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Abstract

Partial occlusion is a challenging problem in visual object tracking. Neither Siamese
network based trackers nor conventional part-based trackers can address this problem
successfully. In this paper, inspired by the fact that attentions can make the model focus
on the most salient regions of an image, we propose a new method named Relation-aware
Multiple Attention (RMA) to address the partial occlusion problem. In the RMA module,
part features generated from a set of attention maps can represent the discriminative parts
of the target and ignore the occluded ones. Meanwhile, an attention regularization term is
proposed to force the multiple attention maps to localize diverse local patterns. Besides,
we incorporate relation-aware compensation to adaptively aggregate and distribute part
features to capture the semantic dependency among them. We integrate the RMA module
into Siamese matching networks and verify the superior performance of the RMA-Siam
tracker on five visual tracking benchmarks, including VOT-2016, VOT-2017, LaSOT,
OTB-2015 and TrackingNet.

1 Introduction
Visual object tracking is a fundamental problem in computer vision. Given the bounding
box of the target in the first frame, visual trackers are required to not only localize the ob-
ject position, but also decide its size in the following frames. Although great progress has
been made over the last decades, building a robust tracker with high tracking speed is still a
challenging task, especially at the presence of partial occlusion and deformation.

Recently, Siamese network based trackers [2, 14, 22, 40, 41, 49] have drawn much atten-
tion which achieve high tracking speed by avoiding online training. These Siamese trackers
learn a similarity between holistic representations of the target in the template and the search
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region. Unfortunately, only making use of the holistic model for target representation may
easily miss fine-grained visual cues [24] and lead to degraded tracking results at the presence
of partial occlusion and deformation [9, 46]. Traditional part-based trackers [11, 26, 27, 46]
address this problem by explicitly dividing object with predefined grids into multiple parts
and then learning correlation filters for each part. However, the target may not occupy all
the grids. Moreover, the shape of different kinds of the target varies a lot. A fixed grid
decomposition is suboptimal.

In this paper, we propose Relation-aware Multiple Attention (RMA) to handle the above
problems. Instead of directly using a predefined decomposition, we incorporate multiple
spatial attentions into Siamese networks to make the model automatically localize discrim-
inative parts of the target. Specifically, the RMA module generates a set of attention maps
that represent the most salient parts of the target. Meanwhile, an attention regularization
term is utilized to remove the redundancy of the learned attention maps, forcing them to
focus on diverse parts of the target. Therefore when the target is partially occluded, our
multiple attention module can adaptively detect the visible parts while ignoring the occluded
parts. Moreover, relation-aware semantic compensation is proposed to aggregate and dis-
tribute the local cues according to the correlation of each other, so that the local parts can
capture the semantic dependency of each other. In this way, drifting to background with the
similar local pattern can be greatly alleviated. We compare our method with Siamese based
trackers on VOT-2016 [19], VOT-2017 [20], LaSOT [12], OTB-2015[45] and TrackingNet
[29]. Experimental results show the superiority of our proposed method.

2 Related Work
Siamese Trackers. Visual object tracking can be viewed as a similarity matching problem.
By comparing the target image patch with the candidate patches in a search region, we can
track the object to the location where the highest similarity score is obtained. Similarity
learning with deep convolutional neural networks is typically performed using Siamese ar-
chitectures. The SINT [40] tracker trained a Siamese architecture to learn a metric for target
matching. GOTURN [16] compared feature maps of the target and search region to find the
target object with concatenation operation. SiamFC [2] brought cross correlation into a fully
convolutional network with increased tracking accuracy and high tracking speed. DSiam
[14] effectively online learned target appearance variation and suppressed background with
a fast transformation learning model. The CFNet tracker [41] preformed online update of the
Siamese network by integrating correlation filters into the network. SiamRPN [22] incorpo-
rated region proposal network to localize the target and estimate its size, avoiding exhaust
search across different scales and significantly boosting the tracking speed. DaSiamRPN
[49] improved the discrimination of the network with semantic negative pairs. However, all
above methods encode the target in its entirety which leads to degraded tracking results in
partial occlusion. Our method can greatly alleviate this problem by introducing relation-
aware multiple attentions into the Siamese networks.

