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Abstract

3D CNN-based architectures have found application in a variety of 3D vision tasks,
significantly outperforming earlier approaches. This increase in accuracy, however, has
come at the cost of computational complexity, with deep learning models becoming more
and more complex, requiring significant computational resources, especially in the case
of 3D data. Meanwhile, the growing adoption of low power devices in various technol-
ogy fields has shifted the research focus towards the implementation of deep learning
on systems with limited resources. While plenty of approaches have achieved promising
results in terms of reducing the computational complexity in 2D tasks, their applicability
in 3D-CNN designs has not been thoroughly researched. The current work aims at filling
this void, by investigating a series of efficient CNN design techniques within the scope
of 3D-CNNs, in order to produce guidelines for 3D-CNN design that can be applied
to already established architectures, reducing their computational complexity. Follow-
ing these guidelines, a computationally efficient 3D-CNN architecture for human pose
estimation from 3D data is proposed, achieving comparable accuracy to the state-of-the-
art. The proposed design guidelines are further validated within the scope of 3D object
classification, achieving high accuracy results at a low computational cost.

1 Introduction
Deep Learning has revolutionized, in recent years, multiple scientific fields, including Com-
puter Vision [25]. Applied in a broad spectrum of vision applications, convolutional neural
networks have achieved remarkable results in a variety of tasks [6, 22, 28, 40], significantly
outperforming earlier approaches, and in some cases even surpassing human perception lev-
els [10]. 3D Computer Vision has also benefited from these advances, with multiple works
undertaking tasks such as object recognition [55] and reconstruction [4], semantic segmen-
tation [38] and pose estimation[49] from 3D data.

This immense increase in accuracy, however, has come at the cost of computational com-
plexity [21]. The complexity of deep learning models has been steadily growing, increasing
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the required computational resources during both training and inference.This increase in
complexity becomes even more evident in the case of 3D vision tasks, as the addition of
a third dimension makes the cost of every new layer even steeper, while also limiting the
spatial resolution of the input data, in an attempt to bound this increase.

Meanwhile, the growing adoption of low power devices in various applications, has
shifted the research focus towards the implementation of deep learning methods on such sys-
tems, making it necessary to reduce the computational complexity of the proposed networks
while maintaining the level of accuracy. Many approaches have been proposed attempting
to reduce the complexity of deep learning models by either shrinking the models [13] or
minimizing the cost of computations [54]. While these methods have achieved promising
results in 2D vision tasks, their applicability in 3D-CNN designs has not been thoroughly
researched, hindering the utilization of such architectures on systems with limited resources.

The proposed work aims at filling this void, by investigating a series of efficient 3D-CNN
design techniques, towards their implementation on low power devices. More specifically,
the main contributions of this paper are:

• A series of network design guidelines, that can reduce the computational complexity
of already established 3D-CNN architectures, while maintaining comparable accuracy

• A novel 3D-CNN architecture for multi-person 3D human pose estimation from 3D
data, based on the above guidelines, which performs comparably to state-of-the-art
methods, while requiring significantly fewer computational resources

• Experimental validation of the applicability of the design guidelines in other 3D tasks,
through the optimisation of a 3D object classification network

The rest of the paper is organized as follows: Section 2 provides a summary of the
state-of-the-art in the fields of 3D-CNNs in Computer Vision and efficient network design,
Section 3 introduces the computational complexity metrics used throughout the paper and
Section 4 describes the network optimisation pipeline. Section 5 presents the results from
the comparative experimental evaluation and, finally, Section 6 concludes the paper.

