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Abstract

Pose estimation of a pedestrian helps to gather information about the current activity
or the instant behaviour of the subject. Such information is useful for autonomous vehi-
cles, augmented reality, video surveillance, etc. Although a large volume of pedestrian
detection studies are available in the literature, detection of the same in situations of sig-
nificant occlusions still remains a challenging task. In this work, we take a step further to
propose a novel deep learning framework, called ClueNet, to detect as well as estimate
the entire pose of occluded pedestrians in an unsupervised manner. ClueNet is a two
stage framework where the first stage generates visual clues for the second stage to ac-
curately estimate the pose of occluded pedestrians. The first stage employs a multi-task
network to segment the visible parts and predict a bounding box enclosing the visible
and occluded regions for each pedestrian. The second stage uses these predictions from
the first stage for pose estimation. Here we propose a novel strategy, called Mask and
Predict, to train our ClueNet to estimate the pose even for occluded regions. Addition-
ally, we make use of various other training strategies to further improve our results. The
proposed work is first of its kind and the experimental results on CityPersons and MS
COCO datasets show the superior performance of our approach over existing methods.

1 Introduction

Since last several years pedestrian detection has been one of the interesting and challeng-
ing tasks in the Computer Vision community. Although its state-of-the-art methods have
now achieved significant accuracies, pose estimation of pedestrians, particularly for partially
occluded pedestrians still remains a challenging problem. Precise estimation of pose not
only helps to identify a pedestrian more accurately but also to gather information about the
present activity of the subject or its instant behaviour. Automatic understanding of limb ar-
ticulation or posture of pedestrians is useful for autonomous vehicles, robotics, augmented
reality, video surveillance, etc. For the inherent complexity of the problem, mainly due to
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Figure 1: Pedestrian detection and pose estimation results of ClueNet on an image sample
of CityPersons benchmark dataset.

the high variation in scales of the figures appearing in the vicinity or different degrees of
occlusion caused by various obstacles in the scene, it still remains a challenging research
problem. Although during the last decade major progress has been achieved on pedestrian
detection [4, 14, 54, 56], their performance in cases of occlusion drops significantly [53].
Occlusion in pedestrian figures is a common phenomenon but enough studies for efficient
handling of similar cases cannot be found in the literature. A majority of related studies
[34, 43, 59] considered some ensemble methods and consequently their executions are time
intensive. On the other hand, to the best of our knowledge, no such study has been conducted
on pose estimation of occluded pedestrians.

Early attempts of pose estimation were based on robust image feature computation and
use of some sophisticated classification framework [48]. However, all of the recent studies
[46] use convolutional networks and do not indulge in explicit feature computation although
a majority of these approaches fails to perform efficiently in cases of occlusions. Some
improvements in cases of occlusions have been reported in a few studies [11, 23, 30]. In
this work, we have introduced ClueNet, a novel two stage deep learning based framework
to address this problem and the experimental results on benchmark datasets show significant
improvement over state-of-the-art models.

The proposed ClueNet framework consists of two stages. The first stage aims to seg-
ment the visible parts of the pedestrian instances and localize the pedestrians by bounding
boxes, enclosing both it’s visible and occluded regions, through a two stream multi-task
scale invariant network. The segmentation and detection streams share a common feature
encoder network that uses ResNet-50 [19] and modified Inception blocks [41] with verti-
cally shaped convolution kernels to segment and detect pedestrians of different scales in an
efficient manner. We further use channel-wise attention to enhance important features, while
at the same time attenuate noisy and unwanted background information. The multi-task set-
ting allows these correlated tasks (segmentation and detection) to learn from each other and
hence perform better than they would if used individually. The segmentation and detection
results, which act as visual clues, are then passed to the second stage of the ClueNet for pose
estimation.
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The second stage of our framework, which is also our primary contribution, is a new
pose estimation model that takes input from the predictions of the first stage and aims to
estimate the entire pose of both completely visible as well as occluded pedestrians. But
again, estimating the entire pose for occluded pedestrians is a challenging task due to few
reasons. First, none of the existing pedestrian detection datasets come with annotations for
the pose of pedestrians. Secondly, even if we consider using any 2D pose estimation dataset
alongside, none of these datasets come with annotations for pose in the occluded regions. To
tackle this, we propose a novel training procedure which makes use of Domain Adaptation
[45] and the proposed Mask and Predict strategy to train the model to estimate the entire
pose of a pedestrian (irrespective of complete visibility) in an unsupervised way. To the best
of our knowledge this is the first approach to explore the task of estimating the entire pose
of occluded pedestrians, or human instances in general.

