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Abstract

Subspace clustering is the problem of clustering data drawn from a union of multiple
subspaces. The most popular subspace clustering framework in recent years is the spec-
tral clustering-based approach, which performs subspace clustering by first computing
an affinity matrix and then applying spectral clustering to it. One of the representative
methods for computing an affinity matrix is the least square regression (LSR) model,
which is based on the idea of self-representation. Although its efficiency and effective-
ness have been empirically validated, it lacks some theoritical analysis and practicality,
e.g.: absense of interpretations, lack of theoretical analysis on its robustness, absense
of guidelines for choosing the hyper-parameter, and the scalability. This paper aims at
providing novel insights for better understanding on LSR, and also improving its prac-
ticality. For this purpose, we present four contributions: first, we present a novel inter-
pretation of LSR, which is based on random sampling perspective. Second, we provide
novel theoretical analysis on LSR’s robustness toward outliers. Third, we theoretically
and empirically demonstrate that selecting a larger value for the hyper-parameter tends
to result in good clustering results. Finally, we derive another equivalent form of the
LSR’s solution, which can be computed with less time complexity than the original form
regarding the data size.

1 Introduction
In many practical scenarios, high dimensional data often live in a union of low-dimensional
linear subspaces. The problem of partitioning such data so that each cluster consists of all
the data belonging to one subspace is called Subspace Clustering. Subspace clustering has
greatly attracted attention as it has important and wide-ranging applications in various fields
such as computer vision [23, 36], data mining [2, 27], network analysis [7, 11], system
identification [3, 37], and biology [17, 24].
Prior Work: In the past few decades, many subspace clustering methods have been pro-
posed, including algebraic methods [4, 8, 13, 15, 16, 25, 38], iterative methods [1, 5, 33, 42],
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statistical methods [29, 30, 31, 41], and spectral clustering based methods [6, 9, 10, 14, 18,
20, 21, 22, 35, 39, 40]. Recent efforts have been made on spectral clustering based methods,
as these often perform superiorly to the other methods in practical settings.

Most spectral clustering based methods are performed in two steps. The first step is to
compute an affinity matrix such that a pair of data points belonging in the same subspace
has higher affinity than those in different subspaces, and the second step is to partition data
by applying spectral clustering to that affinity matrix. The first step is crucial to the suc-
cess of subspace clustering, and several approaches to construct reasonable affinity matrices
have been proposed [9, 10, 26, 40]. The most representative approach is self-representation
based [9, 10].

The self-representation based approach first builds a self-representation matrix Z∗ that is
computed by representing each data points by a linear combination of the others and then
computes an affinity matrix M using Z∗ (e.g., Mi j = |Z∗

i j|+ |Z∗T
i j |). To compute the self-

representation matrix Z∗, most self-representation based methods first solve the following
problem:

min
Z∈C

h(E)+λ r(Z), s.t. X = XZ +E, (1)

where X ∈RD×N = [xxx1, ...,xxxN ] is a data matrix that consists of N D-dimensional data points,
h(E) is the loss function for reconstruction residual E, r(Z) is a regularizer for a self-
representation matrix Z, and C is a constraint set for Z. h(E) indirectly regularizes a self-
representation matrix Z so that XZ is close to X and the most popular choice for h(E) is
the squared Frobenius norm h(E) = ||E||2F [9, 10, 14, 18, 21, 22, 35, 39]. r(Z) regularizes
a self-representation matrix Z so that each data point is reconstructed by using those in the
same subspace and various types of regularizers, such as L1 norm r(Z) = ||Z||1 and nuclear
norm r(Z) = ||Z||∗, have been investigated so far [9, 10, 14, 18, 20, 21, 22, 35, 39].