2 Related Work

2.1 3D-CNNs in Computer Vision
3D-CNNs have been employed in Computer Vision mainly in the scope of 3D vision, where
the three spatial dimensions correspond to the real world coordinates. Towards object detec-
tion, the Voxnet architecture [30] utilizes 3 different occupancy models, along with a 4-layer
detection network. In [55] 3D geometric shapes are represented as a probabilistic distribution
of binary variables and combined with a Convolutional Deep Belief Network, while Qi et al.
[37] introduce auxiliary learning tasks to scrutinize details of 3D objects and anisotropic
kernels to probe for long-distance interactions. Song and Xiao [46] propose the first 3D
RPN to learn objectness from geometric shapes, utilizing the projective Directional Trun-
cated Signed Distance Function representations. In [41] a hybrid Grid-Octree data structure
is presented, allowing to focus memory allocation and computation to dense regions, while
in [24, 62] random sampling is employed to generate multidimensional features from raw 3D
points. In [5] the projective DTSDF representation is employed for 3D hand pose estimation,
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while in [33, 49] 3D extensions of the hourglass [35] and convolutional pose machines [52]
architectures are introduced for 3D human pose estimation. Towards 3D shape reconstruc-
tion, 3D-R2N2 [4] employs a 3D-Convolutional LSTM along with a 3D Deconvolutional
Neural Network, Wu et al. [53] extend GANs to 3D space, and Yi et al. [59] present the
Densely Connected 3D Auto-encoder architecture.

Additionally, 3D-CNNs have also been employed for spatio-temporal learning, where the
time axis acts as the third dimension. Multiple approaches use 3D-CNNs for action recog-
nition from short video sequences [12, 18, 47]. Varol et al. [48] extend these approaches
to longer temporal convolutions, also exploring the impact of optical flow. Wang et al.
[51] introduce saliency-aware maps into the 3D-CNN architecture, while the I3D model [1]
achieves improvements in action classification utilizing an Inception-like 3D-CNN network.
Building upon the action recognition models, [36, 57] add LSTMs and visual-semantic Em-
bedding for video description, while [27, 31, 32] utilize 3D CNNs for gesture recognition.

2.2 Computationally Efficient CNN Design
Multiple recent research efforts have focused in building small and efficient neural networks,
suitable for systems with limited resources, such as mobile devices. A common approach is
to reduce the number of parameters in the convolutions, with the MobileNets [13, 42], Shuf-
flenet [29, 60] and Xception [3] models utilizing depth-wise separable convolutions [44].
Meanwhile, Wang et al. [50] introduce factorized convolutions and Jin et al. [19] propose
the use of topological connections for further reducing computational requirements. Other
small networks include the Squeezenet [16] which uses a bottleneck approach to design a
very small network, structured transform networks [45] and deep fried convnets [56].

A different approach is to obtain a small network by shrinking a pre-trained network,
with the most popular network compression techniques including: 1) quantisation [17, 54],
in which filter weight matrices are quantised to lower bit depths, 2) hashing [2], which uses
a low-cost hash function to randomly group connection weights into hash buckets, witl con-
nections within the same bucket sharing a single parameter, and 3) Huffman coding [8] which
reduces the size of the networks using Huffman coding on the weights of the network.

While these techniques have been thoroughly tested on 2D architectures, correspond-
ing work towards efficient 3D-CNN designs has been rather limited. Ye et al. [58] present
a preliminary investigation of the use of 3D depthwise convolutions in 3D classification
and reconstruction. Zhi et al. [61] leverage multitask learning to improve the efficiency of
Voxnet, while Kumawat et al. [23] propose the ReLPV block, a four-layer alternative effi-
cient representation of the standard 3D convolutional layer. Additionally, efficient 3D-CNN
architectures have been proposed within the scope of spatio-temporal learning [15, 39].

The current work, on the other hand, attempts a thorough investigation of 3D-CNN de-
sign optimisation techniques, using a state-of-the-art 3D-CNN human pose estimation net-
work [49] as a baseline. All the stages of the architecture are optimised in terms of accuracy
and computational cost, leading to the definition of a series of design guidelines for the
generation of a 3D-CNN model of comparable accuracy but of lower complexity.

3 Computational Complexity Metrics
To evaluate the computational complexity of a network design, three framework agnostic
metrics are established (Table 1):
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• MACs describe the number of the required arithmetic operations. In the case of neu-
ral networks most of the computations are dot products (multiplication followed by
addition), with 1 MAC corresponding to one multiplication-addition

• Network Parameters are the number of trainable variables at each layer of a network,
that need to be learned and stored

• MEMs describe the required amount of memory access operations in order to read and
write all the data during compute. Disregarding, for simplicity, advanced techniques
such as caching, three MEM groups are processed at each layer: a) read the input, b)
read the weights, c) write the output.

