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Abstract

Scene text detection (STD) and recognition (STR) methods have recently greatly
improved with the use of synthetic training data playing an important role. That be-
ing said, for text detection task the performance of a model that is trained sorely on
large-scale synthetic data is significantly worse than one trained on a few real-world data
samples. However, state-of-the-art performance on text recognition can be achieved by
only training on synthetic data [10]. This shows the limitations in only using large-scale
synthetic data for scene text detection. In this work, we propose the first learning-based,
data-driven text synthesis engine for scene text detection task. Our text synthesis en-
gine is decomposed into two modules: 1) a location module that learns the distribution
of text locations on the image plane, and 2) an appearance module that translates the
text-inserted images to realistic-looking ones that are essentially indistinguishable from
real-world scene text images. Evaluation of our created synthetic data on ICDAR 2015
Incidental Scene Text dataset [15] outperforms previous text synthesis methods.

1 Introduction
Automatic localizing and recognition of text in natural scene images — text spotting — is
still an open area of research. It consists of two sub-tasks: 1) finding the text region in the
image, or text detection, and 2) recognition of the text in a cropped image patch, or text
recognition. A text spotting system with high performance would have broad applications
such as autonomous driving vehicles (responsively to street signs) and assistive technologies
such as indoor navigation for the visually impaired.

With the use of deep convolutional neural networks, text spotting systems have seen great
improvement in performance. However, deep learning methods are usually data hungry and
their performance often positively correlates with the amount of available training data. To
tackle this problem, researchers in text spotting community [7, 10, 28, 31] proposed the use
of large-scale synthetic data as a training set. This way, large amounts of training data with
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Train Set #Train Test Set #Test Recall Precision F1
IC13+15 1,229 IC15 500 77.76 84.35 81.18

SynthText [7] 858,750 IC15 500 50.48 57.51 53.89

Table 1: Performance of a baseline text detector (EAST [33]) when training on real images or
synthetic images. IC13 and IC15 are short for ICDAR 2013 and 2015 dataset, respectively.

detailed annotations are readily available making state-of-the-art performance achievable [7,
10, 12, 25, 28, 30].

However, for the text detection sub-task synthetic data are not as helpful as for text
recognition sub-task. Jaderberg et al. [10] trained a text recognizer using 9 millions synthetic
word images, and outperformed all previous methods up to that time. In contrast, Gupta et
al. [7] generated 8 millions synthetic images for text detection, but the performance when
training only on the synthetic data is significantly worse than that on real-world data. Table 1
shows the performance of a baseline text detection model (EAST [33]) when trained on 1)
real data (the training set of ICDAR 2013 [14] and 2015 [15]) and 2) synthetic data [7].
Considering the fact that the total number of synthetic data samples (858,750) is orders of
magnitude larger than that of real samples (1,229), the performance gap is surprisingly large.

This motivates us to find a better way to generate synthetic images for text detection.
Prior work on synthetic text generation often consists of two steps: 1) randomly or selectively
put text instances on the image plane, and 2) add certain effects to the inserted text instances,
such as blurring or perspective distortion. However, all these steps require sophisticated
design of heuristic rules, which may not be optimal.

In this work, we proposed a learning-based, data-driven text synthesis engine. Generat-
ing realistic text in the wild images can be decomposed into two sub-tasks: 1) determine the
location of the text bounding boxes and 2) make the appearance of the inserted text more re-
alistic. For the first task, we propose a location module based on variational auto-encoders.
Given a set of real images {x} and the corresponding text locations {Ax} in each image,
the location module aims at learning the conditional distribution p(Ax|x). In this way, we are
able to sample plausible text locations when providing a new background image. These sam-
pled text locations indicate where text instances can be put on the background image. For the
second task, we propose an appearance module which extends the Cycle-GAN [34] model.
After compositing text instances on the background images, our goal is to learn a mapping
from synthetic data domain X to real data domain Y , such that the composition results look
indistinguishable to real-world ones. Cycle-GAN is adopted since it does not require paired
training samples. As we are able to obtain a mask for each image that highlights the text re-
gions, we propose an invariant loss to regularize the generators of Cycle-GAN. The invariant
loss encourages that the non-text region has fewer changes, while the text region can attain
more focus during optimization.

