f×W f×C f , where f are the extracted feature
maps, and H f ,Wf ,C f are the height, width and channel number of the feature maps. Denote
the 2D location prediction head as huv : f 7→ (u′,v′) ∈ RJ×2.

In the proposed neural network, the 2D coordinates are produced directly from the left
image using a 2D keypoint regressor [15], i.e., (u′,v′) = huv ◦ h f (I′l ). The disparity is esti-
mated by reusing the previous feature extraction network and using it to extract the features
from both images. Specifically, the disparity is estimated using the following equations,

fl = h f (I′l ); fr = h f (I′r); flr = Concat( fl , fr);d′ = hd( flr), (4)

where Concat is the standard concatenation, flr ∈ RH f×W f×2C f is the concatenated feature
maps, hd : RH f×W f×2C f 7→ RJ×1 is the network component to predict disparity d′. Note that
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in order to reuse the network weights and computation, the 2D regressor and the disparity
estimation share the same feature extraction component.

Two characteristics of the sparse disparity estimation task guide the design of the dispar-
ity head hd . 1) Although the task is to estimate disparity on different joints, the underlining
algorithm are the same for all the joints, i.e. find the best match on the horizontal line. 2) The
component should be translation invariant. In other words, if the input images shift horizon-
tally or vertically, the output should be the same. Based on these observations, we propose
to use fully convolutional neural network (FCN) to estimate the disparity d ∈ RJ×1. Specif-
ically, we first use CNN blocks to generate a single channel disparity map from the feature
maps, denoting this process as hD : flr 7→ D ∈ RHd×Wd . Size of the disparity map, Hd and
Wd , are smaller than the network input size to save computation, i.e., Hn = sHd , Wn = sWd
(s ≥ 2 is the integer stride factor). Then, given the estimated 2D location (u′,v′) ∈ RJ×2 of
the joints, we sample the sparse disparity d′ from the disparity map D using bilinear interpo-
lation, denoted as follows,

d′j =
Hd

∑
m=1

Wd

∑
n=1

D[m,n]G(m,u′j/s)G(n,v′j/s), (5)

where j is the index of the joint, G(p,q) = max(0,1−|p−q|) are the bilinear interpolation
coefficients, D[m,n] is the value of D at mth row and nth column.

3.3 Loss functions
There are two prediction heads in the proposed network gn, i.e., huv for 2D location and hd
for the disparity. For huv, we adopt the commonly used heatmap loss, denoted as Luv. For hd ,
the network output is a disparity map D ∈ RHd×Wd , but the available supervision is the 2D
location and sparse disparity of the joints, i.e., (ugt ,vgt ,dgt) ∈ RJ×3 2. In order to supervise
the disparity map D with the ground truth, and to be consistent with the inference algorithm
in Eqn. (5), we propose a loss function based on the 2D heatmap. Specifically, as in the
heatmap loss, we first build normalized 2D heatmaps for each joint,

H j[m,n] = A jexp

(
−

(
(n−ugt

j /s)2

2σ2 +
(m− vgt

j /s)2

2σ2

))
, (6)

where σ is the standard deviation of the heatmap (set to 3 in the experiments), and A j is the
normalization scalar to make H j sum up to one. The heatmaps H j[m,n] can be viewed as the
probability of the joint j appears at (m,n). Therefore, we propose to use the following loss
function to supervise hd ,

Ld = (1/J)∑
j
‖dgt

j −∑
m,n

H j[m,n]D[m,n]‖δ , (7)

where the second term ∑m,n H j[m,n]D[m,n] is the expectation of the disparity of the jth joint
under the probability H j[m,n], and ‖ ∗ ‖δ is the Huber loss with threshold δ (set to 1 at the
experiments). The loss function Ld enforce the network to focus on the sparse disparity on
the joints, rather than the dense disparity on the full image. This is one of the key reasons
why this approach is more efficient than the methods based on dense stereo matching.

2(ugt ,vgt ,dgt) are also preprocessed by the preprocessing step gp, but we omit the prime superscript for clarity
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(a) STB/Left (b) STB/Right (c) RSTB/Left (d) RSTB/Right
Figure 2: Dataset examples. Left/Right denotes the left/right views in the stereo pair.
STB/RSTB are the public real and proposed synthetic dataset, respectively. Groundtruth
3D annotation is projected to the two views and visualized with the colored lines.

In order to train the neural network properly, we propose to optimize Luv and Ld sepa-
rately, rather than train all weights together with Luv +Ld . Specifically, the training process
is split into two stages. The first stage optimizes Luv, i.e., h∗f ,h

∗
uv = argminh f ,huv(Luv), and

the second stage optimize Ld , i.e., h∗d = argminhd (Ld), while fixing h∗f . There are three fac-
tors driving this choice of training the 2D location regressor first, 1) the 2D regressor is well
developed and understood by the community, so there are more references and resources; 2)
there are more annotated dataset for the 2D regressor, and more dataset can generally im-
prove feature representation; 3) there are more freedom to do data augmentation for the 2D
regressor than for the disparity head, because some data augmentation, such as rotation, will
break the assumption of stereo systems.

