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Abstract

This paper tackles the task of extreme climate event tracking. It has unique chal-
lenges compared to other visual object tracking problems, including a wider range of
spatio-temporal dynamics, the unclear boundary of the target, and the shortage of a la-
beled dataset. We propose a simple but robust end-to-end model based on multi-layered
ConvLSTMs, suitable for climate event tracking. It first learns to imprint the location
and the appearance of the target at the first frame in an auto-encoding fashion. Next,
the learned feature is fed to the tracking module to track the target in subsequent time
frames. To tackle the data shortage problem, we propose data augmentation based on
conditional generative adversarial networks. Extensive experiments show that the pro-
posed framework significantly improves tracking performance of a hurricane tracking
task over several state-of-the-art methods.

1 Introduction

Tracking climate events are pressing and challenging problems that humanity has faced for
a long time. Traditionally, most conventional approaches have been built upon human ex-
pertise based on scientific intuition and related physics variables, such as wind speed and
humidity. Human experts tracked climate events by associating similar events in two con-
secutive frames based on manually chosen patterns [22] in a high-resolution climate image
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(a multi-channel 2-D matrix with climate variables, such as wind speed and surface pressure,
rather than an RGB color density) sequences from physics-based simulations.

Recently, computer vision community has made significant progress by applying various
pattern recognition techniques in visual object tracking, a task to locate a target object in a
video, maintaining its identity and yielding its individual trajectory, given its initial location
in the first frame. Extreme climate event tracking is similar to visual object tracking, but
it has unique, challenging aspects:

1. Climate events may be dependent on longer-term and wider-range spatio-temporal
dynamics (known as a ‘butterfly effect’) between multiple scientific variables than the
targets in visual object tracking do on RGB pixels.

2. The target events are not often defined as rigid bodies, flexibly changing their shape
with no clear boundary, and are difficult to visually distinguish them from each other.
Thus, it is generally difficult to associate an object of interest with the correct one in
consecutive frames.

3. Climate event data are usually sparsely collected (both temporally and spatially), as
it occurs rarely but requires special devices installed in the wild. For instance, the
hurricane data we use in this paper are collected for every three hours, a sufficient
time for a hurricane to move 350 km. This makes it difficult for us to assume the
object would appear nearby in consecutive frames.

Because of these challenges, a conventional tracking-by-detection method, which relies
heavily on the amount of training data and detects the object mainly by its appearance but
relatively neglects spatio-temporal dynamics, is less suitable for this problem. An ideal cli-
mate event tracker needs to effectively take long-term and wide-range dynamics into account,
capturing subtle differences among events from sparsely collected training data.

In this work, we propose a simple but robust end-to-end model, suitable for the climate
event tracking problem. Specifically, the proposed model consists of two sub-modules, the
(1) focus learning module to learn where and what to focus, and the (2) tracking module
to track what we focused on. The focus learning module is designed to extract the latent
feature of the target event from the first frame, given the initial image and the location of the
target. Given the representation of the target event, the tracking module predicts its location
by localizing the learned feature of a target object in the subsequent frames.

In both modules, we adopt ConvLSTM-based auto-encoder structure for the two follow-
ing reasons. First, it learns a mapping from time-series climate variables to a time-series den-
sity map with event probabilities, suffering less from a blurry boundary of climate events. It
compactly embeds the target’s historical appearance change and movement in hidden states,
capturing essential spatio-temporal dynamics of the target. This addresses the property 2
above. Second, we can easily adjust the receptive field of the ConvLSTM with a larger
kernel, taking broader spatio-temporal information into account to capture dynamics of the
target event, which addresses the property 1.

In addition, to tackle the problem of the limited training data for hurricane tracking (prop-
erty 3), we adopt a state-of-the-art data augmentation technique based on conditional gen-
erative adversarial networks (GANs) to synthesize plausible labeled hurricane videos given
our existing labeled data. Our experiment indicates that training our model with synthetic
hurricane data in addition to real data significantly improves tracking accuracy.
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2 Related Work

Given the location of the target object in the initial frame, visual object tracking localizes
the target in subsequent frames. Recently, various neural-net-based tracking models were
proposed.

Tracking-by-detection approaches first detect candidates of the target mainly by using
convolutional neural networks (CNNs). Afterwards, the most probable candidate is chosen
(an association step). When multiple target objects exist, each target needs to be associ-
ated with a distinct candidate. Among various CNN-based trackers, multi-domain CNN
(MDNet) [13, 24] achieves the state-of-the-art performance on multiple datasets by learning
discriminative features for instance classification. Other tracking approaches, such as Siam-
FC [2], SA-Siam [10], and Siamese-RPN [20], utilize Siamese networks to associate the
objects based on the highest similarity score obtained by exhaustively testing all the possi-
ble locations in consecutive frames. There have been efforts to combine the online learning
efficiency of the correlation filter (CF) [3] with the discriminative power of CNN features
trained offline. In particular, ECO [5] and C-COT [4] achieve the state-of-the-art perfor-
mance in its accuracy in multiple standard tracking benchmark datasets such as VOT [19]
and OTB [40].