2 Related Work

The proposed solution of occluded pedestrian pose estimation task consists of three sub-
tasks, viz. detection, semantic segmentation and pose estimation of pedestrian figures in a
scene image. Pedestrian detection has been studied extensively [1, 3, 8, 25, 60] during the
past decade. However, occluded pedestrian detection remains a challenge even in the present
day. Existing studies of Occluded Pedestrian Detection [35, 36, 42, 59] aimed to learn the
various occlusion patterns available in the training set. Zhou et al. [59] proposed a part detec-
tor method to learn the occlusion patterns using a multi-label learning approach. Such meth-
ods fail to generalize effectively in real world occlusion scenarios. Although performance
of vanilla Faster R-CNN [38] gets suffered on smaller pedestrian figures, the SSD model
proposed in [29] significantly outperformed the performance of Faster R-CNN in terms of
both accuracy and speed. Later, He et al. [51] took the help of Region Proposal Network [38]
and Boosted Forests [2] to improve the detection performance of smaller pedestrian figures.
More recently, Zhang et al. [53] used a regression network with guided attention improving
pedestrian detection performance for different types of occlusion. Segmentation can either
be based on individual instances (Instance Segmentation) or on a broader category or type
of the objects (Semantic Segmentation). Recent studies of segmentation used CNN based
frameworks and some of these include [9, 10, 16, 28, 50] and [62].

State-of-the-art keypoint estimation performance could be obtained by using convo-
lutional neural networks (CNN). Such an architecture proposed by Alejandro et al. [31]
grouped the features of different scales without losing spatially correlated information. Per-
formance of a few other real-time pose estimation frameworks [6, 7] is also satisfactory. The
model proposed by Kocabas et al. [24] handles person detection, segmentation and its pose
estimation. Ke et al. [40] studied the human pose estimation based on learning high resolu-
tion representations. Pengfei et al. [52] proposed a semantics-guided neural network (SGN)
for action recognition. Rohit et al. [17] used a two stage architecture to estimate pose and
track the same in a complex scene. Recently, Ye and Kim [49] have studied a similar prob-
lem in 3D hand pose estimation task. On the other hand, the Occlusion-Net [37] proposed by
Reddy et al. used graph networks to predict 2D and 3D keypoint locations of the occluded
parts of non-human objects while Zhu et al. [61] used Occlusion-adaptive Deep Networks to
solve facial landmark detection problems. Hou et al. [20] proposed a Spatio-Temporal Com-
pletion network to tackle occlusion in Person Re-Identification by generating the contents of
occluded parts using spatial structure and temporal information of pedestrian sequences.


Citation
Citation
{Wang and Deng} 2018

Citation
Citation
{Angelova, Krizhevsky, Vanhoucke, Ogale, and Ferguson} 2015

Citation
Citation
{Benenson, Mathias, Timofte, and Vanprotect unhbox voidb@x penalty @M  {}Gool} 2012

Citation
Citation
{Chen, Zhang, Ouyang, Yang, and Tai} 2018{}

Citation
Citation
{Lin, Lu, Wang, and Zhou} 2018

Citation
Citation
{Zhou and Yuan} 2018

Citation
Citation
{Ouyang, Zhou, Li, Li, Yan, and Wang} 2018

Citation
Citation
{Pepikj, Stark, Gehler, and Schiele} 2013

Citation
Citation
{Tang, Andriluka, and Schiele} 2014

Citation
Citation
{Zhou and Yuan} 2017

Citation
Citation
{Zhou and Yuan} 2017

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Liu, Anguelov, Erhan, Szegedy, Reed, Fu, and Berg} 2016

Citation
Citation
{Zhang, Lin, Liang, and He} 2016{}

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Appel, Fuchs, Doll{á}r, and Perona} 2013

Citation
Citation
{Zhang, Yang, and Schiele} 2018{}

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2018{}

Citation
Citation
{Chen, Zhu, Papandreou, Schroff, and Adam} 2018{}

Citation
Citation
{Fu, Liu, Tian, Li, Bao, Fang, and Lu} 2019

Citation
Citation
{Liu, Chen, Schroff, Adam, Hua, Yuille, and Fei-Fei} 2019

Citation
Citation
{Zhang, Zhang, Wang, and Xie} 2019{}

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Newell, Yang, and Deng} 2016{}