Layer Input Filter MACs MEMs Params

FC D n nodes D ·n D+D ·n+n D ·n

Conv D3×Cin

k× k× k×Cout
Cin ·Cout · k3 ·D3/g · s3

D3 ·Cin+
Cin · k3 ·Cout/gstride s k3 ·Cout/g+

groups g D3 ·Cout/s3

Pool D3×Cin
k× k× k

k3 ·D3 ·Cin/s3 D3 ·Cin+ n/a
stride s D3 ·Cin/s3

ReLu D3×Cin n/a D3 ·Cin 2 ·D3 ·Cin n/a

Table 1: Calculation of the computational complexity metrics for 3D-CNNs. D is the input’s
spatial dimension, Cin,Cout are the input and output channels and k is the kernel size.

4 Network Design Optimisation
The optimisation process involves the revision of the state-of-the-art 3D-CNN architecture
for human pose estimation from Vasileiadis et al. [49]. The final goal is to reduce its overall
computational complexity, while maintaining its accuracy, achieving an optimal trade-off.

The baseline network employs a fully-convolutional 3D-CNN architecture, that uses as
input a 3D voxel grid and produces per-voxel likelihood maps of human joints and body
parts, for multi-person 3D human pose estimation from 3D point cloud data [49] (Fig. 1).

Figure 1: The baseline architecture from Vasileiadis et al. [49]. The 3D feature maps F
are generated from a 1123 input voxel grid, and passed to the sequential multistage structure,
which produces per-voxel likelihood maps Jt , Bt for NJ joints and NB body parts respectively.
The feature maps and stage predictions are then concatenated and passed to the next stage
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4.1 Optimisation Protocol
A protocol is established to consistently evaluate the effect in accuracy and computational
complexity of each potential network design. Every alternative network architecture is
trained from scratch and evaluated on the ITOP-front dataset [9], following the same train-
ing guidelines as in [49], with the Mean Average Precision at 0.1m (mAP) metric used for
evaluation. Additionally, the three complexity metrics are estimated for each architecture.
Overall, the goal at each optimisation step is to reduce the network’s total computational
complexity, while maintaining the accuracy of the previous step.

4.1.1 Efficient Convolutional Building Blocks

The first step in the design optimisation process is to find efficient alternatives to standard
convolutions. Inspired by the use of depthwise separable convolutions [44], towards the
same goal, in multiple proposed 2D-CNN architectures, five specific blocks are investigated,
based on the Mobilenets [13, 42], Shufflenet [29, 60] and Bottleneck [11] models (Fig. 2).

Figure 2: The basic convolutional building blocks ivestigated, based on the Mobilenets [13,
42], Shufflenet [29, 60] and Residual Bottleneck [11] architectures.

While in the corresponding papers, the authors propose specific architectures based on
these blocks, herein standard convolutions are directly substituted by the corresponding ef-
ficient blocks, maintaining the kernel sizes and channels widths of the baseline model. For
the Mobilenets v2 and Shufflenet v1 blocks, the channel width is slightly altered in order to
produce an architecture with a similar computational cost to the other three (Fig. 2, Table
2(a)). When a layer is followed by strided Max Pooling, the strided versions of the blocks
are used, to maintain the spatial resolution of the baseline model. Moreover, for blocks that
include residual connections, an identity layer is added, if the input and output do not have
the same number of channels. Finally, the first input layer, and the final two pointwise layers
at the end of each stage, are not substituted, as they are investigated on their own below.

From the evaluation of the building blocks (Table 2(a)), it becomes evident that all poten-
tial architectures achieve massive reductions, over 90%, in terms of MACs and parameters,
while approaching the accuracy of the baseline model, with an average decrease in mAP of
just 1.5%. Of the five architectures, the Shufflenet v2 [29] building block not only achieves
the highest accuracy score, but also presents the lowest complexity across all three metrics.

4.1.2 Input Layer

The first layer in the baseline model is comprised of a 7× 7× 7× 32 convolution followed
by strided Max pooling. Since it deals with the full resolution input grid, it accounts for
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approximately half of the total MACs of the model, thus making it necessary to optimise
it. Two potential blocks are investigated: a) standard strided convolution and b) Mobilenets
v1 strided block, where the stride is employed on the depthwise convolution. The other
four blocks from Section 4.1.1 are not employed as they would require an extra expensive
pointwise convolution at the full resolution of the input.