4 Experiments

4.1 Datasets, Protocols and Implementations
For 3D hand pose estimation from stereo cameras, there are two publicly available datasets,
one from Zhang et al. [34] and the other from Panteleris et al. [18], which are referred as
STB and B2RGB-SH, respectively. Because the B2RGB work [18] is a generative model
(does not require training), B2RGB-SH only contains a small dataset for evaluation, which
is not suitable for our case that requires training. Therefore, we evaluate the proposed system
on the STB dataset, and use the same splits as used in Zimmermann et al. [35]. In addition
to the STB dataset, we propose a large scale synthetic dataset to account for large variances
in gestures, hand shapes and backgrounds. Specifically, we use software to synthesize hands
with various hand shapes, gestures, skin colors and light conditions, and then we render the
hands to two virtual cameras to simulate the stereo camera setup. For the two virtual cameras,
we use the same camera parameters as used by the STB dataset. Because the hand model
is synthesized, the groundtruth (2D location and disparity) is readily known. Besides the
rendered foreground hands in stereo image pairs, we use a real stereo camera, similar with
the camera used by the STB dataset, to capture background videos in the wild that do not
contain any hands. Because the real stereo camera and the virtual cameras share the same
intrinsic parameters, we are able to simply alpha blend synthesized foreground and in the
wild background together to generate a training sample. For simplicity, we do not use more
advanced blending than just overlaying the hand region on top of the background. Figure 2(c)
and 2(d) show an example in our synthetic dataset. The blending is done on the fly, so that
the effective number of training samples is very large. For the synthetic dataset, there are
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2D/Frame 2D/Track 3D/Frame 3D/Track
clockwise rotate by [−20◦,20◦] Yes Yes No No
shift (u0,v0) by [−20%,20%] No Yes No No
shift d0 by [−10%,10%] No No No Yes
scale (w0,h0) by [−20%,20%] Yes Yes Yes Yes

Table 1: Data augmentation under different conditions. 2D/3D denote the two training stages
and Frame/Track denote the two evaluation protocols.

18000 pairs for training and 2000 pairs for validation. For the in the wild background, there
are 13982 pairs for training and 2419 pairs for validation. We denote the synthetic dataset as
Rendered STB (RSTB). The RSTB datasets will be released for research use.

As mentioned in Sec. 3.1, the neural network inferences rely on a set of initialization
parameters Φ0 = {u0,v0,w0,h0,d0} to preprocess the frames. Depending on how the Φ0
is obtained, there are two different evaluation protocols, frame based protocol and tracking
protocol. The frame based protocol is the default for most of the current pose estimation
work, in which the ground truth labels are used to obtain the Φ0. The tracking protocol
only use the first frame ground truth to get the first frame initialization, and the following
frames use the estimation of its previous frame to compute Φ0 in every following frame. The
frame based protocol focus on evaluating the performance of the neural network in isolation,
but the tracking protocol is more practical and requires the neural network to recover from
inaccurate initialization. For both ground truth label induced and the estimation induced Φ0,
we draw a bounding box around the 2D location of the joints to obtain (u0,v0,w0,h0), and
we compute the mean of the disparities (provided by the groundtruth or the previous frame
estimation) as the d0. For both initialization protocols, we use the average 3D estimation
error in millimeters as evaluation metric. For both evaluation protocols, the initialization
parameters in training process is always obtained from the ground truth. Figure 2 show the
examples of the cropped images fed to the neural network.

We implement our system using TensorFlow. The network structure is based on the
hourglass pose estimation framework. The 2D estimation network is a two stack hourglass
network with intermediate supervision. We pick a point in the two stack hourglass network,
and break the entire 2D location estimation network into two parts, h f and huv. Different
break point provides different level of feature abstraction and speed tradeoff, which we fur-
ther investigate in the ablation analysis section. The hd is one hourglass module on top of the
concatenated feature maps. Both training stages are trained using RMSprop with batch size
32 for 100 epochs. The learning rate is set to 0.05 and decrease 70% for every 30 epochs.
The network input size Wn and Hn are fixed as 256. The data augmentation strategies are
determined by the evaluation protocol and training stage, as summarized in Table 1.

4.2 Ablation analysis

We first perform ablation study to evaluate the proposed neural network. In the proposed
neural network architecture, the 2D estimator h f ◦huv is fixed as the two stack hourglass ar-
chitecture, and the disparity estimation head is fixed as one hourglass module huv. We adopt
these existing modules because of their consistently good performance on the 2D keypoint
estimation tasks, but other more recent architectures, such as CPM [29] or the SimpleBase-
line [30] can be used as well. However, evaluating the performance of these architectures is
not our focus in this work.