Typically, Eq. (1) is solved via some iterative optimization algorithms, e.g., alternating
direction method of multipliers (ADMM). However, for certain pairs of r(Z) and h(E), Eq.
(1) has a closed-form solution, and by using such a solution, we can efficiently solve Eq.
(1) much faster than using iterative optimization algorithms. One of the most representative
methods that have closed-form solusions is the least square regression (LSR) model, which
we will explain in the following.
LSR: Lu et al. [21] theoretically showed that if Eq. (1) satisfies certain conditions, which
they call the enforced block-diagonal (EBD) conditions, we are able to get a block diagonal
solution under the independent subspaces assumption. As a special case of that condition,
they presented LSR, which employs the Frobenius norm for both r(Z) and h(E), i.e.:

min
Z

||E||2F +λ ||Z||2F ,s.t. X = XZ +E, Z ∈ C. (2)

In this paper, following other methods such as sparse subspace clustering (SSC), we specif-
ically consider the case of C = {C|C ∈ RN×N ,Cii = 0}. When C = {C|C ∈ RN×N ,Cii = 0},
Eq. (2) has the following closed-form solution:

Z∗ = I −D(Diag(diag(D)))−1, where D = (XTX +λ I)−1, (3)

where Diag(λλλ ) converts a vector λλλ into a diagonal matrix the ith diagonal entry of which is
(λλλ )i, and diag(Λ) converts Λ into a vector the ith entry of which is the ith diagonal entry of
Λ.

LSR is a very pracical subspace clustering method due to its simplicity, effectiveness and
efficiency. However, it lacks some theoritical analysis and practicality, e.g.:
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• Absence of interpretations. Although Lu et al. presented LSR as a special case of
the EBD condition, there are no specific reason to choose the Frobenius norm among
various regularizers for r(Z) (except the existence of a closed-form solution).

• Lack of theoretical analysis on its robustness.

• Absence of guidelines for choosing the hyper-parameter λ . In the practical settings,
one has to choose the hyper-parameter λ . However, to the best of our knowledge, no
strategy are provided for choosing it. This is problematic especially when one cannot
tune λ (e.g., when a validation dataset is not available).

• Scalability. Although the solution of LSR can be efficiently computed due to Eq. (3),
it still takes O(N3) time complexity with reference to the data size N.

Contributions: This paper aims at providing novel insights for better understanding on LSR,
and also improving its practicality. For this purpose, we present four novel theoretical and
empirical analysis on LSR:

• We present a novel interpretation of LSR based on random sampling, a core technique
in the field of robust subspace recovery. More specifically, we show that the Frobenius
norm is derived as a regularizer for Z by introducing random sampling into Eq. (1)
when data points are normalized and h(E) = ||E||2F . Moreover, we also show that
the hyper-paramter λ can be interpreted as λ = 1−α

α , where α is a sampling rate of
ramdom sampling.

• We provide novel theoretical analysis on LSR’s robustness toward outliers.

• We prove that λZ∗, the solution of Eq. (3) multiplied by λ , approaches to a specific
matrix as the hyper-parameter λ increases. Moreover, we empirically demonstrate
that increasing λ does not cause a big drop in the accuracy, and hence suggest that
selecting a larger value for the hyper-parameter λ would be better when one cannot
tune it.

• We derive another equivalent form of Eq. (3), which can be computed with less time
complexity than the original form regarding the data size.

2 Deriving LSR via Random Sampling Perspective
We first introduce a novel interpretation of the objective of LSR, i.e., Eq. (2). Our interpre-
tation is derived by introducing random sampling into Eq. (1).
Why random sampling?: One of the major factors that degrade subspace clustering accu-
racy is the existence of outliers in a given data matrix X . When using self-representation-
based methods, outliers may be connected each other. As a result, they may constitute incor-
rect clusters in the final clustering results.

For mitigating this problem, we consider utilizing random sampling, a core technique
used in random sample consensus (RANSAC) [12]. RANSAC first repeats (1) sampling a
few data from a given data matrix and (2) conducting subspace recovery using sampled data,
and then outputs the most suitable subspace from all the computed subspaces. By using
only a few sampled data for the subspace recovery step, RANSAC can reduce the number of
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outliers to consider at the same time, which leads to reducing the negative impact of outliers.
Although Yang et al. [41] proposed solving subspace clustering by applying RANSAC, it
has some drawbacks, one of which is that its performance deteriorates quickly as the number
of subspaces increases [34].