Our main contributions are summarized as follows: 1) we propose the first learning-
based, data-driven text synthesis engine. It excludes the needs to design complicated rules
when generating synthetic text in the wild images. 2) We evaluate our synthesis engine on
ICDAR 2015 dataset, and outperforms the text synthesis engine proposed by [7]. Adding
our synthetic data to the training set of ICDAR 2013 and ICDAR 2015 can further improve
the performance, which demonstrates the usefulness of our synthesis engine.
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2 Related Work
Text Detection and Object Detection: There exists a large body of literature which deals
with text detection. Most text detection approaches can be categorized into two classes:
character detection based approaches and word detection based approaches [32]. Charac-
ter detection based approaches first detect individual characters, then group characters into
words based on heuristic rules or sophisticated clustering/grouping models. Early efforts
on this type of approaches focus on designing sophisticated features such as maximally sta-
ble extremal regions (MSER) [2] or stroke-width transform (SWT) [4] to detect characters,
while recently deep convolutional neural networks are employed as a text/non-text classifier
to find characters in a sliding window manner [11, 28]. Although character detection can
often achieve high recall, the precision is often low due to the fact that many characters like
“I” or “l” can not be well distinguished from stroke-like noises. Therefore, several sequen-
tial steps [8, 11] are necessary to filter false positives and group characters. These steps
inevitably accumulate errors and slow down the whole pipeline.

The second type of approaches attempts to detect words directly. Jaderberg et al. [12] first
detect candidate word bounding boxes using edge boxes [35] detectors. Each candidate box
is further filtered by a random forest classifier and refined by a CNN-based regressor. Gupta
et al. [7] present a fully-convolutional regression network that jointly predicts text existence
and regresses bounding boxes. Many researchers [13, 21, 26] adapt methods for general-
purpose object detection to text detection and achieved good performance. For example,
Tian et al. [26] combine Faster R-CNN [23] architecture and a recurrent neural network
(RNN) to jointly predict text/non-text score and refine bounding boxes. Ma et al. [21] extend
Faster R-CNN to detect rotated text by having extra anchor boxes of different orientations
and aspects. Liao et al. exploit SSD [20] object detector to obtain horizontal bounding boxes
for words. Other examples include [9, 13, 18, 19, 25].

Synthetic Text Generation: Many researchers proposed using synthetic text during
training, since they can provide detailed and cheap annotations at large-scale. For example,
Wang el al. [28] generated image patches of characters and used them to train a character
classifier. Jaderberg et al. [10] used a set of pre-defined rules (e.g. random font selection,
foreground-background composition, random perspective projection) to generate images of
words for training. However, the synthesis process of all these methods [10, 28, 30] are rule
based and no learning is involved. Gupta et al. [7] attempted to better understand the back-
ground image before compositing the foreground (text). They first learn the color-texture
segmentation and the pixel-wise depth, then render text on the background image following
a set of rules such that the rendered images look realistic. Nevertheless, the placement of
the text locations is still not optimized via learning. Their method can be seen as a sophis-
ticated rule-based method. On the contrary, we propose directly learning the distribution of
text locations given an background image. Experiments show that our method leads to better
detection performance than that in [7].

Variational Auto-Encoder (VAE) and Cycle-GAN Kingma et al. [16] proposed vari-
ational auto-encoder and used the re-parameterization trick to enable gradient based opti-
mization. Since then, VAE has been widely used as a generative models [17, 22, 27, 29].
Our work is in line with prior works on conditional VAE [29], where the decoder is also
conditioned on a side input, such as attribute or label information in [29] and the background
image information in our case.

Generative adversarial network (GAN) [5] is another popular type of generative model.
Prior work [1, 3, 5, 6] has shown that GAN can generate sharp images due to the use of
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Figure 1: Our text synthesis pipeline. Given a background image, we first sample candidate
text locations based on our location module (Section 3.1), then composite text instances
according to these locations. The text-inserted images are later fed into our appearance
module (Section 3.2) to generate realistic-looking scene text images.