Citation
Citation
{Wei, Ramakrishna, Kanade, and Sheikh} 2016

Citation
Citation
{Xiao, Wu, and Wei} 2018



8 LI ET AL.: END-TO-END 3D HAND POSE ESTIMATION FROM STEREO CAMERAS

Left+Right Left Only
D2S4 D4S4 D2S8 D4S8 D2S4 D4S4 D2S8 D4S8

(a) RSTB/Frame 13.05 13.16 13.82 13.96 14.01 14.41 15.02 14.97
(b) STB/Frame 8.49 8.34 8.88 9.18 8.70 9.15 10.02 9.96
(c) STB+RSTB/Frame 7.71 7.18 8.68 8.67 8.84 8.60 9.58 8.94
(d) STB/Track 14.37 14.85 15.79 15.55 265.13 280.84 300.44 214.51
(e) STB+RSTB/Track 14.94 14.25 15.73 15.77 274.02 257.34 1000+ 205.09
Speed(FPS) 1.06 1.05 1.28 1.29 1.09 1.08 1.32 1.31

Table 2: Ablation analysis results. The numbers (except the last row) are average 3D hand
joint estimation errors in millimeters (the smaller the better). Each row reflects one set
of training/eval protocol. STB+RSTB means pretrain on RSTB, finetune on STB and eval
on STB. Frame/Track denote the two evaluation protocols. Different color stripes denote
comparable numbers. (a) is the error measured the RSTB validation set, and (b)-(e) are errors
measured on the STB validation set. D*S* denote different network architecture variants.

As mentioned above, different breakpoints h f in the 2D estimator reflects different level
of feature abstraction and speed tradeoff. To understand this tradeoff, we compare the per-
formance of two points, D2 and D4. The structure of hourglass network is composed of
the following layers: input, convolution, residual block, maxpool, hourglass stacks. Accord-
ingly, we define D2 as the output of the first convolution layer (the stride is 2), and define
D4 as the output of the first max pool layer (the stride is 4). In order to make the comparison
more meaningful (D2 is twice as larger as D4), we downsample them to the same size before
feeding to the disparity estimation module. We apply two variations of the downsampling,
S4 and S8. S4 downsample the feature maps to four times as smaller as the input image, i.e.,
the stride is 4. S8 downsample to stride 8. In summary, there are four network configurations,
D2S4, D4S4, D2S8, and D4S8 3. We also compare the performances of using the stereo pair
(Left+Right) with those of using only the left image (Left Only). The average 3D hand joint
estimation errors are listed in the Table 2. Given the datasets (STB/RSTB) and evaluation
protocols (Frame/Track), the ablation study is further divided into a few train/eval configura-
tions, which are shown as different rows in the Table 2. Note that the RSTB dataset renders
each frame independently to maximize rendering efficiency, so there is no Track protocol on
the RSTB dataset.

By comparing the performance of the Left+Right with Left Only, we find that the comb-
ing both views of the camera can significantly improve performance of the 3D hand pose es-
timation. While the Left Only configuration achieves decent performance on the Frame pro-
tocol, which is consistent with the recent works on 3D hand pose estimation from monocular
RGB image, they completely fail on the Track protocol. In contrast, our two view configura-
tion performs well in both protocols. This shows that the proposed network can capture the
local features to figure out the sparse disparity and also recovers from initialization noises.

By comparing with and without RSTB pretrain (STB/Frame vs. STB+RSTB/Frame and
STB/Track vs. STB+RSTB/Track), we find that the pretraining on the proposed synthetic
data improves performance on the STB dataset. Specifically, for the Frame protocol, the
best performance with RSTB pretrain (7.18) is better than that without the RSTB pretrain
(8.34). Although the Track protocol relies largely on the network capability to recovers from
initialization mistakes, for which the RSTB dataset (rendered independently) helps very little,
pretraining still provides decent gain (14.25 vs. 14.37). Presumably because of the greater

3Because stride of D4 is already 4, there is no downsampling in D4S4
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(a) STB/View 1 (b) STB/View 2 (c) RSTB/View 1 (d) RSTB/View 2

Figure 3: Result examples for the data sample in Figure 2. The red dots are the ground truth
location, the green dots are the predicted location. Two views are selected for visualization.

data variations on RSTB, the test errors on RSTB (13.05mm) is larger than those on the STB
test set (7.18mm).