To track a target without a rigid boundary or motion against the background, pixel-wise
object tracking methods have advantages over tracking-by-detection approaches. Son et
al. [34] adopted gradient-boosted decision trees to estimate pixel-level annotation of a seg-
mentation mask. Jang et al. [12] proposed the encoder-decoder model to use deconvolution
for image segmentation and contour detection. Yeo et al. [42] proposed to utilize a Markov
chain approach on a super-pixel graph. Recently, convolutional LSTM (ConvLSTM) [30]
has been widely applied to handle spatio-temporal dynamics in analyzing video data, e.g.,
precipitation forecasting [31], motion prediction [8], pixel-wise video prediction [38], crowd
counting [41], and segmentation-based tracking [35]. Romera et al. [28] used ConvLSTMs
for instance segmentation on a single image.

Detecting and predicting extreme climate events. Conventional extreme climate event
detection and tracking methods rely on a number of numerical simulation-based methods,
including an ensemble of multiple prediction models or multi-scale prediction systems [6,
7, 23, 25, 26, 32, 33, 36, 37, 39]. Recently, with large-scale datasets, climate research
communities have started to leverage various deep learning techniques. The extreme cli-
mate event detection and localization problem was tackled with recurrent neural networks
(RNNS5) [1] and spatio-temporal CNNs [27]. Also, ConvLSTM [16] and incremental neural
networks [18] were proposed to predict the future trajectory of hurricanes and cyclones. Re-
gion CNNs were applied to classify different types of extreme climate events [14, 15, 21].
Kim et al. [17] predicted the concentration of air pollutants using LSTMs.

Most existing approaches, however, have not addressed unique challenges to handle
sparse climate data covering a wide geographic range for an extended period. In this pa-
per, we tackle the unique challenges of the climate event tracking problem introduced in
Section 1 with the ConvLSTMs-variant model, which is specially designed to capture a wide
range of spatio-temporal dynamics, as well as with a novel data augmentation based on gen-
erative adversarial networks (GANSs).
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3 Problem Formulation

Notations. We denote X = {Xo,Xj,...,X7_1} as a climate video of length T, where X; €
R™*nx¢ for { = 0,...,T — 1 is a 2-D climate image of size m x n with ¢ climate channels
(e.g., surface-level pressure and wind speed). X may contain multiple trajectories of target
events (e.g., hurricanes), starting and ending at different frames, but our approach tracks one
target event at a time. The ground truth y = {yo,y1,...,y7—1} is the location of the target
climate event, where y; = {x;,y;,w;,h;} for i =0,...,T — 1 represents the bounding box of
the target event, i.e., (x;,y;) being the top-left position, w; and 5; being the width and the
height, respectively.

Extreme Climate Event Tracking. Given a climate video X and the initial location of
the target event yo, the goal is to estimate its locations ¥; in subsequent image frames as
closely as possible to the ground truth y; fori=1,...,T — 1.

4 Proposed Method: Focus-and-Track Framework

Given a climate video X and an initial location of the target object yg, our framework aims at
predicting the trajectory of the target object. It is tempting to directly regress bounding box
elements from the input image X;, but several issues exist. First, as the boundary between the
target event and the background is often blurry, the accurate regression of the bounding box
(¥:;) from X is challenging. Second, when multiple events exist in the frame, data association
is difficult as their appearances are often too similar to distinguish visually.

To address these challenges, we represent both ground truth and prediction as density
maps. That is, each ground truth label y; is transformed to a density map H; € R™*" with
Gaussian mixtures N (y;, 6°I), where the variance 62 is determined by the hurricane radius.’
Then, we model the tracking problem as pixel-wise regression at each time step, minimizing
the pixel-wise mean squared error between the ground truth density map H; and our predic-
tion output H; € R™*". That is, we predict the probability for the target to be observed in
each pixel as H;. Once obtaining H, we regress it to the original bounding box §.

Model Overview. AS shown in Figure 1, Our framework consists of two modules: (1)
the focus learning module that learns to extract the latent features of the target object at
the initial time step, and (2) the tracking module to estimate the bounding box information
of the target trajectory in subsequent time frames. Specifically, the focus learning module
takes the initial frame of the climate video (X¢) focusing only where the target is (that is, all
other places are masked out using Hy), and estimates the density map of the target Hy. That
is, the focus learning module learns a mapping from the focused target to the density map,
encoding the appearance and the location of the target object in its hidden state. Next, the
tracking module takes the learned feature in the hidden state of the focus learning module
(weight sharing of convLSTM cell) and learns to locate the target in subsequent frames. We
use a many-to-many RNN architecture using ConvLSTM cells.