Figure 2: Architecture of the location module. It is a conditional variational auto-encoder
that learns the distribution of text locations given background images.

the adversarial loss instead of the L1 loss. Cycle-GAN [34] is a special type of GAN which
is designed for image-to-image translation task. It contains two separate generators for the
purpose of translating image from domain X to Y (G : X →Y ) and from Y to X (F : Y → X),
and two corresponding discriminators. A cycle-consistency loss is introduced to encourage
F(G(X))≈ X and vice versa. Our work extends this model by introducing an invariant loss.
Given a mask M of an image x ∈ X that highlights the object-of-interest, our invariant loss
discourages changes on the background and focus more on the object-of-interest.

3 Method

In this section we describe the details of our learning based text synthesis engine. It consists
of two sub modules: a location module and an appearance module. The location module
learns the distribution of text locations conditioned on the background image. The appear-
ance module translates the text-inserted images to realistic looking ones. Figure 1 illustrates
the whole process. Our text synthesis engine is learning-based, data-driven and excludes the
design of complicated heuristic rules. Experiments on ICDAR 2015 Incidental Scene Text
dataset [15] demonstrate the superiority of our method compared to prior works.
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3.1 The Location Module

Given a background image x, the location module aims to learn the distribution of text lo-
cations conditioned on x. In this way, we are able to sample possible text locations that are
semantically plausible with respect to the visual context. Each text location is represented
by an affine transformation matrix A, which will be used to affine transform a fixed reference
box (e.g. a 10-by-10 box in the top-left corner of the image plane). In this way, one affine
transformation matrix A uniquely defines one location by affine transforming the reference
box.

Inspired by the variational auto-encoder [16, 24], we introduce a latent variable z, and our
goal becomes modeling the conditional generative process pθ (A|x,z). Note that the notation
is slightly different from conventional variational auto-encoders. Here A is the target to be
generated instead of x. Here, pθ is referred to as the decoder, parameterized by θ . During
testing, we simply generate text regions in a two-step process:

1. randomly sample latent variable z from a prior distribution (e.g. N (0, I))
2. take z and a background image x as input, generate text location (represented by an

affine transformation matrix A) from pθ (A|x,z).
To estimate the parameter θ we would ideally maximize the log likelihood log pθ (A|x).

However, it is often intractable to solve such optimization. Kingma et al. [16] introduced
another distribution qφ (z|A,x) to approximate the true posterior pθ (z|A,x), and proposed to
maximize the variational lower bound:

log pθ (A|x)≥ Eqφ (z|A,x)
[
− logqφ (z|A,x)+ log pθ (z,A|x)

]
(1)

=−KL(qφ (z|A,x)||pθ (z))+Eqφ (z|A,x) [log pθ (A|m,z)] (2)

Here qφ (z|A,x) is referred to as the encoder, parameterized by φ .
The prior over the latent variables can be set as the centered isotropic multivariate Gaus-

sian pθ (z) ∼ N (0, I) so that we can easily obtain samples, while qφ (z|A,x) can be set as
a multivariate Gaussian with a diagonal covariance N (µ,diag(σ)) for simplicity. Both the
encoder qφ (z|A,x) and the decoder pθ (A|x,z) can be implemented by neural networks (e.g.
multi-layer perceptron MLP), in this case the mean vector µ and standard deviation vector
σ are the outputs of the encoder.

Finally, in order to ensure that the model is conditioned on the background image x, in
the encoder, we adopt a convolutional neural network to learn a visual vector representation,
and concatenate such representation to the MLP-transformed A. In the decoder, we repeat
the sampled vector so that it has the same width and height as the image x, then concatenate
it with x along the channel dimension. We adopt another convolutional neural network to
predict A∗, which is expected to be close to A using L1 distance. Figure 2 summarizes the
architecture of our location module.

3.2 The Appearance Module

Once we obtain possible text locations from our location module, we can randomly pick
stand-alone text instances and composite them on the background image. However, the
composition results often look artificial and are not realistic enough. A text detector trained
on such data often learns bias of the data distribution and cannot achieve good performance,
as evidenced by Table 1.
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Figure 3: Architecture of the appearance module. It extends the Cycle-GAN [34] model
by introducing an invariant loss Linv to guide the generator to focus more on the objects
highlighted by a mask.

Inspired by the recent Cycle-GAN [34] model that can translate image from one domain
to another without paired training data, we proposed a Masked Cycle-GAN as our appear-
ance module. It attempts to translate the synthetic images to real data domain. Here we
first briefly describe the Cycle-GAN model, then explain how we utilize mask information
to guide the model to focus more on the object of interest.