Part-based Trackers. Part-based trackers try to exploit object part information and achieve
promising performance. Liu et al. [28] proposed to track the target based on multiple object
parts with multiple independent correlation filters. Fan et al. [11] utilized motion models
to preserve the inner structure of object parts. Du et al. [9] exploited high-order geometric
relations among multiple parts of the target with hypergraph learning. However, the above
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Figure 1: The overview of our proposed method. � is the element-wise multiplication. ⊗ is
the matrix multiplication. ? is the cross-correlation operation.

methods use predefined grids of the target. The target may not occupy all the grids, a fixed
grid decomposition is suboptimal. The most similar work to ours is StructSiam [48]. It
simultaneously considered the local patterns of the target and their structural relationship
with mean-field approximation algorithm. Our method is different from StructSiam in two
aspects. First, our method learns multiple attention maps to automatically discover diverse
local patterns in the spatial domain. Second, our method uses relation-aware compensation
to enhance the semantic representation of the part feature maps, instead of using iterative
mean-field approximation which costs much time.

Attention Mechanisms. Attention mechanisms are widely used in computer vision tasks,
such as classification [17, 44], person re-identification [24], image synthesis [47], and action
recognition [3, 43]. As for single object tracking problems, the FlowTrack [50] aggregated
temporal features with temporal attention. The RASNet [42] integrated general attention,
residual attention and channel attention to learn target specific representation. The ACFN [4]
selected the tracking submodules with an attention network. The HART [33] utilized spatial
attention to single out the tracked object and appearance attention to suppress distractors.
The DAT [32] treated the gradient with respect to the image as an attention which helped the
classifier attend to target regions. In contrast to the above methods, which only focus on the
global view of the object, our method considers the object parts to improve the discrimination
of the learned features.

3 The Proposed Approach
In this section, we will elaborate on the proposed method. Figure 1 illustrates the pipeline
of our tracking algorithm. Given the template and a search image region, first we extract the
features with a convolutional network. Second, the multiple spatial attention module is used
to generate a set of diverse part features, each corresponding to a specific salient part of the
target. Third, the part features are further enhanced by adaptive aggregation and distribution
with relation-aware semantic compensation. Finally, we do classification and regression with
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Figure 2: The multiple attention module. It first generates a compact feature map (1) and
multiple attention feature maps (2) respectively with two 1×1 conv. The attention maps are
normalized using softmax and element-wisely multiplied with the feature map to generate
the part feature maps (3).

cross-correlation between the learned features of the template and the search region.

3.1 Multiple Spatial Attentions

Discriminative part features are critical when the target is occluded or has large deformation.
Matching the global representations of the target between the template and the search region
is not reliable [9, 46]. We propose the multiple spatial attention module, as shown in Figure
2, to automatically discover discriminative target parts instead of using predefined spatial
decomposition of the target.

Multiple Attentions. We generate a feature map, F ∈ RN×H×W , and a set of attention
maps, A = {a1,a2, . . . ,aM} where ai ∈ RH×W , with two convolutional operations from the
extracted feature maps. N and M are predefined positive integers, which decide the dimen-
sion of the embedding space and the number of attention maps, respectively. In our exper-
iments, we set N = 32 and M = 8. Each attention map ai, which corresponds to a specific
object part, is normalized using softmax of the responses:

āi =
exp(ai)

∑
H
j=1 ∑

W
k=1 exp(ai, j,k)

, i = 1, . . . ,M. (1)

We element-wisely multiply the normalized attention map āi with the feature map F to gen-
erate the ith part feature (we replicate āi for N times to match the size of F):

F̃i = rep(āi)�F, i = 1, . . . ,M. (2)

The final feature F̃ = [F̃1; F̃2; . . . ; F̃M] ∈ RNM×H×W is concatenated by these part features.

Attention Regularization. Directly training without any supervision, the multiple spatial
attentions will easily degenerate to locate on the same most salient part of the target. Inspired
by RePr [31] which measures the inter-filter orthogonality with an orthogonal term, we use
this term as a regularization to make different attention maps focus on diverse object parts.
To this end, we reformulate the normalized attention maps as Ā = [ā′i, ā′i, . . . , ā′M] ∈RHW×M ,
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Figure 3: Visualization of the learned multiple attention maps. The first and second row
are the attention maps of MotorRolling and Tiger1 respectively. Different columns represent
different attention maps.

where ā′i ∈ RHW is the vectorized attention map of āi. The orthogonal loss is defined in the
equation below:

Lorth = ||O||2 = ||ĀT Ā− I||2, (3)

where O∈RM×M represents the orthogonality of the attention maps, I∈RM×M is the identity
matrix. Off-diagonal elements in a row of O denote the orthogonality of one attention map
with all other attention maps. By minimizing the orthogonal loss, the attention maps are
constrained to focus on diverse object parts. The learned multiple attention maps for some
example images are illustrated in Figure 3.

