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Abstract

Video prediction has been considered a difficult problem because the video contains
not only high-dimensional spatial information but also complex temporal information.
Video prediction can be performed by finding features in recent frames, and using them
to generate approximations to upcoming frames. We approach this problem by disen-
tangling spatial and temporal features in videos. We introduce a mutual suppression
network (MSnet) which are trained in an adversarial manner and then produces spatial
features which are free of motion information, and motion features with no spatial in-
formation. MSnet then uses motion-guided connection within an encoder-decoder-based
architecture to transform spatial features from a previous frame to the time of an upcom-
ing frame. We show how MSnet can be used for video prediction using disentangled
representations. We also carry out experiments to assess the effectiveness of our method
to disentangle features. MSnet obtains better results than other recent video prediction
methods even though it has simpler encoders.

1 Introduction
Given a sequence of frames from a video, the process of video prediction attempts to generate
one or more upcoming frames. Video prediction is important in real-time systems such
as robots, closed-circuit television (CCTV), and self-driving cars, and also has a place in
applications such as the unsupervised learning of image representations from videos [18].

The learning of representations from images has been studied extensively, and the results
now surpass human ability [4]. However, learning representations from videos remains a
challenging task because of the temporal dimension, which brings a huge number of varia-
tions, and because it is not possible to annotate every frame in a video with labels. Some
‘natural’ labeling of videos is possible, for instance based on temporal coherence. How-
ever, the entangling of content and motion information in videos tends to make unsupervised
learning challenging. In this regard, there have been previous works on decomposing videos
into content and motion components [3, 17, 19, 20, 22, 24]. While the learning techniques
used on images [5, 6] can be extended for the content representations [11, 23], the learning
of representations of motion has not been studied so extensively. Temporal information can
be obtained from optical flow [12], with reasonable results. However, optical flow estimation
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involves a great deal of computation and depends on having a labeled dataset, which requires
tremendous effort and cost to obtain.

We propose a technique in which a mutual suppression network (MSnet) is used to dis-
entangle motion and content features. This approach is based on the following intuitive
assertions:
Separability of features: We train MSnet in such a way that information of one type is
suppressed during the extraction of features of another type. This can be achieved by mutual
adversarial learning.
Content from several frames: The majority of methods that encode video into motion and
content obtain content features from a single frame. We argue that content features, as well
as motion features, should be obtained from several frames. A single frame is not sufficient
to capture content information if two objects are occluded or cannot be distinguished.
Reproducibility: Given three frames x(1), x(2), and x(3), the content features from x(1) and
x(2), together with the motion features from x(2) and x(3), should allow us to reproduce x(3).
This leads to motion and content features which contain semantic information.
Time-reversibility of content: While previous methods have been based on the assumption
that content features are mostly time-invariant, we propose that the content features should
be time-reversible, so a content feature obtained from (x1,x2) should be the same as that
obtained from (x2,x1). This time-reversible property is intended to ensure that motion in-
formation is not unwittingly included in content features because we extract content features
from two frames, which may be related by temporal information.

The second step is the frame prediction task using the encoders and a generator trained
in the first step. To generate frames from the features from the encoders, previous methods
utilize the skip connections as used in UNet [14], that transfers information direct from a
previous frame to a target frame. During frame prediction, however, it is better that the
generator takes information related to the target frame, not the previous frame. Therefore
we introduce a motion-guided connection which modifies the information from the previous
frame to become the information needed for generating the target frame by considering the
motion features.

2 Related Work
There is no easy way of representing spatial and temporal information simultaneously in
videos. Recent work in video representation learning has therefore focused on disentangling
temporal and spatial information in natural videos. Simonyan and Zisserman used a two-
stream network for action recognition in videos, motivated by the way in which the human
visual cortex decouples complementary information appearing in videos [17], which has
subsequently been used for various fields of video processing [1, 8, 26].