Citation
Citation
{Cao, Simon, Wei, and Sheikh} 2017

Citation
Citation
{Cao, Hidalgo, Simon, Wei, and Sheikh} 2018

Citation
Citation
{Kocabas, Karagoz, and Akbas} 2018

Citation
Citation
{Sun, Xiao, Liu, and Wang} 2019

Citation
Citation
{Zhang, Lan, Zeng, Xue, and Zheng} 2019{}

Citation
Citation
{Girdhar, Gkioxari, Torresani, Paluri, and Tran} 2018

Citation
Citation
{Ye and Kim} 2018

Citation
Citation
{Reddy, Vo, and Narasimhan} 2019

Citation
Citation
{Zhu, Shi, Zheng, and Sadiq} 2019

Citation
Citation
{Hou, Ma, Chang, Gu, Shan, and Chen} 2019


4 KISHORE, DAS, MUKHERJEE, BHATTACHARYA: CLUENET

3 Proposed Methodology
The proposed framework is divided into two stages. The first stage aims to detect and seg-

ment pedestrians from the input image whereas the second stage estimates the entire pose of
the detected pedestrians. The following sections describe these two stages in detail.

3.1 Stage 1: Pedestrian Detection and Segmentation
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Figure 2: Architecture of Stage 1 of the proposed ClueNet framework.

The first stage of the proposed framework aims to segment and detect all the pedestrians
in the scene, both completely visible and occluded, from the input image Z € R#*W>3,
We design a novel two stream multi-task scale invariant network which can segment and
detect pedestrians of different scales efficiently. The model consists of a common feature
encoder followed by two task specific convolutional streams for segmentation and detection.
Multi-task learning allows the segmentation and detection streams to learn collaboratively
and capitalize on one another’s resources and skills. The architecture of the proposed model
is shown in Figure 2. The common feature encoder consists of convolution layers of ResNet-
50 up till conv5_9 followed by two Inception v3 [41] blocks modified to handle pedestrians
of different scales. Different branches of the inception block have different receptive fields
which help the task networks to segment and detect pedestrians of various scales in an effi-
cient manner. Inspired from the usual shape of pedestrians, we use vertically shaped filters in
the inception blocks instead of traditionally used square ones. This allows us to extract more
information from the vertical direction than horizontal at one go, which is more suitable for a
task like pedestrian detection or segmentation. Such an approach reduces memory footprint
and also eliminates the extra information from horizontal direction, making the convolution
operations more efficient and effective.
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The final part of the common encoder is a channel-wise attention module that attends to
various channels of the feature map to enhance the important information, while attenuating
noise and background information before passing it to task specific layers of the model. We
first pass the feature map F from the last inception block through a 1 x 1 convolution layer
to generate i, of same size and number of channels. F is then passed through sigmoid
activation function and multiplied with F element-wise to generate the attended feature map
Fart. Mathematically,

Far = F @ 0(Convyixi(F)) )]

where Convi(-) represents a 1 x 1 convolution operation, ¢ () is the sigmoid activation
function and ® represents element-wise multiplication.

The segmentation specific network is a decoder with stacked convolution and transposed
convolution layers as shown in Figure 2. Here we aim to classify every pixel of Z to one
of two categories: Pedestrian or Background. The network takes F;; as input and generates
a single channel binary mask M e RH *Wx1 passed through sigmoid activation, as output.
The segmentation network is trained using Binary Cross Entropy (BCE) Loss, Ly, with
respect to the ground truth mask M where the white pixels represent Pedestrians and black
pixels represent Background.