3.2 Semantic Relation-aware Compensation
Matching local patterns between the template and the search region can easily cause the
tracker drifting to background clutter which has similar local patterns. To alleviate this
problem, relations among different part features must be taken into consideration so that
part features not only represent the most salient object parts, but also capture the semantic
dependency among them.

In order to capture the complex relations between part features, we calculate the correla-
tion between different part features. We define S ∈ RM×M as the affinity matrix:

S = φ(F̃)T
φ(F̃), (4)

where φ(F̃) ∈RN×M is the embedding function implemented by a 1×1 group convolutional
layer followed by global average pooling and reshape operation. It transforms the original
part features into a compact representation. The number of groups is same as the number of
object parts. We use Si to denote the ith column of S. It represents the similarity between
the ith part feature and the other part features. We normalize Si with softmax function S̄i =
softmax(Si).

Besides, we transform the original part features with function ρ(F̃) ∈ RM×HW to an em-
bedding space. The function ρ is another 1×1 group convolutional layer after with reshape
operation. The number of groups is M. Then, the transformed part features are adaptively
aggregated according to the learned correlation S. Formally, the aggregated feature that will
be assigned to the ith part is computed as:

Di = ρ(F̃)T S̄i, (5)

where Di ∈RHW . We reshape Di to 2D feature map in RH×W and combine it with the original
ith part feature map F̃i using element-wise multiplication. In this way, each part feature can
not only represent itself but also convey the complex relations with other parts.
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3.3 Training and Tracking
Training. The training of our method is performed on image pairs, each of which is sam-
pled from the same video sequence with a random interval. We use the following multi-task
loss to end-to-end train our networks.

L = ∑
i

Lcls(ci,c∗i )+α ∑
i

Lloc(li, l∗i )+ γLorth, (6)

where Lcls is the softmax classification loss, Lloc is the smooth L1 loss, and Lorth is defined
in Eq. 3. α and γ are predefined weights to balance the three loss terms. In practice,
we use α = 1.2 and γ = 0.01. ci and c∗i are the predicted score and the label of the ith

anchor, respectively. li and l∗i are the predicted offset and the offset between the ith anchor
and the corresponding groundtruth box. Following [35], let Ax,Ay,Aw,Ah denote the center
coordinates, the width and height of the ith anchor, and Tx,Ty,Tw,Th denote those of the
corresponding groundtruth box. Then l∗i = [l∗i(x), l

∗
i(y), l

∗
i(w), l

∗
i(h)] is defined as follows:

l∗i(x) =
Tx−Ax

Aw
, l∗i(y) =

Ty−Ay
Ah

, l∗i(w) = ln Tw
Aw

, l∗i(h) = ln Th
Ah
. (7)

Tracking. The setting of our RMA-Siam tracker is the same as the SiamPRN[22]. We
extract features of the template and the search region using the same CNN. Then we find the
most salient parts of the target with multiple attentions and enhance the part feature maps
with our relation-aware compensation module. We do classification and regression with the
enhanced part features in the template and the search region with cross-correlation. Cosine
window is utilized to rescore the predicted classification score. The final box is determined
by the maximal reweighted score. We also use linear interpolation to smooth the predicted
size of the target.

4 Experiments

4.1 Implementation Details
We implement the proposed tracker with PyTorch 0.4.1 on a server with GTX-1080Ti GPU
and Intel Xeon 2.2GHz CPU. The average tracking speed is 182fps which drops 21fps com-
pared with the baseline tracker SiamRPN running at the same environment. The backbone
network of our architecture is modified AlexNet [21] which removes padding in all convo-
lutional layers. We use one scale anchor with five aspect ratios which are [0.33,0.5,1,2,3].
We train our network on ImageNet VID [36] and YoutobeBB [34] dataset which is the same
datasets used in SiamRPN for fair comparison. In both training and testing, we use single
scale images with 127 pixels for template patches and 255 pixels for search regions. Our
model is trained with stochastic gradient descent with momentum of 0.9. The whole net-
work is end-to-end trained with 50 epochs with weight decay 10−4. The initial learning rate
is 10−2 and exponentially decayed to 10−5.