The prediction of video frames requires the ability both to understand previous frames
and to produce realistic new frames. These tasks can be facilitated by decomposing a
video into motion and content components using techniques based on a two-stream net-
work. VGAN [21] predicted upcoming frames by modeling the foreground separately from
the background. MCnet [20] used an encoder-decoder technique to separate the motion and
content information of a video: a content encoder extracts spatial features from the most
recent frame of a video, and a motion encoder captures motion dynamics from pixel-wise
differences between previous pairs of frames. However, few of these differences contain
any semantic information about motions. DRnet [2] used a content discriminator to sep-
arate the pose attributes from the content attributes in a frame. The content discriminator
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examines whether two pose features relate to the same content or not. The pose features ac-
quired in this way are used to predict future pose features, from which upcoming frames can
be generated. However, DRnet cannot catch pure content information because it only uses
one-way suppression. For example, when predicting the frames using videos in the KTH
dataset [15], DRnet sometimes changed the identities of human in the predicted frames. In
addition, poses tend to be more ambiguous than motions in videos, so DRnet sometimes
swapped the locations of two numerals when applied to the Moving MNIST dataset [18].
DRnet is only concerned with a series of absolute locations (poses), and not with relative
locations (motion).

3 Proposed Method
The proposed method consists of two steps. The first step is frame reproduction, which
obtains disentangled features from a consideration of semantics in the frames. The second
step is video prediction using the disentangled features obtained during frame reproduction.

3.1 Frame Reproduction
Let xt denote the t th frame in video x. The frame reproduction is to reproduce xt+k from
the known frames xt ,xt+1, and xt+k. Following the ‘Reproducibility’ assertion presented in
the Introduction, we reproduce xt+k from the content of xt ,xt+1 and the motion of xt+1,xt+k,
with the aim of obtaining disentangled motion and content features by considering seman-
tics. We describe our network architecture in Section 3.1.1 and our training procedure in
Section 3.1.2.

3.1.1 Network Architecture

The structure of MSnet is presented in Figure 1. One encoder extracts content features
and another extracts motion features. From these features, a generator reproduces xt+k.

C

C

C

C

motion encoder 

: conv layer(s) : deconv layer(s)

: upsample : element-wise sum

: concatenateC

content encoder generator

motion-guided connection

Figure 1: Architecture of MSnet,
showing multi-scale motion-guided
connections.

Specifically, The content encoder Ec obtains the
content information Ec(xt ,xt+1) from two succes-
sive frames xt and xt+1. The motion encoder Em
extracts motion information Em(xt+1,xt+k) from
frames xt+1 and xt+k, which do not have to be ad-
jacent. The generator G reproduces the last frame
of the input xt+k. The motivation for these settings
is shown in the appendix.

Motion-guided Connection: The generator G
is connected to the content encoder Ec by block-
wise motion-guided connections, which play a
similar role to the skip connections in UNet [14],
but each motion-guided connection performs an
additional convolution operation guided by mo-
tion feature. This reduces ghosting in the repro-
duced frame: a standard skip connection tends to
preserve information about previous frames xt and
xt+1 (but not xt+k), which causes a ghost of xt and
xt+1 to remain in the reproduced xt+k. We con-
catenate the features of each convolutional block and a bi-linearly upscaled motion feature
Em(xt+1,xt+k), and then pass the concatenated features into a 1× 1 convolutional layer to
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adjust the number of channels, and add residual connections. These motion-guided connec-
tions use motion information to modify the spatial information from previous frames, so that
it can be effectively transferred to the target frames.

Discriminators for adversarial training: We apply adversarial learning to train MSnet,
with three discriminators. For realistic and sharp results, we use a frame discriminator. We
use two additional discriminators to disentangle motion and content features. More details
of these are given in Section 3.1.2.

3.1.2 Training Procedure

Based on the intuitive assertions presented in the Introduction, we define the following ob-
jective terms: To train the encoders, we use

L1 = Lrec +αLrev +β (LadvC +LadvM +LadvF), (1)

where α and β are hyperparameters. To train the discriminators, we use

L2 = LDF +LDC +LDM. (2)

We optimize L1 and L2 alternately. The loss terms in L1 and L2 are described below. In what
follows, x̂t+k denotes the reproduced frame G(Ec(xt ,xt+1),Em(xt+1,xt+k)).