Both alternative first layers (Table 2(b)), manage to outperform the baseline layer, while
reducing the total MACs in half. The Mobilenets v1 block achieves larger complexity and ac-
curacy gains, even though it may seem counter-intuitive to perform a depthwise convolution
on a single channel input.

4.1.3 Kernel Size

In the previous steps the kernel dimensions of the baseline layers are maintained in the depth-
wise convolutions. Meanwhile, in the original Mobilenets and Shufflenet architectures, the
authors opt-out to use only kernel size k = 3 for the depthwise convolutions, along with the
pointwise convolutions, as most deep learning frameworks have custom, highly optimised
implementations for these kernel types. The same principle is applied to the optimised ar-
chitecture, specifically to the first two blocks as the rest of the network uses only kernel
sizes k = {1,3}. Additionally, the use of dilated convolutions is investigated, attempting to
maintain the receptive field of the original kernels. The 3× 3× 3 kernels present the same
performance with the baseline kernels, slightly reducing the MACs and network parameters,
while the dilated convolutional kernels result in a significant drop in accuracy (Table 2(c)).

4.1.4 End-of-stage Pointwise Layers

At the end of each prediction stage two pointwise convolutional layers are employed, follow-
ing [28] where fully connected layers are substituted with pointwise convolutions in order
to generate fully convolutional architectures. While pointwise convolutions are generally
considered computationally efficient, in the current optimised architecture the second to last
end-of-stage pointwise layers account for approximately a quarter of the total MACs and
parameters, as they are applied on the full channel width (128 channels). Removing those
layers results in a small decrease in accuracy of less than 0.7%, leading, however, to signifi-
cant gains in computational complexity, thus justifying this decision (Table 2(d))

4.1.5 Squeeze-and-Excitation Blocks

Moving in the opposite direction to the previous steps, the utilization of Squeeze - and -
Excitation (SE) blocks [14] is investigated, as a means of increasing the accuracy at a minor
computational cost. SE blocks adaptively recalibrate the feature responses of each channel
by modelling interdependencies between them, and have demonstrated significant improve-
ments in performance for existing state-of-the-art CNN architectures.

SE blocks with squeeze ratio r = 4 are added after the last BN/ReLu block in every
Shufflenet v2 block, leading to an impressive 1.3% increase in accuracy (Table 2(e)).

4.1.6 Input Data Representation

The baseline model [49] employs the computationally inexpensive Hitgrid [30] volumetric
representation to model the input data to a dense, fixed size 3D occupancy grid. Using, how-
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ever, slightly more complex representations, could potentially increase the overall accuracy,
leading to a better accuracy/complexity trade-off.

Two low cost data modelling approaches are investigated: a) projective D-TSDF [46]
which offers a fast approximation of the TSDF model [34] and b) PointGrid [24] which
combines the dense volumetric representation with raw point cloud features. For the former,
the truncation limit is set to l = 5 voxels, while for the later each voxel is represented by
K = 6 points and the grid resolution is halved, with stride set to s= 1. All three representation
models require less than 10ms to be generated from 25K 3D points on a single CPU core.

However, neither of the two representations manages to outperform the Hitgrid model
(Table 2(f)). In the case of the projective D-TSDF, it can be partially attributed to the pres-
ence of obstacles that may block the projection beam, while for PointGrid, the low number
of 3D points around smaller body parts (hands, feet) results in randomly duplicating data
which can make it harder for the convolution to extract good features.

Figure 3: 2D illustrations of the Hitgrid, PointGrid and projective D-TSDF representations

4.2 Network Dimensionality Parameterization

Figure 4: mAP on the ITOP-front dataset and computational complexity in giga-MACs, for
different width multiplier values a and number of sequential stages t

In order to further optimise the accuracy/complexity trade-off, two network dimensionality
hyperparameters are introduced: a) the width multiplier hyperparameter a ∈ (0,1], which
uniformly reduces the width of the network at each layer and b) the sequential stages hy-
perparameter t > 0, which defines the number of repetitive prediction stages in the se-
quential multi-stage structure (the baseline configuration described above corresponds to
{a = 1, t = 5}).