The detection specific network is inspired from Faster-RCNN [38] and consists of a
Regional Proposal Network (RPN) followed by bounding box regression and classification
networks. The RPN generates object proposals which are then more accurately localized
and classified as Pedestrian or Backdround by the following networks. The associated loss
function Ly4,,, is same as used in the original paper [38], smooth £ loss for regressor and
BCE loss for classifier. The overall loss function for Stage 1, Lg;qge1, is given as the weighted
combination of the two task losses as,

ACSmgel = Acseg + AAcdet (2

3.2 Stage 2: Pose Estimation

The second stage of the proposed framework is a pose estimation network that is trained to
estimate the entire pose of visible as well as occluded pedestrians in an unsupervised manner.
As mentioned earlier, we do not get annotations for human pose in the occluded regions from
any of the existing pedestrian detection or pose estimation datasets. To solve this, we design
a novel solution that makes use of the following two strategies:

Domain Adaptation: Since pose annotations for pedestrian detection datasets are not avail-
able, we aim to learn estimating poses from an additional pose estimation dataset and use
this knowledge to estimate the poses of pedestrians. However, due to shift in the distribution
of data, the model trained to estimate poses on pose estimation dataset does not work well
for the unseen pedestrian detection dataset. To tackle this, we use an unsupervised adver-
sarial domain adaptation approach [44] that minimizes the domain shift between datasets to
generate better results on pedestrian detection dataset.

Mask and Predict: This strategy attempts to solve the problem of estimating the entire
pose of occluded pedestrians. By this strategy, we first randomly mask certain regions of the
person whose pose is to be estimated by black patches of different shapes and sizes, and then
ask the network to predict the pose for the visible as well as the masked regions. Masking
here is analogous to occlusion and hence the model learns to estimate plausible poses for
even occluded pedestrians. Random masking allows the network to efficiently learn even
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Figure 3: Architecture of Stage 2 of the proposed ClueNet framework. The legend for this
image is provided in Figure 2.

unseen occlusion patterns during training, making the model more robust and thus generalize
well during testing.

The proposed second stage uses three networks, a feature encoder £(-), a decoder D(-)
and a domain classifier C(-). The architecture of the proposed model is shown in Figure
3. &(-) takes individual human instances as input and generates dense features as output,
D(-) takes these dense features and estimates the pose by generating a heat map for every
keypoint we want to estimate and C(-) along with £(-) is trained to reduce the domain shift
between the pose estimation and pedestrian detection datasets. To handle the problem of
domain shift between datasets we employ an adversarial approach, where £(-) is analogous
to the Generator of a Generative Adversarial Network (GAN) [18] and C(-) is analogous
to the Discriminator. £(-) here aims to generate dataset invariant features for input human
instances from the two datasets while C(-) aims to classify these features as to which dataset
they belonged to. The (£(-),D(-)) and (£(-),C(-)) pairs are trained alternatively to estimate
the pose of human instances from the pose estimation dataset and reduce the domain shift
among the two datasets respectively. Upon convergence, £(-) learns to generate dataset
invariant features for the input human instances and D(-) learns to estimate poses from these
features, as a result, we can now estimate the pose of human instances from the pedestrian
detection dataset with higher accuracy.

Formally, let Xpg be the input images and Vpg be the corresponding keypoint labels of
human instances from the pose estimation dataset (source domain) with distribution Ppg (x,y).
Similarly, let Xpp be the input images of human instances, with no corresponding keypoint
labels, from the pedestrian detection dataset (target domain) with distribution Ppp(x,y). We
then aim to minimize the following objective functions for Domain Adaptation,

min Laave (Xpg; Xpp,€) = —Expprtp 108 C(E (xpE))] = Exppritnp [10g(1 = C(E (xpp)))]
H‘lgn L:adv‘g (XPEa XPD, C) = - UE.7Cpl)~?f'p[) [log C (g (-xPD ) )} (3)

Similar to [24], we predict a heatmap for each keypoint we want to estimate which represent
the keypoint locations as Gaussian peaks for pose estimation. Correspondingly, the ground-
truths are also modified with Gaussian peaks at keypoint locations. We then simply use £,
loss to calculate the error in prediction,

