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Abstract

Recent studies on gesture recognition use deep convolutional neural networks (CNNs)
to extract spatio-temporal features from individual frames or short video clips. However,
extracting features frame-by-frame will bring a lot of redundant and ambiguous gesture
information. Inspired by the flicker fusion phenomena, we propose a simple but efficient
network, called FlickerNet, to recognize gesture from a sequence of sparse point clouds
sampled from depth videos. Different from the existing CNN-based methods, FlickerNet
can adaptively recognize hand postures and hand motions from the flicker of gestures:
the point clouds of the stable hand postures and the sparse point-cloud motion for fast
hand motions. Notably, FlickerNet significantly outperforms the previous state-of-the-art
approaches on two challenging datasets with much higher computational efficiency.

1 Introduction

Visual gesture recognition [5, 15, 22] is a promising field and provides natural interfaces for
human-computer interaction. However, it’s still a challenging problem due to the various
hand postures, tiny finger motions, and large-scale body motions in computer vision.
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Hand Motions

Figure 1: Three consecutive images of significant hand postures and that of hand motions
with sampled points are shown in the figure. Top: there is no observable difference among
frames; thus accumulated point clouds can represent hand postures. Bottom: sparse point-
cloud motion can also adequately describe the hand motions. Red circles are typical exam-
ples of K Nearest Neighbor of cluster centroids, which show that sparse point clouds can
adaptively represent postures and motions information.

Inspired by the successful application of Convolutional Neural Networks (CNNs) in im-
age classification, previous studies focused on modeling the spatial and temporal informa-
tion, which is also crucial in action recognition. Simonyan and Zisserman [27] proposed
a two-stream network to explicitly fuse the appearance information from individual RGB
frames and the motion information from optical flow. Ji ef al. [11] designed a 3D-CNN to
extract features simultaneously from spatial and temporal dimensions. To capture the long-
term temporal cues in videos, Shi et al. [35] developed a convolutional LSTM to preserve
spatial and temporal information for modeling long-range dependencies.

Different from action recognition, the purpose of gesture recognition is to understand the
information conveyed through postures and motions, especially from hands and arms [6]. To
convey information clearly, hand motions are relatively slow when hand postures play an es-
sential role. Meanwhile, hand motions are the cues to recognize gestures when hands are too
small to recognize or handshapes are blurred caused by fast-moving. Thus the recognition
of gestures can be decoupled into two components: significant hand postures recognition in
the spatial domain and hand motions recognition in the temporal domain.

Furthermore, hand postures and hand motions play different roles in gestures. As shown
in Figure 1, the most significant hand postures appear with slow hand motions and the
consecutive frames can be almost identical. When hands move fast, hand postures change
rapidly, and hand motions may play a more active role in the recognition process. Although
CNN-based methods have made significant advancements, they still have to process video
clips as a whole or frame-by-frame, which extract redundant features when hands move
slowly and can be easily affected by ambiguous gestures when hands move fast.

Different from CNNs, human recognize gestures by perceiving a continuous stream of
information rather than a set of discrete images. Inspired by the flicker fusion phenom-
ena [26], we propose a sparse point cloud-based method for real-time gesture recognition.
We use depth data because it’s more sensitive to distance changes and more robust to illu-
mination and background changes than RGB data, which is crucial for gesture recognition.
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A sequence of sparse point clouds is sampled from depth video to represent gestures. As
shown in Figure 1, when significant hand postures appear, hands keep relatively static, and
postures become steady with accumulated point clouds. As for hands moving rapidly, sparse
point-cloud motions can effectively describe the hand motions. To adaptively learn hand pos-
tures and motions information from such a sparse point clouds representation, FlickerNet, a
simple but efficient network is proposed. FlickerNet can extract features from point clouds
by abstracting information from the multi-scale local spatio-temporal region. We evaluated
FlickerNet on two publicly available datasets, which are NVIDIA Dynamic Hand Gesture
Dataset (nvGesture) [16] and Common Japanese gestures datasets [20]. Our experiments
show that the proposed network outperforms all of the previous state-of-the-art approaches
on two public datasets with real-time speed on a single TITAN XP. Our main contributions
are summarized as follows:

e We propose a new sparse point clouds representation for 3D gestures that can better
describe the hand postures and motions from the redundant gesture information.

e A simple but efficient FlickerNet is designed to adaptively extract features for hand
postures and motion trajectories from a sequence of unregistered sparse point clouds.