By evaluating all potential combinations (Fig. 4), the {a = 0.75, t = 4} configuration
achieves the best accuracy/complexity trade-off, as it presents minimal loss in accuracy (
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−0.3% compared to {a= 1, t = 5}), while requiring approximately half of the computational
resources.

4.3 Design Guidelines Overview

Based on the study presented above, the design guidelines for improved accuracy/complexity
trade-off of established 3D-CNN architectures, are defined as follows:

a. Hitgrid [30] volumetric data representation model
b. Mobilenets v1 [13] convolutional block for the first layer
c. Shufflenet v2 [29] convolutional blocks for the rest non-pointwise layers
d. Kernel size k = 3 for all non-pointwise layers
e. Strided convolution instead of pooling
f. Remove extra pointwise layers, besides last one
g. Squeeze and Excitation blocks [14]
h. Uniform reduction in network width and depth for best accuracy/complexity trade-off

Layer mAP MACs Params MEMs
(a) Building Blocks

Baseline [49] 0.8923 377.65 G 14720 K 3.11 G
Mobilenets v1 [13] 0.8772 33.74 G 840 K 4.34 G
Mobilenets v2 [42] 0.8769 33.88 G 1184 K 6.49 G
Bottleneck DW [11] 0.8765 30.91 G 707 K 4.93 G
Shufflenet v1 [60] 0.8744 34.20 G 685 K 5.91 G
Shufflenet v2 [29] 0.8782 30.17 G 674 K 4.25 G

(b) Input Layer

Conv + Max Pooling 0.8782 30.17 G 674 K 4.25 G
Conv / s=2 0.8830 16.64 G 674 K 3.57 G
Mobilenets v1 / s=2 0.8841 14.78 G 663 K 3.58 G

(c) Kernel Size

7x / 5x / 3x 0.8841 14.78 G 663 K 3.58 G
3x / 3x / 3x 0.8841 14.58 G 656 K 3.58 G
3x / 3x / 3x dilated 0.8454 14.58 G 656 K 3.58 G

(d) Pointwise Layers

Keep layers 0.8841 14.58 G 656 K 3.58 G
Remove layers 0.8782 10.97 G 491 K 3.12 G

(e) SE Blocks [14]

No SE blocks 0.8782 10.97 G 491 K 3.12 G
SE blocks / r=4 0.8913 11.11 G 558 K 3.83 G

(f) Data Representation Model

HitGrid [30] 0.8913 11.11 G 558 K 3.83 G
PointGrid / K=6 [24] 0.8801 11.28 G 558 K 3.84 G
Projective D-TSDF / l=5 [46] 0.8853 11.13 G 558 K 3.83 G

Table 2: mAP on the ITOP-front dataset and overall computational complexity for different
network architectures. At each step, the last optimised architecture (gray) is revised
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5 Experimental Evaluation

5.1 3D Human Pose Estimation
Following the evaluation protocol in [49], the final optimised architecture1 is evaluated on
the single-person ITOP [9] and multi-person CMU PanopticStudio (Band and Haggling se-
quences) [20] datasets, matching the accuracy of the Baseline [49] on the ITOP-front and
CMU Haggling subsets. On the other hand, a larger drop in performance is observed on the
more challenging ITOP-top and CMU Band subsets (2.5% and 1.5% respectively), with the
overall accuracy, however, being comparable to the state-of-the-art [7, 33, 49].