4.2 Comparison with State-of-the-Arts
VOT-2016 Dataset. VOT-2016 dataset [19] consists of 60 challenging videos, where each
sequence is per-frame annotated by five visual attributes, and the bounding box is generated
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Tracker SiamAN SA-Siam Staple DeepSRDCF ECO-HC C-COT SiamRPN RMA-Siam
[2] [15] [1] [6] [8] [7] [22]

A(↑) 0.54 0.54 0.54 0.56 0.54 0.54 0.56 0.62
Fail.(↓) 1.65 1.08 1.35 1.0 1.19 0.85 1.08 0.95
EAO(↑) 0.232 0.291 0.295 0.318 0.322 0.331 0.344 0.382

Table 1: Comparisions on VOT-2016 [19]. The best two results are highlighted in red and
blue, respectively.

Tracker GMDNetN SiamFC SA-Siam SiamRPN C-COT CFCF ECO LSART RMA-Siam
[30] [2] [15] [22] [7] [13] [8] [39]

A(↑) 0.513 0.503 0.500 0.490 0.494 0.509 0.484 0.495 0.583
R(↓) 0.696 0.585 0.459 0.460 0.318 0.281 0.276 0.218 0.370

EAO(↑) 0.157 0.188 0.236 0.244 0.267 0.286 0.280 0.323 0.311

Table 2: Comparisions on VOT-2017 [20]. The best two results are highlighted in red and
blue, respectively.

from the pixel-wise segmentation of the tracked object. In Table 1, we compare our tracker
in terms of Expected Average Overlap (EAO), Accuracy (A), and Failure (Fail.) with some
top-ranked trackers in the VOT-2016 benchmark. Our tracker achieves the best results with
respect to EAO and A measurements, and outperforms the baseline tracker SiamRPN. We
get 11% relative gains on EAO compared with SiamRPN. The most robust tracker is C-COT
[7] as it makes use of online learning while our tracker relies solely on the first frame.

VOT-2017 Dataset. The VOT-2017 dataset [20] drops 10 videos which are easy to track
compared with the VOT-2016 benchmark and adds another 10 more challenging videos. We
compare our tracker with 8 top-ranked trackers on VOT-2017. Following the evaluation
protocol of VOT-2017, we adopt EAO, Accuracy and Robustness (R) to evaluate different
trackers. The detailed comparisons are reported in Table 2. The proposed tracker achieves
the top-ranked performance with respect to EAO and A. Compared with the baseline tracker
SiamRPN, we achieve 27.5% relative gains on EAO. In addition, compared with the top-
performance of LSART [39], our tracker shows competitive performance.

LaSOT Dataset. The LaSOT dataset[12] provides a large-scale, high-quality dense anno-
tations with 1400 videos in total. We follow the protocol II which uses 280 testing videos
to evaluate our tracker with normalized precision plots and success plots. Figure 4 reports
the overall performances of our tracker. We compare our tracker with 9 top performance
approaches, including MDNet [30], VITAL [38], SiamFC [2], StructSiam [48], DSiam[14],
ECO[8], SINT[40], STRCF[23], and DaSiamRPN [49]. Our tracker achieves relative gains
of 5.4% on normalized precision plots and 4.6% on success plots compared the best perfor-
mance tracker DaSiamRPN which is the enhanced version of SiamRPN.

Further, we analyze our tracker with respect to 8 different attributes, including aspect
ratio change, scale variation, partial occlusion, deformation, full occlusion, motion blur,
viewpoint change, motion Blur, viewpoint change, and illumination variation. As shown in
Figure 5, our tracker can better handle partial occlusion and deformation since multiple spa-
tial attentions localize the most discriminative parts of the target. The learned part features
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Figure 4: Evaluation results of different trackers on OTB-2015 and LaSOT.
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Success plots of OPE - Scale Variation (273)
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Success plots of OPE - Partial Occlusion (187)
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Success plots of OPE - Deformation (142)
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Success plots of OPE - Full Occlusion (118)
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Success plots of OPE - Motion Blur (89)
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Success plots of OPE - Viewpoint Change (33)
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Success plots of OPE - Background Clutter (100)

Figure 5: The success plots of eight attributes on LaSOT dataset.

are not influenced by the occluded part. Top performance on background clutter attribute
further proves the effectiveness of the proposed semantic relation-aware compensation. It
enhances the part features and makes them distinguishable from the background with simi-
lar local patterns. Our tracker also improves success plots of other attributes.