2 Related Work

Vision-based gesture recognition has been extensively studied over recent decades and ef-
ficiently capturing spatio-temporal information is the main challenge of gesture recogni-
tion [5, 15]. In the early stage, handcrafted features have been widely used for gesture recog-
nition, such as histogram of oriented gradients (HOG) [7], hidden Markov model (HMM)
[28] and covariance matrices [32].

With the success of deep learning in image recognition, temporal information can be
captured either by extending 2D approaches to the spatio-temporal domain [3, 29] or by
using other input modalities instead of frames for the network [1, 27, 34]. Several recent
studies [25, 30] factorize the network to learn spatial and temporal events separately. Because
of the flexible of point clouds, our work adaptively recognizes spatial and temporal events
without explicit distinguishing.

Compared to action recognition, gesture recognition has lower information densities.
Models are expected to implicitly extract posture and motion features from a large amount
of information, which can be a difficult task. In some previous studies [13, 17, 33], hand
detection [4, 10] or pose estimation [2] are used to locate hand region and eliminate noisy
background. Multiple modalities [16, 31] are used to avoid overfitting to modal-specific
representations and different multi-modal fusion strategies[14, 17] are used to improve per-
formance, which leads to unacceptable inference time for practical uses.

Different from image data, the point cloud is an important type of geometric data struc-
ture with the irregular format. PointNet [23, 24] is a pioneering work that operates on
unordered points set directly and has shown success in object classification and semantic
segmentation. Ge et al. [8, 9] proposed networks to learn 3D hand articulations from the
3D point cloud and Kingkan et al. [12] directly fused consecutive point cloud frames on the
point level without registration and applied PointNet with attention modules to recognize
human gesture from consecutive point cloud frames. However, the point clouds of a gesture
isn’t an unordered point sets, previous works didn’t take the temporal evolution of the point
cloud into consideration. Efficiently spatio-temporal feature extraction from point clouds is
remained to be solved and the approach proposed in this work is a novel attempt.
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Figure 2: The overall framework of our FlickerNet. (1) A sequence of sparse point clouds is
generated from the depth video, (2) spatio-temporal features are extracted from the abstrac-
tion layers, (3) aggregates global features across the temporal axis and classifies. A single
level spatio-temporal sampling and grouping layer is visualized in the bottom left: for each
timestep, point clouds within a short temporal period T are combined in the same spatial
space, and a spatial grouping operation builds local regions for cluster centroids, which are
then fed into MLPs to adaptively extract hand postures and motions features. More details
are given in the supplementary material.

3 Methdology

The framework of our approach is shown in Figure 2. Given a depth video, our method
first downsamples and converts it into a sequence of sparse point clouds. Then the sparse
point clouds pass through two spatio-temporal set abstraction levels, and local features are
aggregated to recognize gestures. In the rest of this section, we first briefly review Point-
Net++ that closely relates to the proposed method, and then present network architecture
and spatio-temporal set abstraction layer.

3.1 Review of PointNet++

PointNet++ [24] is a powerful model to extract hierarchical features from unordered point
sets. Set abstraction levels is proposed to capture local context at different scales. Given
an unordered point set X = {x; € R"|i = 1,2,--- N}, a set abstraction level can be defined
as a set function f : X — ) that maps the given set to a sparser subset ) = {y; € R"|i =
1,2,--- ,M,m > n,M < N} with higher dimension, which can be written as:

=) =7 max (h(stap ) ). M)

where ¥ and 4 usually are multi-layer perceptron (MLP) networks, and g is a group operation
to construct local regions based on the spatial neighborhoods N (p;) of the centroids x,.
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3.2 Spatio-temporal Set Abstraction Level.

Different from classification and segmentation task, regarding a gesture as an unordered
point set will lose temporal information, so the original set abstraction is no longer suitable
for gesture recognition. Therefore, we propose a spatio-temporal set abstraction level which
takes a sequence of point clouds {x;;[i = 1,2,--+ ,N;t = 1,2,--- T} as input, and then ex-
tracts spatio-temporal features from a local spatial region within a short period 7, using the
following Eq 2:

o= Pl =7 (L mx Ghlsla a0} ). @

eN(pit),j=1,+n
where Y and £ usually are multi-layer perceptron (MLP) networks, and g is a group oper-
ation to construct local regions based on the spatio-temporal neighborhoods N (p;,#) of the
centroids x), ; within a short period T (—7/2 < Ar < 7/2). Different from previous meth-
ods [12, 23, 24], the proposed method keeps the temporal information throughout the set
abstraction. Besides, the temporal evolutions between frames are captured for recognition.