Cycle-GAN aims to learn mapping functions between two domains X and Y : G : X → Y
and F : Y → X . In order to make the distribution of image from G(X) to be indistinguishable
to that from Y (and vice versa), two discriminators DX and DY are introduced such that the
adversarial loss can be optimized. More specifically, for learning the mapping G : X → Y ,
we can formulate the training objective as:

argmin
G

argmax
DY

LX→Y
GAN = Ey∼pdata(y) [logDY (y)]+Ex∼pdata(x) [log(1−DY (G(x))] (3)

Similarly, for learning the mapping F : Y → X , the training objective can be formulated as:

argmin
G

argmax
DX

LY→X
GAN = Ex∼pdata(x) [logDX (x)]+Ey∼pdata(y) [log(1−DX (F(y))] (4)

However, such optimization is highly under-constrained. Due to the large capacity of the
generators and discriminators, there may exist myriads of valid mappings. Not all of them
can generate desired image translation results. To further constrain the learning process, a
cycle-consistency loss is introduced:

Lcycle = ||F(G(x))− x||1 + ||G(F(y))− y||1 (5)

In other words, Lcycle encourages that the translated image G(x) can be further translated
back to itself using F (and vice versa).

In this work, we want to translate images from synthetic data domain X to real data
domain Y . Moreover, since we are able to obtain a mask for each image x∼ X and y∼Y that
highlights the location of text, we can utilize such information to better guide the generators.
More specifically, we denote the mask as M ∈ {0,1}W×H , where W and H are the width
and height of the image. Zeros indicate non-text region while ones indicate text region.
Intuitively, we expect the appearance of the text region to be translated such that it is in
harmony with the context, while the background is less changed. Therefore, we add an
invariant loss:

Linv = ||(1−Mx)�G(x)− (1−Mx)� x||1 + ||(1−My)�F(y)− (1−My)� y||1 (6)
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which provides an additional constrain on the generators. Here � denotes pixel-wise mask-
ing operation.

The final training objective is: L = LX→Y
GAN +LY→X

GAN +λ1Lcycle +λ2Linv, where λ1 and λ2
are two hyper-parameters that control the reletive importance the corresponding terms.

4 Experiments
Here we evaluate the proposed text synthesis engine. We train a baseline text detection
method on 1) real data (the training sets of ICDAR 2013 [14] and 2015 [15]), 2) our synthetic
data and 3) the combination of the two above. Then we test on the test set of ICDAR 2015
dataset [15].

4.1 Datasets
ICDAR 2015 Incidental Scene Text dataset [15] is introduced in the ICDAR Robust Read-
ing Competition for text detection. Images in this dataset are captured by a Google Glass
“without taking actions to improve the positioning or quality of the text region”. Therefore
text in this dataset tends to be small, blurry or perspectively transformed. The training set
contains 1,000 images with an average of 7.1 text regions per image. The test set contains
500 images.

We also use the training set of ICDAR 2013 Focused Scene Text dataset [14] during
training. Images in this dataset are captured by a professional camera and they are deliber-
ately focused on the text region. Consequently text in this dataset is often large, horizontal,
and appears in the center of the image. On average each image has 4.2 text regions.

4.2 Baseline Method
We use EAST [33] as our baseline method for its simplicity and high performance. EAST
is a fully-convolutional neural network. It first learns high-level and low-level representa-
tions via a encoder-decoder style network, then densely predict the text/non-text score, text
box coordinates and text box rotation angle at each pixel location. The encoder-decoder
backbone utilizes residual blocks to facilitate optimization, and skip connections to combine
visual representations of different levels. More details of EAST can be found in [33].

4.3 Results
Table 2 shows of the performance of the baseline text detector (EAST) using different kinds
of training images. From the table we can see that training only on SynthText significantly
decreases the performance compared with training on real images, although the total amount
of training images is almost 700 times larger. Such a huge gap in performance suggests that
the previously proposed rule-based text synthesis engine may not capture the distribution of
the real data. Moreover, even if we trained on the combination of real images (repeated 100
times so that synthetic data will not dominate the training set) and the SynthText images, the
performance is still worse than only training on real images. Such fact suggests that the data
distribution of SynthText is very different from the real data distribution.