Reconstruction and time-reversal Losses: Based on the ‘Reproducibility’ and ‘Time-
reversibility’ assertions presented in the Introduction, we define Lrec and Lrev as follows:

Lrec = ‖x̂t+k− xt+k‖2
2, (3)

Lrev = ‖Ec(xt ,xt+1)−Ec(xt+1,xt)‖2
2, (4)

where k represents the temporal distance between the target frame and the reference frame.
Frame adversarial loss: DRnet [2] uses mean squared error loss alone, which tends

to produce blurry results in image reproduction [10]. We thus introduce an extra frame
adversarial loss, using a technique similar to that employed in the pix2pix network [7]. The
frame discriminator D f is trained to determine whether its input is a real pair of frames or
not, and D f is trained by LDF which is expressed as follows:

LDF =− logD f (xt ,xt+k)− log(1−D f (xt , x̂t+k)) (5)

The adversarial loss LadvF expresses the extent to which synthetic frames produced by the
generator G manage to deceive the discriminator. The generator G is trained by LadvF to
synthesize realistic frames with the aim of deceiving the frame discriminator, and LadvF is
expressed as follows:

LadvF =− logD f (xt , x̂t+k). (6)

Disentangling adversarial loss: The notion of ‘Separability of features’ described
in the Introduction is realized by the content discriminator Dc and motion discriminator
Dm. The content discriminator is trained to determine whether two motion features come
from the same video, which requires it to discover the content information in these features.
Thus, to deceive the content discriminator, the motion encoder must generate motion features
that contain as little content information as possible. We train the content discriminator to
discover content information in motion features using the loss LDC, and the loss LadvC is
used to train the motion encoder in such a way that the motion discriminator cannot make a
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Figure 2: The frame prediction network. Given k frames, the network predicts upcoming T
frames.

decision, which means that the entropy becomes maximized. Note that Eq 8 can be simplified
to LadvC = − logx− log(1− x) if we set x = Dc(), and the function has the minimum value
when x = 1/2. The result is that the motion encoder obtains a pure motion feature. These
two losses are formulated as follows:

LDC =− logDc(Em(xa,xa+1),Em(xb,xb+1))− log(1−Dc(Em(xa,xa+1),Em(yb,yb+1))) (7)

LadvC =− logDc(Em(xa,xa+1),Em(xb,xb+1))− log(1−Dc(Em(xa,xa+1),Em(xb,xb+1))) (8)

where a and b are different frame numbers, and x and y are different videos.
In a similar way, the motion discriminator is trained to determine whether two content features are

from sequential or non-sequential frames, which requires it to discover the motion information from
the content feature. The content encoder can deceive the motion discriminator if it generates content
features that do not contain motion information. We train the motion discriminator to discover motion
information in the content feature by the loss LDM, and the content encoder is trained to deceive the
motion discriminator by the loss LadvM; so that the content encoder can obtain a pure content feature.
These two losses are formulated as follows:

LDM =− logDm(Ec(xa,xa+1))− log(1−Dm(Ec(xa,xb))), (9)

LadvM =− logDm(Ec(xa,xa+1))− log(1−Dm(Ec(xa,xa+1))), (10)

where xa and xa+1 are sequential frames, and xa and xb are non-sequential frames.

3.2 Video Frame Prediction
We apply the motion and content encoders trained during frame reproduction to video prediction.
MSnet is given k frames (x1, · · ·,xk) and trained to predict the following T frames (xk+1, · · ·,xk+T ),
using the network illustrated in Figure 2. The motion encoder extracts motion features from the pairs
(xk,x1),(xk,x2), · · ·, (xk,xk), and the content encoder extracts content features from (xk−1,xk). Note
that the first frame in each pair is always xk during motion extraction. A convolutional LSTM network



6 LEE ET AL.: VIDEO PREDICTION USING DISENTANGLED FEATURES

Given Target

MSnet

DRnet

MSnet

DRnet

TargetGiven

Given

MSnet

DRnet

Target

Figure 3: Qualitative results of frame reproduction task on the Moving MNIST dataset.

(cLSTM) [25] takes the motion features Em(xk,xt)(1≤ t ≤ k) extracted from each given pairs of frames
and predicts the motion features of the subsequent frames Êm(xk,xt+1) until the kth frame.

cLSTM(Em(xk,xt)) = Êm(xk,xt+1) (1≤ t ≤ k). (11)

For subsequent unknown frames, the predicted motion features are fed back into the cLSTM and the
motion features of the next upcoming frames are predicted. By repeating this step, we can predict the
motion features of the following T frames.

cLSTM(Êm(xk,xt)) = Êm(xk,xt+1) (k < t < T ) (12)

The cLSTM is trained using the following objective function:

Llstm = ‖cLSTM(Em(xk,xk))−Em(xk,xk+1)‖2 +
T−1

∑
t=k+1

‖cLSTM(Êm(xk,xt))−Em(xk,xt+1)‖2 (13)

Finally, the generator produces x̂t from the t th (t > k) predicted motion features Êm(xk,xt), together
with the content features Ec(xk−1,xk). By repeating this step, we can generate the required number of
upcoming frames.