OTB-2015. The OTB-2015[45] provides a fair comparison on the accuracy and robustness
with precision plots and success plots. We compare our trackers with 9 state-of-the-art track-
ers (ECO-HC[8], SiamRPN[22], PTAV[10], CREST[37], BACF[18], SRDCF[5], SINT[40],
CFNet[41], and SiamFC[2]). The precision plots and success plots are show in Figure 4.
Our tracker achieves success plots of 0.643.

TrackingNet. The TrackingNet [29] provides a large amount of data to assess trackers in
the wild. We evaluate our trackers on testing dataset with 511 videos. Following [29], we
use three metrics, including precision plots (PRE) , normalized precision plots (NPRE) and
success plots (SUC), for evaluation. As shown in Table 3, our tracker achieves the best
performance on PRE, NPRE, and SUC.

4.3 Ablation Analysis
We conduct experiments to verify our model designs. We use VOT benchmarks for the abla-
tion analysis. As shown in Table 4, MA, AR, and RC denote the multiple attention, attention
regularization, and relation-aware compensation respectively. We progressively add each
module into the tracker. The preformance improvement of MA is very limited in EAO, due
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Tracker MDNet CFNet SiamFC ECO CSRDCF SAMF Staple BACF RMA-Siam
[30] [41] [2] [8] [5] [25] [1] [18]

PRE 0.565 0.533 0.533 0.492 0.480 0.477 0.470 0.461 0.594
NPRE 0.705 0.654 0.663 0.618 0.622 0.598 0.603 0.580 0.733
SUC 0.606 0.578 0.571 0.554 0.534 0.504 0.529 0.523 0.633

Table 3: Comparisions on TrackingNet [29]. The best two results are highlighted in red and
blue, respectively.

MA AR RC VOT-2016 VOT-2017
A(↑) R(↓) EAO(↑) A(↑) R (↓) EAO(↑)
0.560 0.312 0.344 0.490 0.464 0.244

X 0.608 0.308 0.350 0.582 0.482 0.256
X X 0.611 0.275 0.357 0.587 0.454 0.269
X X 0.624 0.252 0.375 0.585 0.431 0.279
X X X 0.616 0.266 0.382 0.583 0.370 0.311

Table 4: Ablation study of our trackers on VOT benchmarks. MA, AR, and RC denote
multiple attention, attention regularization, and relation-aware compensation.

to the fact that only part information will cause the tracker drift to background clutter with
similar local patterns. Adding AR helps the tracker to detect diverse local patterns of the
target and improves robustness compared with the second row and the third row. Moreover,
when using MA and RC together, the performance further improves as shown in the fourth
row. Finally, We conduct experiment with LC, AR and RC together. Compared with the
baseline tracker SiamRPN, we obtain relative gains of 11.6% on VOT-2016 and 27.5% on
VOT-2017 measured by EAO.

4.4 Qualitative results

Some qualitative results are demonstrated in Figure 6. Our tracker can better handle partial
occlusion and deformation compared with the baseline tracker SiamPRN. When the target
is partially occluded (fish1, fernando), our tracker can still track the target. Compared with
the correlation filter based trackers in case of deformation (fish1, motocross1, fernado), our
tracker can better estimate the size of target.

5 Conclusion

In this paper, we present relation-aware multiple attention module to boost the tracking per-
formance. The RMA module discovers the most salient target parts with multiple attention
maps, where the orthogonal regularization is applied to ensure the diversity of the local
patterns. Relation-aware semantic compensation is then applied to capture the dependency
among the part features. The resulting tracker benefits from the robust and discriminative
part features. It achieves promising results on VOT series dataset, LaSOT, OTB-2015, and
TrackingNet while maintains high tracking speed.
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#001 #085 #144 #259 #316

#001 #038 #046 #053 #060

#001 #057 #143 #185 #202

SiamRPNGround Truth Ours C-COT SiamFC ECO

Figure 6: Visualization results. The videos in the first, second, third row are fish1, mo-
tocross1, and fernando in VOT-2017, respectively. The bounding boxes are not drawn if the
tracker lost the target (except the first frame).
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