As a comparison, using synthetic images that are generated by our learning-based text
synthesis engine, the baseline EAST detector achieved 59.12 recall and 60.97 precision,
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Train Set #Train Test Set #Test Recall Precision F1
IC13+15 1,229 IC15 500 77.76 84.35 81.18

SynthText 858,750 IC15 500 50.48 57.51 53.89
SynthText+100×(IC13+15) 981,650 IC15 500 74.88 83.39 78.91

Ours 858,750 IC15 500 59.12 60.97 60.03
Ours+100×(IC13+15) 981,650 IC15 500 78.09 86.00 81.86

Table 2: Performance of the baseline text detector (EAST [33]) using different kinds of
training images. IC13 and IC15 are short for ICDAR 2013 and 2015 dataset, respectively.

Train Set #Train Test Set #Test Recall Precision F1
Ours-app 858,750 IC15 500 58.21 61.61 59.86

Ours-app+100×(IC13+15) 981,650 IC15 500 76.39 82.77 79.45
Ours 858,750 IC15 500 59.12 60.97 60.03

Ours+100×(IC13+15) 981,650 IC15 500 78.09 86.00 81.86

Table 3: Ablation study on the effectiveness of the appearance module. Ours-app denotes
images that are generated only using our location module.

outperforming the one trained on SynthText. The performance is still worse than only training
on real images, showing how difficult it is to generate “good” synthetic data for training.
However, if we further add the real images (repeated 100 times so that synthetic data will not
dominate the training set) to the training set, the baseline EAST detector achieved the best
results: 78.09 recall and 86.00 precision, outperforming the one trained only on real images.
Such results demonstrate the usefulness of our synthetic data.

To evaluate the effectiveness of our appearance module, we conduct an ablation study.
Two kinds of synthetic images are generated: 1) images that are generated using both the
location module and the appearance module, and 2) images that are generated using only the
location module. The results are shown in Table 3. We can see that adding the appearance
module consistently improve the performance.

4.4 Visualization Examples of the Location Module
Figure 4 shows some visualization examples of our location module. For each image, we
sampled 50 latent vectors from the prior distribution, fed them into the decoder of our lo-
cations module and obtain the corresponding predictions, which are affine transformation
parameters. The final sampled text locations can be obtained by transforming a reference
box according to these affine transformations. From the visualization examples we can see
that our location module tends to predict locations on the dominating object, such as the
street sign, bus or wall. Sampled text locations are rarely observed in certain ares, such as
sky or tree.

4.5 Visualization Examples of the Appearance Module
To better understand our appearance module, we visualized some images before and after
the appearance translation. Examples are shown in Figure 5. We only shows the surrounding
area of the text to better illustrate the difference. From these examples, we can see that
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Figure 4: Sampled text locations from our location module.

Figure 5: Cropped image patches before (top row) and after (bottom row) our appearance
module. We only shows the surrounding area of the text to better illustrate the differences.

our appearance module tends to add certain effects to the text-composited images, such as
blurring or JPEG artifacts. This is an interesting finding, which may provide clues on how
synthetic images are different from real images. Motion blurring, low resolution and JPEG
artifacts are pervasive in real images, therefore it is desirable to have them during the data
synthesis process.

5 Conclusions
We proposed the first learning-based and data-driven text synthesis engine. It first learns the
conditional distribution of text locations on image plane using a variational auto-encoder,
then composite text instances of the background image according to the locations sampled
from the learned distribution. Then, a masked Cycle-GAN model is utilized to translate
such text-composited images to ones that are indistinguishable from real-world images. We
generated a large-scale synthetic dataset using our text synthesis engine and showed its ef-
fectiveness on the ICDAR 2015 dataset. When trained on our synthetic data, a baseline text
detection method (EAST) outperforms one that is trained on previously proposed synthetic
data. Combining our synthetic data and real data as the training set leads to the best perfor-
mance. Future work includes learning text locations with perspective transformations and
applying adversarial loss to the location module to generate more diversified samples.
Acknowledgements: We gratefully acknowledge partial support from NSF grant CCF 1317560
and a hardware grant from NVIDIA.
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