ITOP - front ITOP - top CMU Haggling CMU Band

Head 0.983 0.981 0.983 0.981
Neck 0.986 0.983 0.995 0.981
Shoulders 0.967 0.957 0.991 0.975
Elbows 0.819 0.772 0.982 0.967
Hands 0.700 0.627 0.965 0.955
Torso 0.983 0.973 n/a n/a
Hips 0.955 0.844 0.961 0.827
Knees 0.910 0.776 0.980 0.963
Feet 0.870 0.708 0.978 0.947

Ours MEAN 0.888 0.820 0.978 0.945

Baseline [49] 0.893 0.845 0.988 0.960
Moon 2018 [33] 0.887 0.834 n/a n/a
Guo 2017 [7] 0.849 0.755 n/a n/a

Table 3: Comparison (mAP@0.1m) of the proposed optimised architecture to the state-of-
the-art on the ITOP and CMU PanopticStudio datasets

MACs Params MEMs CPU / GPU Model Size
Ours 5.32 G 264 K 2.35 G 5.45 / 0.17 s 1.06 MB
Baseline [49] 377.65 G 14720 K 3.10 G 15.21 / 0.32 s 58.88 MB

Ours Single 1.34 G 135 K 0.64 G 1.38 / 0.05 s 0.54 MB
Baseline Single 105.71 G 7440 K 1.03 G 4.69 / 0.13 s 29.76 MB
Moon 2018 [33] 36.39 G 3398 K 1.28 G 3.49 / 0.11 s 13.59 MB

Table 4: Computational complexity and inference runtime comparison of the proposed opti-
mised architecture and state-of-the-art 3D-CNN human pose estimation architectures

Moreover, the computational complexity of the optimised architecture is estimated and
compared against the Baseline [49] and Moon et al. [33]. A “single person” configuration
is also presented, using only the joints detection branch and an 883 input grid, as in [33]
(Table 4). Additionally, all architectures are benchmarked on a CPU-only and a GPU-based
hardware configurations2, in order to provide an indication about their actual performance.

The proposed network achieves massive gains in terms of MACs and Network param-
eters, with smaller improvements in MEMs, mainly due to the optimisation process not

1a detailed diagram of the optimised architecture is available in the supplemental material
2Intel Core i5-4670K, 2 cores activated / Nvidia GTX970
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affecting the dimensions of the feature maps. Meanwhile, the speedup in runtime is in the
range of 3x on both configurations, with the single model reaching 20fps on the GPU.

5.2 3D Object Classification
In order to investigate the effectiveness of the design guidelines in other 3D tasks, they are
applied in 3D object classification. A naive 3D extension of VGG13 [26] is employed as a
baseline and optimised following the proposed guidelines. Both the baseline and optimised
architectures are evaluated on the ModelNet10 subset of the ShapeNet dataset [55], which
includes 55k 3D CAD models, sampled as 32×32×32 grids, split into 10 object categories.

The optimised VGG13 3D architecture matches the accuracy of the baseline model (Ta-
ble 5), while performing comparably to the state-of-the-art [23, 30, 43, 61]. Moreover, a
reduction across all three computational complexity metrics is observed (Table 6), similar to
the human pose estimation task, with a speedup of over 2x on the CPU-only configuration.

VGG13 3D VGG13 3D Maturana Zhi Sedaghat Kumawat
Ours 2015 [30] 2017 [61] 2017 [43] 2019 [23]

0.910 0.916 0.920 0.934 0.938 0.944

Table 5: Accuracy comparison of the baseline and optimised VGG13 3D architectures, to
state-of-the-art volumetric 3D-CNN models on the ModelNet10 dataset

MACs Params MEMs CPU / GPU Model Size
VGG13 3D Ours 0.26 G 19 M 243 M 0.19 / 0.018 s 76 MB
VGG13 3D 8.59 G 61 M 340 M 0.42 / 0.019 s 244 MB

Table 6: Computational complexity and inference runtime comparison of the baseline and
proposed optimised VGG13 3D architectures

6 Conclusions
This paper presented a series of CNN design guidelines, towards the computationally effi-
cient redesign of established 3D-CNN architectures, in order to make them suitable for de-
ployment on low power devices. Following these guidelines, a novel 3D-CNN human pose
estimation architecture was proposed, achieving comparable results to the state-of-the-art, at
a significantly lower computational cost, demonstrating the effectiveness of the introduced
guidelines. Moreover, the proposed design guidelines were further validated through their
application in 3D object classification.

Future work could include evaluating the guidelines in more 3D-CNN architectures, and
investigating techniques for further complexity reduction, such as more memory-efficient
data representation, non-depthwise 3D convolutions [23] and lower bit-width compute [17].
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