4 Experiments
We performed experiments using the Moving MNIST and KTH datasets [15, 18]. First, we performed
frame reproduction using the Moving MNIST to compare MSnet with DRnet [2]. Then, we present
frame reproduction, frame prediction and disentangling experiments (feature-based nearest retrieval
and t-SNE visualization) on the KTH dataset.

4.1 Moving MNIST
The Moving MNIST dataset [18] contains 10,000 video sequences, each consisting of 20 frames. In
each video sequence, two digits move independently around the frame, which has a spatial rsolution of
64×64 pixels. The digits frequently intersect with each other and bounce off the edges of the frame.
We used 8,000 sequences for training and 2,000 for testing. We used motion features with a 4× 4
spatial map and 4 channels, and content features with a 4×4 spatial map and 8 channels. We use more
channels for the content features because the motions occurring in the Moving MNIST videos are not
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Figure 4: Quantitative results of the frame prediction on the KTH dataset. (a) Comparison
with state-of-the-art methods. (b) Comparison with ablation settings.

as complicated as those in natural videos. We used values of the temporal distance k between 0 and 5
in the frame reproduction process, and we set α = 1.0 and β = 3.3×10−5 in Eq. (1).

Qualitative results from this experiment are shown in Figure 3. Note that Denton and Birodkar
(2017) used self-generated colored digits to train DRnet, thus we re-trained it with the publicly avail-
able Moving MNIST data to make a fair comparison with MSnet. MSnet obtains content features from
the given frames and motion features from the last given and target frames. DRnet obtains content
features from the given frames and pose features from the target frames.

In the first example of Figure 3, DRnet generates digits in the wrong places. We attribute this to the
way in which DRnet encodes temporal attributes into pose features, and not into motion features, like
those used by MSnet. This suggests that motion is a more natural attribute of video than pose. In the
second example, DRnet produces blurry results where the two digits overlap in target frames. In the
third example, DRnet cannot identify two digits which overlap in a given frame. MSnet can identify
these overlapping digits correctly because it obtains content features from two frames. More results
with Moving MNIST are presented in the supplementary material.

4.2 KTH Dataset
The KTH dataset [15] contains videos of 25 people performing six actions. For our experiments, we
resized the frames in the videos to 128× 128 pixels. We used person 1-16 for training and person
17-25 for testing, following the widely used baseline method MCnet [20]. We used SSIM, PSNR, and
inception score as evaluation metrics. We used motion features with a 8×8 spatial map and 8 channels
and content features with a 8×8 spatial map and 8 channels. We used values of the temporal distance k
between 0 and 10 in the frame reproduction process. We set α = 1.0 and β = 4×10−5 in Eq. (1). For
the following figures, we denote the motion and content discriminators as MD and CD, respectively.

4.2.1 Video frame prediction

We used the same experimental settings used in MCnet for frame prediction experiments. All baseline
networks were trained by taking 10 frames from the KTH dataset and using them to predict the fol-
lowing 10 frames. During testing, 3,559 sequences of 30 frames were used: 10 given frames and 20

Citation
Citation
{Schuldt, Laptev, Caputo, and some} 2004

Citation
Citation
{Villegas, Yang, Hong, Lin, and Lee} 2017



8 LEE ET AL.: VIDEO PREDICTION USING DISENTANGLED FEATURES

gniklawgninnurgniggoj

boxinghandclappinghandwaving

G
.T

.
M

Sn
et

D
R

ne
t

M
C

ne
t

fR
N

N
G

.T
.

M
Sn

et
D

R
ne

t
M

C
ne

t
fR

N
N

t=12 t=15 t=18 t=21 t=24 t=27 t=30 t=12 t=15 t=18 t=21 t=24 t=27 t=30 t=12 t=15 t=18 t=21 t=24 t=27 t=30

t=12 t=15 t=18 t=21 t=24 t=27 t=30 t=12 t=15 t=18 t=21 t=24 t=27 t=30 t=12 t=15 t=18 t=21 t=24 t=27 t=30

Figure 5: Qualitative results of frame prediction on the KTH dataset. Given 10 frames, the
following 20 frames are predicted. We show every 3 frames.

frames to be predicted. The published DRnet model was trained on person 1-20, so we re-trained DR-
net on person 1-16 for fair comparison with other baseline methods. Quantitative results are presented
in Figure 4(a) and (b).