The conclusion from comparing the D4 and D2 features is mixed, but the best perfor-
mance is achieved using the D4 features for the STB dataset on both the Frame and the
Track protocols, which shows the benefits of using deeper features in the 2D estimation net-
work to estimate disparity. Comparing the performance of S4 and S8, we find that features
with higher resolution perform better. In order to better understand the runtime of the archi-
tectures, in Table 2, we also measure the frames per second (FPS) statistics for these network
variants. The statistics are collected using the default TF1.8.0, and on a CPU server with two
cores and two threads. Averages of 20 runs after 5 runs of burn-in are reported. The runtime
statistics shows that 1) the computation complexity addition from single view to two view
networks is negligible, 2) while features with high resolution achieves better performance,
it is also significantly slower. 3) using deeper features for disparity estimation does not add
much computation, because the features are shared with the 2D estimation network, and the
added computation is just for one of the views. Figure 3 shows qualitative results on the STB
and RSTB dataset.

In order to show the effectiveness of the two-stage training mentioned in Sec. 3.3, we
also conduct experiments using joint training. For the joint training, the losses Luv and Ld are
minimized together, i.e., h∗f ,h

∗
uv,h

∗
d = argminh f ,huv,hd (Luv +Ld). Because the disparity head

and the 2D regressor are optimized together, certain data augmentation cannot be applied, as
shown in Table 1. To reduce verbosity, we only report the results of joint training on the D4S4
architecture, Frame protocol, and STB test set. The estimation errors for STB/Frame and
STB+RSTB/Frame are 8.89mm and 8.80mm, respectively. Comparing with the estimation
error of 8.34mm and 7.18mm in the case of two-stage training, we show that the two-stage
training 1) reduces error rate for cases with and without synthetic data pretraining, 2) is
particularly effective to leverage the synthetic training data.

4.3 Comparisons with the state of the art methods
There are two previous methods on 3D hand pose estimation using stereo cameras, one from
Zhang et al. [34] and the other from Panteleris et al. [18]. Because of the code availabil-
ity, we can only make comparison with the method proposed by Zhang et al. on the STB
dataset. Using the high quality disparity map released by Zhang et al. [34], we evaluate the
performance of HandPointNet [3], one of the state of the art methods for depth based 3D
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Ours Ours w/ RSTB HandPointNet [3] Direct-2D
average error (mm) 8.34 7.18 7.6 24.60

Table 3: Compare with baselines on the STB dataset. Ours means the best as in Table 2.

hand pose estimation, using the code released by the author. Another interesting baseline to
compare with is to run the 2D keypoint estimator on the two views and compute the sparse
disparity directly from the estimated 2D location of the joints. We denote this approach as
2D-Direct. Because it is unknown how to run the Track protocol using the HandPointNet,
we only compare these approaches on the Frame protocol. Also, because the code availabil-
ity, we cannot obtain the high quality disparity map from the RSTB dataset using method of
Zhang et al., and we can only train HandPointNet with only the STB dataset. The average
3D joint estimation errors are compared in the Table 3.

Comparing the performance of 2D-Direct and ours, we find that the intuitive two branch
approach cannot estimate the disparity very well. This is partly because our disparity esti-
mation module learns better features to estimate the disparity. Also note that the 2D-Direct
approach runs at only 0.69 FPS, much slower than ours (1.04 or 1.28), because it is required
to run the heavy 2D estimation network on both views. Comparing with the depth based solu-
tion, our approach with RSTB pretraining outperforms the HandPointNet, and even without
RSTB pretraining, our approach is still comparable. This shows that the data driven end-to-
end approach is capable to outperform the depth based methods that explicitly encode the
knowledge of stereo matching and other priors used in the method of Zhang et al. This is an
encouraging result, because our approach is much more compact than the pipeline based on
stereo matching and depth based inference.

Note that the proposed approach has potential limitations that require future study. 1)
This approach cannot handle multiple hands or cases with hand/object interaction. 2) Demon-
strating the proposed method actually out-speed existing works requires further study to
benchmark more existing works and incorporate latest development on efficient deep learn-
ing, such as MobileNet [7] and Compression [6].

5 Conclusion

In this paper, we have proposed an end-to-end approach to estimate the full 3D hand pose
from stereo cameras. We have developed a framework based on any 2D keypoint regres-
sor to estimate the sparse disparity of the hand joints. To effectively learn the model, we
have created a large scale synthetic dataset with stereo RGB images and full 3D hand pose
annotations. In order to properly evaluate the full 3D hand pose estimation, we proposed
a reference tracking algorithm and the companion evaluation protocol. While being more
efficient and compact, our approach outperformed the existing approach based on the depth
map from stereo matching. We have also shown that using stereo cameras can significantly
improve the 3D hand pose estimation, especially in the tracking scenarios.

For future work, we plan to 1) solve the above mentioned limitations through collecting
more diverse dataset, 2) optimize the neural network, especially the module to combine the
left/right features, 3) extend the framework to other high level tasks, such as 3D human pose
estimation, 3D reconstruction, 3D face alignment and recognition.
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