rgnig Lrose (Xpe, VpE) = = E(vppyp )~ (cps o) | D(E(xpE) ) — yeE|3 )
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We use cropped and segmented human instances as input to the second stage network.
Cropped instances significantly minimize the false-positive rate and reduce the amount of
memory and time required to process each image, we use bounding box predictions from
the first stage for this purpose. During training, we follow the Mask and Predict strategy
by which we mask the input by black patches of different sizes and shapes to artificially
occlude the human instances. But at inference, occlusion could be due to a wide a variety
of objects like cars, vegetation, poles etc. So, the distribution of input images while training
and inference changes. To tackle this, we segment the input images to subtract the back-
ground and just keep the human figures. By segmenting the image, we not only subtract
the background but also the inanimate objects that occlude the human instances, and hence
making the model invariant to the various objects that occlude them. This also helps to esti-
mate the pose easily and more accurately. By masking such a segmented image, we do not
change the distribution of the images at the time of training and inference. Segmentation is
efficiently done by simply multiplying the original input image with it’s segmentation mask,
M\, generated in the first stage. Furthermore, as we want to estimate the entire pose of the
occluded human instances, we only use completely visible individual human instances from
the pose estimation dataset for training. These human instances are then segmented, artifi-
cially occluded and fed to the network for predicting the entire pose of the person. Since we
choose completely visible human instances for this purpose, we have ground-truth for the
entire pose with respect to which the error in prediction is calculated and backpropagated
through the network.

4 Experimentation Details

4.1 Datasets and Evaluation Metrics

To train our complete system we use two different datasets, CityPersons [55] and Microsoft
COCO [27]. The main purposes of the CityPersons dataset is for pedestrian detection and se-
mantic segmentation. It consists of 2,975 training, 500 validation and 1,575 testing images.
Microsoft COCO contains the annotation of key points for pose estimation, bounding boxes
for objects detection, segmentation mask for scene image understanding and image caption-
ing. We use key point annotations and segmentation masks from this dataset for training
the second stage of our framework. COCO dataset has annotations for 17 key points but we
consider only 13 key points for our work. They are left and right elbow, shoulder, wrist, hip,
knee and ankle along with the head.

We use log average Miss Rate (MR) to calculate the error in pedestrian detection. For
pose estimation we experiment with different occlusion scenarios which are Reasonable (R)
with [.65,inf] visibility, Heavy occlusion (HO) with [.20,.65] visibility and Reasonable +
Heavy occlusion (R + HO) with [.20, inf] visibility. We use IoU (Intersection over Union) to
quantify the segmentation results. Average Precision (AP) is used to show the performance
for pose estimation in the second stage of the framework.

4.2 Training Details

In the first stage, we use ResNet-50 backbone followed by two modified Inception v3 blocks
as a feature extractor. The weights for ResNet-50 layers are initialized by pre-training it on
ImageNet [13] and that of other layers are initialized from a truncated normal distribution
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Figure 4: Qualitative results of Detection and Pose Estimation on CityPersons dataset. The
ground truth annotations are shown in red, the detection results are shown in green and the
predicted pose is shown in blue.

with mean 0O and standard deviation 0.1. Instead of training all layers at once, we make use
gradual unfreezing [21] to retain previous knowledge and avoid catastrophic forgetting in
the pre-trained ResNet layers. We first train the network by freezing the ResNet layers for
10k iterations after which the ResNet layers were gradually unfreezed every few iterations
from the last layers and trained jointly with the previously unfreezed layers until we finetune
all layers till convergence. The hyper parameter A is set to 1 and the network is trained
using Momentum Optimizer with an initial learning rate of 0.01 and momentum of 0.9. The
learning rate is reduced by a factor of 10 after each subsequent 15k iterations.

In the second stage, we randomly mask the input images by rectangular patches of vari-
ous sizes and aspect ratios to artificially occlude the human instances while training. We use
Curriculum Learning [5] for this purpose, which aims to gradually increment the complexity
of the data fed to the input neural network. In this context, we feed the second stage net-
work with masked input images with masking % gradually increasing from 0% to 70% over
training. Since we make use of domain adaptation to estimate the pose of the pedestrians, it
is important to carefully choose the source dataset from which we aim to transfer the pose
estimation knowledge from. We must ensure that the distribution of the pose (i.e. the output)
of pedestrians and that of the source dataset should be similar to each other, failing which
can lead to inappropriate and erroneous pose predictions on the pedestrian detection dataset.
We use MS COCO as our source dataset, which has human instances with poses similar to
that of pedestrians, as a result of which the trained model generalizes well on the CityPer-
sons dataset. Data augmentation is employed in both the stages by randomly scaling images
between 0.8 to 1.2 and horizontally flipping images with a probability of 0.3. The optimizer
and learning rate for second stage are similar to that used in the first stage. All experiments
were performed on two Nvidia P6 GPUs.