To be more specific, a spatio-temporal set abstraction level contains three key layers:
Spatio-temporal Sampling Layer (STSLayer), Spatio-temporal Grouping Layer (STGLayer),
and PointNet Layer. It takes a (T, N, (d + C)) matrix per gesture as input from 7' x N points
with d-dim coordinates and C-dim point features and outputs a (7, N, (d +C’)) matrix with
sampling fraction ¢ at each timestep with d-dim coordinates and new C’-dim point features
summarizing local spatio-temporal information.

STSLayer. The STSLayer is designed to collect local spatio-temporal information by
sampling point cloud features at each moment, which can reduce the computation cost and
recognize gestures at different scales. A subset of N points is selected at every timestep as
cluster centroids.

STGLayer. The proposed STGLayer can learn more fine-grained hand postures from
denser point clouds when hands keep relatively static, and more global motion information
when hands move fast. Given the cluster centroids matrix (7, aN, (d + C)), the STGLayer
can construct local region sets by finding K neighboring points around the centroids within
a short period 7. The output is T x N’ groups of points, and the points coordinates of each
group are translated to a relative coordinates to the centroid point: )?l(]t) = x%) — £ for
i=1,2,---,Kand j=1,2,--- ,d where X is the coordinate of the centroid.

PointNet Layer. Spatio-temporal features need to be abstracted from groups of point
sets. A simplified version of PointNet[23] with fewer layers and fewer channels are used as
the basic block to avoid overfitting and the features of each local region are aggregated and
transformed to a higher dimensional feature space C'.

3.3 Implementation Details

Sparse Point Cloud Generation. As the major ROIs of gestures, hand region is usually in
the foreground of gesture videos, which can be segmented by depth information and use the
Otsu threshold [19] to remove the background. We uniformly sample T frames from a depth
video and N unordered points from the hand region of each frame. Each point in sparse
point clouds is represented by both spatial and temporal features. We only use the (x,y,z,7)
coordinate as our point’s input channels for simplicity and efficiency.

STSLayer and STGLayer. The exact way this sampling strategy is implemented is a
design choice and will be uniform sampling in our case with considering both efficiency and
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reproducibility. Experiments about it can be found in the supplementary material. As for
STGLayer, we conduct experiments with two strategies. The first is the original strategy
in PointNet++ [24] that grouping points in spatial without explicitly modeling sequential
temporal structure. With the second strategy, STGLayer groups point clouds in spatial space
within a short temporal period 7, and each point set contains both local appearance and
motion information (see Figure 2 bottom left). To capture both short-term and long-range
changes, we apply K nearest neighbor(kNN) search to find a fixed number of neighboring
points (we use k=64 empirically).

Network Configuration. A modified PointNet is used as a basic block of our network.
The layer configuration is schematically shown in Figure 2. All MLP layers are implemented
as 1 x 1 Convolution and followed by the rectification (ReLU) activation function and Batch
Normalization layer. Max-pooling layers are used to aggregate information from local re-
gions. The baseline method is the same network architecture with the original group layer,
which regards gesture recognition as 3D object classification.

Training and Inference. Following common practice, we uniformly sample 7 frames
along its temporal axis and N points are generated for each frame (in default we use T=32
and N=64). We train all the models from scratch for 40 epochs with a mini-batch size of 8.
SGD with optimizer momentum is used with learning rate 102 and divided by 10 at epoch
25 and 35. The default sampling fractions of two set abstraction layer are 0.5 and 0.25. To
increase variability in the training examples, we apply the following data augmentation steps
to each video: random scale(+20%), random rotate(415°) and random input dropout(20%).
During inference, data pass through the networks without augmentation, and the model of
last epoch is used to evaluate.

4 Experiments

We perform comprehensive studies on the challenging nvGesture Dataset to investigate the
advantages of the proposed method. To verify the generalize ability of our model, the exper-
iments on UBPG Dataset are also reported.