Inspired by RANSAC, we introduce random sampling into the problem (1). By doing
so, we can also reduce the number of outliers to consider at the same time, which leads to
preventing outliers from constituting incorrect clusters in the final clustering results.
Derivation: In the following, we introduce random sampling into the problem (1). Let
θθθ ∈ {0,1}N be an indicator vector such that (θθθ)i = 1 if the ith data of X are sampled. We
assume θθθ is sampled from a distribution P(θθθ |α) that samples each element of θθθ from a
Bernoulli distribution with probability α ∈ (0,1) independently. In addition, we adopt the
squared Frobenius norm h(E) = ||E||2F for a reconstruction error h(E). Using data randomly
sampled from X by P(θθθ |α), we redefine the problem (1) as follows:

min
Z∈C

||Eθθθ ||2F +λ r(Z), s.t. XPθθθ = XPθθθ PT
θθθ ZPθθθ +Eθθθ , θθθ ∼ P(θθθ |α), (4)

where Pθθθ is a selection matrix that keeps only data selected by θθθ , i.e., a matrix excluding the
ith column from an identity matrix if (θθθ)i = 0.

The problem (4) excludes a part of data matrix X from the objective, hence the corre-
sponding part of Z cannot be correctly learned. Therefore, instead of using ||Eθθθ ||2F directly
as in the problem (4), we use the expectation of ||Eθθθ ||2F as follows:

min
Z∈C

Eθθθ∼P(θθθ |α)[||Eθθθ ||2F ]+λ r(Z), s.t. XPθθθ = XPθθθ PT
θθθ ZPθθθ +Eθθθ . (5)

As all the data in X are considered in the problem (5), a full part of Z is expected to be
correctly learned.

We next consider how to compute the expectation Eθθθ∼P(θθθ |α)[||Eθθθ ||2F ] in the problem
(5). One way to compute it is to approximate Eθθθ∼P(θθθ |α)[||Eθθθ ||2F ] by the Monte Carlo algo-
rithm (i.e., computing 1

N ∑i ||Eθθθ i ||
2
F with N stochastically sampled indicator vectors {θθθ i}N

i=1),
which may degrade clustering results due to the approximation of the expectation
Eθθθ∼P(θθθ |α)[||Eθθθ ||2F ], and also requires high computational cost for computing ||Eθθθ ||2F multiple
times. However, fortunately, we find that the expectation Eθθθ∼P(θθθ |α)[||Eθθθ ||2F ] can be explicitly
represented as follows (see the supplementary for the derivation of this):

Eθθθ∼P(θθθ |α)[||Eθθθ ||2F ] =α ||X −XZ′||2F +(1−α)||Diag(diag(XTX))
1
2 Z′||2F

+2(1−α)trace(XTX(Z′− I)Diag(diag(Z′)))

+
(2α −1)(α −1)

α
trace(XTXDiag(diag(Z′))2),

(6)

where Z′ = αZ. By using Eq. (6), the expectation Eθθθ∼P(θθθ |α)[||Eθθθ ||2F ] can be exactly com-
puted without repeatedly sampling θθθ and computing ||Eθθθ ||2F , which enables the objective in
the problem (5) to be efficiently computed.

Finally, by C = {Z|Z ∈ RN×N ,Zii = 0}, Eq. (6) can be simplified as follows:

Eθθθ∼P(θθθ |α)[||Eθθθ ||2F ] =α ||X −XZ′||2F +(1−α)||Diag(diag(XTX))
1
2 Z′||2F . (7)
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To see this, note that Diag(diag(Z′)) = 0 holds when C = {Z|Z ∈ RN×N ,Zii = 0}. By Eq.
(7), the problem (5) can be finally represented as follows:

min
Z∈{Z|Z∈RN×N ,Zii=0}

||X −XZ′||2F +
1−α

α
||Diag(diag(XTX))

1
2 Z′||2F +

λ
α

r(
Z′

α
),

s.t. Z = αZ′
(8)

From the problem (8), we can see that by applying random sampling to the problem (1), the
objective of the problem (1) can be represented in a very simple form. It is worth noting
that a novel term ||Diag(diag(XTX))