Figure 4(a) shows that MSnet obtained better results than other state-of-the-art methods on three
evaluation metrics even though it has simpler motion and content encoders. Note that we do not report
the number of parameters for ConvLSTM [25], TrajGRU [16], and fRNN [13], because it does not
decompose videos into motion and content streams. Qualitative results are shown in Figure 5. DRnet
produces the wrong motion in the boxing video, and changes the identity of the person in the handwav-
ing video. We attribute these problems to DRnet’s use of a basic UNet and one-directional suppression.
MCnet produces a person with an unrealistic shape, which we attribute to its poor disentangling of fea-
tures and a lack of semantic information in its motion features. fRNN has difficulty when the person
in the frame makes a large motion, and we attribute this to the way in which it considers motion and
content information simultaneously. These results suggest that meaningful features are obtained by
mutual suppression and motion-guided connection. More results are presented in the supplementary
material.

In ablation experiments, we removed each discriminator in turn to show the effects of mutual sup-
pression on the disentangled features. Figure 4(b) shows that the results from MSnet are worse when
either the motion or content discriminator is removed. Without the content discriminator (blue and
gray lines), prediction performance drops significantly across subsequent frames because the motion
encoder generates impoverished motion feature. With only the content discriminator (green line), the
content encoder cannot extract meaningful content features, so it performs poorly on the first predicted
frame. However, its performance does not drop significantly across subsequent frames as meaningful
motion features can be extracted with the content discriminator. These results demonstrate how mutual
suppression disentangles motion and content features.

4.2.2 Disentangling Experiments

We present t-SNE visualization [9] and feature-based nearest retrieval results to show the disentangling
effect.

Feature-based frame retrieval: The aim of feature-based frame retrieval is to fetch the frame
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Figure 6: Feature-based nearest frame retrieval results.
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Figure 7: Visualization by t-SNE dimensional reduction of dynamic actions (walking, jog-
ging, and running) (the red points), and static actions (boxing, handclapping, and handwav-
ing) (the blue points), with and without the content and motion discriminators. The first
row shows the distribution of motion features, and the second row shows the distribution of
content features.

which is closest to a query frame in terms of motion and content features. More formally,

xr = argmin
x
‖E(xq)−E(x)‖, E ∈ {Ec,Em}, (14)

where xq is a query frame, x is a frame other than the query frame, and xr is the retrieved frame.
Figure 6 shows the results of nearest motion and content retrieval. Ideally, nearest motion retrieval

should retrieve the most similar motion regardless of the content (the identity of the person and the
background), and content retrieval should retrieve the most similar content regardless of any motion.
As shown in Figure 6(a), MSnets with the content discriminator (the second and third rows) retrieve
the most similar motions regardless of the identity the person and the background, because the content
discriminator helps the motion encoder to extract pure motion features. In Figure 6(b), MSnets with the
motion discriminator (the second and fourth rows) retrieve the most similar content regardless of the
motions, because the motion discriminator helps the content encoder to extract pure content features.

t-SNE visualization: As MSnet is trained in an unsupervised manner, it cannot separate similar
actions, such as running and jogging. For visualization by t-SNE dimensional reduction, we thus clas-
sify walking, jogging, and running as dynamic actions, and boxing, handclapping, and handwaving as
static actions. If motion and content are disentangled as intended, motion features in the same actions
should be clustered, and motion features in different actions should be separated. Conversely, points
corresponding to content features which do not contain motion information should not be clustered.
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The results of t-SNE visualization are shown in Figure 7. MSnet with both discriminators produces
the most clustered motion features, and the most random distribution of content features. Using the
content discriminator alone, motion features are reasonably well clustered, as pure motion features can
still be captured effectively. However, content features are now more clustered because the omission of
the motion discriminator means that content features contain unwanted temporal information. Without
the content discriminator, and without both discriminators, the results are far from what we intend.

5 Conclusions
We have proposed a new method for video frame prediction. We have introduced mutual suppression
adversarial training to acquire disentangled motion and content representations, and applied motion-
guided connection to refine the content information from previous frames for use in the prediction of
upcoming frames. MSnet has been shown to obtain well-disentangled features. This lead to better
results in terms of frame prediction than other state-of-the-art methods. We have also shed light on the
way in which mutual suppression disentangles features by ablation studies in the domains of t-SNE
visualization and feature-based nearest frame retrieval.
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