4.1 Experiments on nvGesture

Dataset. nvGesture dataset [16] is a challenging dataset with 25 gesture classes proposed
for human-computer interfaces in cars. The dataset is recorded with multiple sensors and
viewpoints in a car simulator from 20 subjects. A total of 1532 weakly-segmented dynamic
hand gestures videos are split by subject into 1050 training (about 70%) and 482 test (about
30%). Each video contains only one gesture. As the validation set is not provided, we split
the training set into six groups, two subjects in each, to run 6-fold cross-validation and report
average accuracy =+ standard deviation in accuracy between groups. For our main results,
we report accuracy on the test set.

Experiments on the number of frames and the density of points. Here we show
performance changes of FlickerNet with regard to the number of frames 7 as well as the
number of points for each frame N. We experiment with point clouds size 7 x N ranging
from 512 to 4096 due to the limitation of GPU resources, and the results have been shown
in Figure 3(a). From the figure, we can get the following conclusions:

1) Both N and T play active roles in gesture recognition: increasing N results in a 4.5—
10.9% performance gain for different values of T and increasing 7 results in a 29.6% per-
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Figure 3: (a) Comparisons between different combinations of the total the number of frames
T and the number of points for each frame N on the validation set. Different colors represent
different numbers of sampled points for gestures (7' x N). Red line shows the performance
of different 7 with N = 128. (b) The different performance of FlickerNet and Baseline on
two subsets of nvGesture Dataset with different T (number of frames).

formance gain with N = 128.

2) T plays a more crucial role than N with same point clouds size, the performance of
4096 points on (T x N =32 x 128) is 24.0% better than on (T x N =4 x 1024).

The above observations show that the FlickerNet can effectively capture gesture infor-
mation from sparse point clouds. It’s worth mentioning that even with 512 points (T X N =
32 x 16), the average accuracy can still reach 80.8% which is higher than some recent offline
classification results for depth modality on the nvGesture benchmark.
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Figure 4: Twenty-five dynamic hand gesture classes of the nvGesture dataset are roughly
split into two categories: (a) Motion-dominant hand gestures (b) Posture-dominant hand
gestures, which are used to explore the effects of sparse point clouds input.

Experiments on adaptive postures and motions information capturing. A key as-
sumption for FlickerNet is that it can adaptively learn hand postures and hand motions from
accumulated sparse point clouds. To further verify our assumptions, we subjectively split
the nvGesture dataset into two subsets (Figure 4). The first subset is more related to the
directions and trajectories of hand motions and the second subset is more related to the
hand posture changes. Based on our assumption, FlickerNet should outperform baseline on
motion-dominant hand gestures subset due to its ability to model temporal changes, and keep
performance on posture-dominant hand gestures subset as the number of frames increases
with accumulated sparse point clouds.

We count the average recall of our trained method on these two subsets and compare
with baseline method mentioned in Section 3.3. In Figure 3(b), without explicit modeling
temporal information, the baseline is better at posture-dominant hand gestures with fewer
frames and the performance on these two subsets show the opposite trend when 7' changes.
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Figure 5: Confusion Matrix on the validation set with T = 32 and N = 128. (a) Baseline.
(b) Proposed Method.
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On the contrary, the proposed method has a much better performance on both subsets and the
performance on the posture-dominant hand gestures is better than on the other one, which is
beyond our expectations. These results show that the proposed spatio-temporal set abstrac-
tion layers are more robust to ambiguous gestures and the FlickerNet can effectively extract
features for hand postures and motions from accumulated sparse point clouds.

To further explore the intrinsic reasons, we show the confusion matrix of several con-
fusing classes in Figure 5. The confusing classes are easily classified by FlickerNet, which
indicates that our model can effectively capture temporal evolution information. We provide
more visual results in the supplementary material.

Temporal Period Accuracy ‘ ’ Baseline | FlickerNet
T1=1] n=1| 8478 £2.71 Total 286.8 12.9
T1=1| =3 8546 £4.26 Set abstraction 284.2 10.9
T1=3| »m=3| 87.83 £5.66 Convolutional layers 2.6 2.0

71=3| »=5| 88.15 +5.04
T1=5| ©n=5| 8676726
Table 1: Varying values of 7, the  Table 2: Comparison of inference time (ms)

temporal period of spatio-tempora  with point clouds input.
grouping layer on the validation set.

Experiments on the temporal period for grouping. Large temporal period may lead to
indistinct point clouds. To further explore the effect of the temporal period, we try varying
temporal periods 7| and 7, at two spatio-temporal set abstraction levels. As shown in Table 1,
both small and large temporal strides will hurt performance. So we choose (3,5) as our
temporal period default values.