1
2 Z′||2F in Eq. (7) can be considered as a regularizer

for Z, which reveals that random sampling itself has an effect of regularizing Z. Moreover,
under the typical assumption that each data point is normalized, ||Diag(diag(XTX))

1
2 Z′||2F is

equivalent to the Frobenius norm ||Z′||2F , and hence Eq. (8) is equivalent to Eq. (2) by setting
r(Z) = 0 and replacing λ in Eq. (2) with 1−α

α .
From this derivation, we can see that introducing random sampling into the problem (1)

leads a regularization effect. In particular, the regularization effect can be represented to the
Frobenius norm under some typical settings, i.e., C = {Z|Z ∈ RN×N ,Zii = 0}, h(E) = ||E||2F
and ||xxxi||2 = 1 for all i. This gives a novel interpretation of the objective of LSR. Moreover,
we can give a novel interpretation to the hyper-parameter λ that, under those conditions, the
hyper-parameter λ in the problem (1) is equivalent to 1−α

α , where α is a sampling rate.

3 Robustness toward Outliers
In the previous section, we derived the objective of LSR by introducing random sampling to
reduce the outliers’ influence, but it has been unclear how effective it is at reducing outliers’
influence. In the following, we analyze the robustness of LSR toward robustness.

To conduct the analysis, we consider two types of normalized data: (1) Nm inliers Xc =
[xxxm

1 , ...,xxx
m
Nm ] belonging to a main low-dimensional subspace Sm (xxxm

i ∈ Sm for i = 1, ...,Nm)
and (2) Nm outliers Xo = [xxxo

1, ...,xxx
o
No ] belonging to an outlier subspace So (Sm ⊂ So and xxxo

i ∈
So for i = 1, ...,No). We assume that all data in Xm and Xo are sampled from distributions
Pm(xxx) and Po(xxx) that satisfy Pm(xxx) = 0 if xxx ̸∈ Sm or ||xxx||2 ̸= 1 and Po(xxx) = 0 if xxx ̸∈ So or
||xxx||2 ̸= 1, respectively. Also, let Z∗ =

[
Zc∗ ,Zo∗

]
=

[
zzzm∗

1 , ...,zzzm∗
Nm ,zzzo∗

1 , ...,zzzo∗
No
]

be the self-
representation matrix computed by the problem (3).

To analyze the robustness of LSR, we have to define the metric for evaluating robustness.
Among some metrics that can be used for evaluating robustness, due to its tractability, we
consider how much all the outliers Xo contribute to reconstructing each data xxxm

i belonging
to the main subspace Sm. More specifically, we define inliers’ contribution and outliers’
contribution as follows:

Definition 1 (Inliers’ Contribution and Outliers’ Contribution). Let Om and Oo be the zero
matrices that are the same sizes as Xm and Xo, respectively. We define the inliers’ contribu-
tion to a reconstructed vector Xzzzm

i for xm
i as Contmi = ([Xm,Oo]zzzm

i )
Txxxm

i . Similarly, we define
the outliers’ contribution to a reconstructed vector Xzzzm

i for xxxm
i as Contoi = ([Om,Xo]zzzm

i )
Txxxm

i .

[Xm,Oo]zzzm
i is a vector constructed by extracting the part composed by data belonging

to Sm from a linear combination Xzzzm
i , and Contmi is the length of a vector computed by

projecting [Xm,Oo]zzzm
i onto xxxm

i , since xxxm
i is normalized. Contoi can be interpreted similarly.
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We use Contmi and Contoi as proxies for how much Xm and Xo contribute to reconstructing
data xxxm

i , respectively.
We find that the ratio of Contoi to Contmi approaches a specific value as the amount of

sampled data approaches to infinity, as shown in the following theorem:

Theorem 1. Suppose Pm(xxx) and Po(xxx) are independent of the direction of xxx as long as xxx
is in each subspace Sm and So, respectively (i.e.,Pm(xxx) = Pm(xxx′) if xxx ∈ Sm, xxx′ ∈ Sm and
||xxx||2 = ||xxx′||2 = 1, and Po(xxx) = Po(xxx′) if xxx ∈ So, xxx′ ∈ So and ||xxx||2 = ||xxx′||2 = 1). If the ratio
of Nm to No is fixed, i.e., Nm and No can be represented as Nm = Mmk and No = Mok by
using a natural number k and positive numbers Mm and Mo, we have:

plim
k→∞

Contoi
Contmi

=
Mo

Mm
dim(Sm)

dim(So)
, (9)

where plim is the probability limit operator.