4.3 Evaluation results

In this subsection, we report our experimental results on CityPersons and MS COCO datasets
with a comparison to various other state-of-the-art methods. In the first stage, we attain state-
of-the-art results on both Segmentation and Detection tasks. Our model achieves 89.3%
accuracy in terms of IoU for person segmentation and an overall Miss-Rate of 30.84% on
CityPersons dataset. We also achieve, state-of-the-art detection results on Heavily Occluded
(HO) pedestrians with a Miss-Rate of 47.68%. A more detailed outcome of our experi-
ments for Segmentation and Detection are shown in Table 1 and 2 respectively. For the
second stage, we evaluate the pose estimation model on MS COCO dataset and the results
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Figure 5: Qualitative results of segmentation on Citypersons dataset from the first stage of
the network.

are shown in Table 4. The AP here is calculated only for the annotated keypoints of the hu-
man instances. Since we do not have any ground-truth annotations for the pose of pedestrians
in the CityPersons dataset, we calculate the percentage of the predicted keypoints inside the
ground truth segmentation mask for full pedestrian instances as an evaluation metric. We
observe an accuracy of 90.18% on this metric. Additionally, to show the significance of our
Mask and Predict strategy we perform experiments with occlusion masks of different sizes
and the corresponding results on full human instances from MS COCO dataset are shown in
Table 3. Some qualitative results of detection and pose estimation on CityPersons dataset are
shown in Figure 1 and 4, and that of segmentation are shown in Figure 5. The quantitative
and qualitative results show significant improvement in occluded pedestrian detection and
pose estimation in different scenarios.

Table 1: Different Bench-

mark segmentation results on Table 2: MR for different SOTA models on
CityPersons dataset. CityPersons dataset.

y Model [ ToU | y Model | R [ HO [R+HO |
DeepLab [9] 79.8 Faster RCNN [38] | 15.52 | 64.83 | 41.45
Piecewise [26] 81.5 Shanshan et al. [53] | 15.96 | 56.66 | 38.23
PSPNet [58] 86.5 Junhyug er al. [33] | 16.77 | 48.52 | 31.72
DenseASPP [47] | 86.2 Tao et al. [39] 14.4 52.0 34.24
DANet [15] 87.3 OR-CNN [57] 11.0 | 51.0 | 36.11
Ours 89.3 Ours 11.87 | 47.68 | 30.84

Table 3: Results on MS COCO dataset with different occlusion percentages.
| Occlusion Percentage | 20% | 30% | 40% | 50% | 60% | 70% |

| Average Precision | 88.06 [ 83.93 [ 79.8 | 734 [ 64.0 [ 588 |
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Table 4: AP for state-of-the-art models on MS COCO dataset.
Model ‘ AP ‘ APs5 ‘ AP7s ‘ APy ‘ APy, ‘
Newell et al. [32] | 65.5 | 86.8 | 72.3 | 60.6 | 72.6
CMU-Pose[6] 61.8 | 849 | 67.5 | 57.1 | 68.2
MultiPoseNet [24] | 69.6 | 86.3 | 76.6 | 65.0 | 76.3
Megvii [12] 73.0 | 91.7 | 80.9 | 69.5 | 78.1
CFN [22] 72.6 | 86.7 | 69.7 | 783 | 79.0
Ours 739 | 89.6 | 782 | 709 | 79.1

5 Conclusion

In this work we proposed a novel framework to accurately detect and estimate the entire pose
of completely visible as well as occluded pedestrians. We used a two stage framework for
this purpose, the first stage employs a multi-task network to detect and segment pedestrians
from the input image and the second stage estimates the entire pose of the detected pedes-
trians in an unsupervised manner. Various training strategies such as Gradual Unfreezing,
Domain Adaptation, Mask and Predict, and Curriculum Learning are used to further improve
our results which in case of Detection, Segmentation, and Pose Estimation show the superior
performance of our approach over existing techniques. More specifically, in this work we
used semantic segmentation to subtract the surroundings and leave alone the human figures
as input to the second stage. This is to make the model invariant to various objects that oc-
clude the pedestrians, but semantic segmentation fails to handle intra-class occlusions (i.e.
person-person occlusions). As a result, the model misses out on predicting the entire pose in
such cases and predicts keypoints only for the visible parts of the occluded pedestrians. We
believe the results in such cases can be improved with instance segmentation. However, the
proposed work is first of its kind with several real world applications, and can be adopted for
other similar occluded object detection and pose estimation tasks easily.
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