Comparison with SOTA results. Table 3 shows the comparisons with state-of-the-art
results in nvGesture. Our method achieves an accuracy of 86.3 with 3.7 GFLOPs, a 1.9%
increase over the past best result and approaches human recognition result of 88.4% on RGB
video. We also record forward time with a batch size 1 using pytorch 1.0.1 [21] with a
single TITAN XP. By using preprocessed point clouds data as input, the inference time of
FlickerNet is over 20 times faster than the baseline (Table 2), which is mainly contributed by
spatio-temporal set abstraction level.
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| Model \ Input | Accuracy | FLOPs |
HOG+HOG? [18] depth video 36.3% -
SNV [36] depth video 70.7% -
C3D [29] depth video 78.8% 385G
FOANet [17] depth video 73.7% -
R3DCNN [16] depth video 80.3% 378G
PreRNN [37] depth video 84.4% 385G
Baseline [24] sparse point clouds 63.9% 37G
Ours sparse point clouds 86.3% 3.7G
Human [16] color 88.4% -

Table 3: Results on the nvGesture Dataset.

4.2 Experiments on UBPG Dataset

Dataset. Common Japanese gestures datasets [20] is a common Japanese gestures dataset
collected by Kinect sensor. The dataset contains 115926 point cloud frames (3235 video
samples) in 10 gesture classes. These gestures are performed by 5 subjects and each subject
repeating the gestures at least 30 times. The dataset contains only the upper part of the body
and is hard to get hand shape annotations, so we use the whole point clouds as inputs and
show the robustness of the proposed FlickerNet.

Experiments Settings. There are two standard evaluation protocols for this dataset. In
the first setting [12] (setting-1), only subjectl is used, and 24861 frames for training, 22748
frames for validation and 9776 frames for testing. In the second partition [20] (setting-2),
for each gesture class, 70% samples(64420) are used for training and the rest(28758) for
testing. Besides, cross-subject evaluation (setting-3) is used as the third setting to evaluate
the generalization ability of proposed methods, two of the subjects with 60% samples are
used to train and the rest to testing.

2
A
J-e--'".:. #"-p
'A

08

Figure 6: Point Activation Cloud: the mid-level features are mapped back to each point to
generate point activation clouds (PACs). The PACs highlights the discriminative parts of
point clouds.

RolIs of FlickerNet. Different from nvGesture Dataset, in this section, we use the whole
point clouds as inputs without any preprocessing or attention modules. To verify FlickerNet
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truly learns gesture features from hand regions, we calculate point activation cloud (PAC)
from the activation of FlickerNet, which exposes the implicit attention of the network. As
shown in Figure 6, points of hand regions with higher responses, which shows FlickerNet
can adaptively focus on hand regions.

For a given sparse point clouds, let £ (j, i) represent the kth activation of point i/ which
around the centroid point j before the second max-pooling layer. And each point values of
PAC is given by:

PAC; = max max f(j,i), 3)
iEN(j).j k U:)
’ Model \ Input \ Setting-1 \ Setting-2 \ Setting-3 ‘
Random forest voxels - 67.6 -
3DCNN [20] voxels - 84.4 -
PointNet [23] points, 1 frames 91.8 - -
PANet [12] points, 1 frames 92.5 - -
PANet [12] points, 4 frames 94.2 - -
Baseline [24] sparse points, 16 frames 90.2 89.8 61.9
Ours sparse points, 16 frames 96.4 95.3 77.9

Table 4: Results on the common Japanese gestures datasets.

Comparison with SOTA results. In Table 4, the proposed method is compared with
previous results on UBPG dataset and our results are better than current results in both two
standard settings. Different from the nvGesture dataset, the performance of baseline is much
higher, the main reason may be fewer classes and less similarity between classes.

5 Conclusions

In this work, we propose FlickerNet, a simple but efficient network for 3D gesture recog-
nition. FlickerNet naturally takes a sequence of sparse point clouds from hand regions as
inputs and experiments show that FlickerNet can adaptively extract features of hand pos-
tures and motions from accumulated sparse point clouds. And the proposed spatio-temporal
set abstraction levels can dramatically improve grouping speed. As we have shown, the pro-
posed method can achieve state-of-the-art accuracy with high efficiency. In the future, it’s
worthwhile thinking how to build an end-to-end architecture which can recognize gestures
and actions without pre-processing steps such as hand region detection and segmentation.
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