Based on Theorem 1, the LSR’s solution approximately satisfies the following two prop-
erties when Nm and No are sufficiently large:

• The larger Nm is than No, the smaller the outliers’ influence on a reconstruct vector
Xzzzm

i is.

• The smaller dim(Sm) is than dim(So), the smaller the outliers’ influence on a recon-
struct vector Xzzzm

i is.

From the first property, the influence of outliers on reconstructed vectors can be guaran-
teed to be small if a given data matrix X contains only a few outliers, which is a convincing
and also desirable result. From the second property, the influence of outliers on reconstructed
vectors can be guaranteed to be small if the dimension of the outliers’ influence dim(So) is
sufficiently large compared to the dimension of a main subspace dim(Sm). Given that the
dimension of a subspace built by outliers contained in real-world data (e.g., images with
missing entries) is typically large, the influence of outliers on reconstructed vectors is ex-
pected to be small in many real-world settings.

4 Hyper-parameter Choice
In this section, we discuss how to choose the hyper-parameter λ . If we have no labeled data
or cannot annotate labels to data, we cannot adjust λ based on data. For such a case, we
should have some guidelines for choosing the hyper-parameter λ .

To decide how to choose the hyper-parameter λ , we conducted preliminary experiments
for investigating how the hyper-parameter λ affects clustering results. More specifically,
we conducted experiments with various hyper-parameters λ on three datasets: the Extended
Yale Face Database B (EYaleB) [19], the MNIST dataset and the Hopkins 155 motion seg-
mentation database (Hopkins155) [32]. For details of experimental settings, see the supple-
mentary.

We show the experimental results in Fig. 2. It can be seen that if the hyper-parameter λ
is too small, the accuracy is much worse than its peak. On the other hand, interestingly, it
can be seen that increasing the hyper-parameter λ does not cause a big drop in the accuracy.
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Figure 1: Mean clustering accuracy on three datasets achieved by LSR with different hyper-
parameters.

Surprizingly, we find that λZ∗ converges to a non-zero matrix when λ approaches ∞ as
follows:

lim
λ→∞

λZ∗ = XTX −Diag(diag(XTX)) (10)

Derivation. First, we replace λ with 1
τ as follows:

Z∗ = I −D(Diag(diag(D)))−1, where D = (XTX +
1
τ

I)−1 (11)

By L’Hospital’s rule, we have:

lim
λ→∞

λZ∗ = lim
τ→+0

1
τ

Z∗

= lim
τ→+0

∂Z∗
∂τ
∂τ
∂τ

= lim
τ→+0

∂Z∗

∂τ

(12)
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For deriving limτ→+0
∂Z∗

∂τ , we first derive ∂D
∂τ and ∂Diag(diag(D))−1

∂τ as follows:

∂D
∂τ

=
1
τ2 D2

=
1
τ

D(XTX +
1
τ

I −XTX)D

=
1
τ
(D−DXTXD)

(13)

∂Diag(diag(D))−1

∂τ
=− 1

τ
Diag(diag(D−DXTXD))Diag(diag(D))−2

=− 1
τ

Diag(diag(D)−diag(DXTXD))Diag(diag(D))−2

=− 1
τ

Diag(diag(D))−1 +
1
τ

Diag(diag(DXTXD))Diag(diag(D))−2

(14)

By Eq. (13) and Eq. (14), ∂Z∗
∂τ can be represented as follows:

∂Z∗

∂τ
=

∂ I
∂τ

− ∂D(Diag(diag(D)))−1

∂τ

=− ∂D
∂τ

(Diag(diag(D)))−1 −D
∂ (Diag(diag(D)))−1

∂τ

=− 1
τ
(D−DXTXD)(Diag(diag(D)))−1 +

1
τ

DDiag(diag(D))−1

− 1
τ

DDiag(diag(DXTXD))Diag(diag(D))−2

=
1
τ

DXTXD(Diag(diag(D)))−1 − 1
τ

DDiag(diag(DXTXD))Diag(diag(D))−2

=Dτ XTXDτ(Diag(diag(Dτ)))
−1 −Dτ Diag(diag(Dτ XTXDτ))Diag(diag(Dτ))

−2

(15)

where Dτ = D
τ = (τXTX + I)−1. By Eq. (15) and limτ→+0 Dτ = I, limτ→+0

∂Y
∂τ can be

represented as follows:

lim
τ→+0

∂Z∗

∂τ
= lim

τ→+0
Dτ XTXDτ(Diag(diag(Dτ)))

−1 −Dτ Diag(diag(Dτ XTXDτ))Diag(diag(Dτ))
−2

=XTX −Diag(diag(XTX)).

(16)

By Eq. (12) and Eq. (16), we have limλ→∞ λZ∗ = XTX −Diag(diag(XTX)).

It is worth noting that typical graph clustering methods produce same results even after
multiplying λ to Z∗. Moreover, when subspaces are orthogonal, the right side of Eq. (10)
still satisfies the self-representation property (i.e., xxxi and xxx j belong to a same subspace if
Z∗

i j ̸= 0).
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Figure 2: The time versus the number of data N. We ran experiments with Intel Xenon CPU
(2.30GHz) on a single thread.

Given these facts, we can expect that LSR may still cluster data with high accuracy even
when Z∗ is approximately equal to the right side of Eq. (10). Based on these results, we
suggest selecting a large value for the hyper-parameter λ when one cannot tune it (e.g.,
when a validation dataset cannot be used).

5 Improving Scalability
Although LSR has a closed-form solution, i.e., Eq. (3), computing D = (XTX +λ I)−1 re-
quires computing an inverse matrix of N ×N, therefore it takes O(N3) times with reference
to the data size N. In this section, we show a technique that can reduce the time complexity
from O(N3) to O(N2).

To reduce the time complexity, we apply the Woodbury identity [28] to D = (XTX +
λ I)−1 as follows:

D = (XTX +λ I)−1

=
1
λ

I − 1
λ

XT(λ I +XXT)−1X .
(17)

Note that the computational complexity of Eq. (17) is O(N2), which is less than the compu-
tational complexity of directly computing D = (XTX +λ I)−11.

In Fig. 2, we also show that the mean time required to computing Eq. (3) with D =
(XTX+λ I)−1 and Eq. (17) on the MNIST dataset. We randomly chose N = {300,1000,3000,
10000,30000} data points from the dataset, and measured the time for computing Eq. (3) for
each N. From this figure, we can see that, by using Eq. (17), we can compute Eq. (3) faster
than using D = (XTX +λ I)−1 when the number of data is large. Therefore, we suggest that
using Eq. (17) for computing Eq. (3) when N is much larger than D.

Based on these, we suggest that using Eq. (17), rather than using D = (XTX +λ I)−1,
would be better for computing Eq. (3) when N is large.

1Note that the time complexity of Eq. (17) is O(D3) with reference to D, whereas that of D = (XTX +λ I)−1 is
O(D2). From this, we can expect that using Eq. (17) is more effective especially when D is small.
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6 Conclusion
To improve understanding on LSR and its practicality, we provided four novel theoretical and
empirical analysis on it: first, we presented a novel interpretation of LSR based on random
sampling, a core technique in the field of robust subspace recovery. Second, we provide
novel theoretical analysis on LSR’s robustness toward outliers. Third, we theoretically and
empirically showed that increasing the hyper-parameter λ does not cause a big drop in the
clustering accuracy. Finally, we derive another equivalent form of its closed-form solution,
which can be computed with O(N2) time complexity, which is less than the time complexity
of the original form, i.e., O(N3).
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