4.1 Focus Learning Module

This module takes the initial frame with its target location, learns to represent the target, and
provides this compact representation to the tracking module. Figure 1 (leff) shows our focus

'We chose a diagonal covariance matrix because most hurricanes are in a circular shape. For other types of
extreme climate events, e.g., atmospheric river, a full covariance matrix may be used.
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Figure 1: Overview of our proposed focus (left) and tracking(right) approach.

learning module for event tracking.

Input Pre-processing. Given the initial frame Xo € R"*"*¢ of the climate video and the
same-sized density map Hyp € R”*" of the target, we first take their element-wise multipli-
cation (Xo ® Hyp), masking out the frame except for where the target is.

To make the model stably track the target in the latter (tracking) stage even with some
variation in its appearance and location, we create N slightly different images of Xy ® Hy
by adding Gaussian noise r; € R™*" for i = 1,2,...,N and translation perturbation. In this
manner, the model learns the latent representation of the target that is robust to noise and
invariant to translation.

Encoding Networks. The N variations of the masked initial frame Xy ® Hy are taken as
a sequence input to the L-layered ConvLSTM encoding networks g : R"™* "¢ — RmW<nxkL
which embeds each image to a fixed-dimensional hidden representations h() € R™*"_ for
i=1,...,L, where k; is the number of features in each layer. Note that it is important to use
a sufficiently large number of layers and receptive fields to capture a long and wide range of
spatio-temporal dynamics of climate variables.

Density estimator. The hidden state h(") from the last layer of the encoding networks is
fed into the density estimator f : R™<"kL — R™*"_estimating a single-channel density map
in the first frame ﬁo, such that I:IO ~ Hp.

Integrating the two sub-modules, the output density map is generated as

Hy = f(hV) = f(g(Xo®@Hp+11,--- ,Xo ©Hp +1y)) ~ p(Ho|Xo 0 Hp). (1)

At each step i (from 1 to N), the model f repeatedly produces a 2-D density-map Hy, based
on the input image X with random noise r; and the previous hidden state hgl:f), an encoding

of the input so far. As we iterate, the hidden state hfli) gradually learns and encodes the

feature of the target. After N iterations, the hidden state of the last iteration step, hj(\}:m,
is used as the latent representation of the target in the tracking module. It is worth noting
that excluding Xy and r; in Eq. (1), f and g functions as an auto-encoder to extract latent
representation based on Hy.

Bounding Box Regressor. Lastly, we regress the original bounding-box ground truth y
from the produced density map Hy, with a bounding box regressor w : R™" — N*, where its
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output consists of the four bounding box elements, {xo, o, wo, ho}. Formally, o = w(y0|ﬁo)
such that §o ~ yo. We use multi-layered CNNs followed by a fully connected layer for w.

Loss Functions. To train the model f and g, we minimize L,r, the pixel-wise mean
squared loss between the estimated density-map Hy and the ground-truth density-map Hy,
averaged over all perturbed images. Similarly, for the model w, we minimize the squared
loss L,, between the estimated bounding box elements §¢ and ground truth yy, i.e.,

&1 . 1
Lor=—Y —|Hy—Hyl? L. = ~[$0—voll? 2
of Nl;mn” o—Hol5 W 4||Y0 yoll3 (2)

The overall loss £ is defined as a weighted (by a constant &) sum of Lgr and £,,, which
we minimize end-to-end. That is, £ = Lgr + oL,,.

4.2 Tracking Module

Given the final hidden representations h(") from the focus learning module as its initial
state, the tracking module learns to track the target in subsequent frames of the video. In
the tracking module, all weights of the ConvLSTM cell from the focus learning module are
shared to update and store the spatio-temporal variation of the target in its hidden states.
The main architecture of the tracking module is similar to that of the focus learning mod-
ule, illustrated in Figure 1 (right). The tracking module estimates the density map of the
target object, based on the input image X; at time step i and the hidden state from previous

time steps, hl(l:f‘)
encoder g and the density map estimator f. Afterwards, the estimated density map H; at
each time step i is fed into the bounding box regressor w to estimate bounding box elements.

Formally, it is written as

, deploying the many-to-many multi-layered ConvLSTM architecture as the

B, = f(g(HXi, ) ~ p(HGX:b{Y). 9= w(yi ). 3)
Similar to the focus learning module, the overall loss is defined as the weighted sum of L, ¢
and L,,, trained end-to-end.

4.3 Data Augmentation

To tackle the shortage of labeled train- _ RealfFake ReallFake

ing data for hurricane tracking, we iscrimi —— Image
adopt a state-of-the-art data augmenta-
tion technique to synthesize plausible - G“"em“"” o
labeled hurricane video given our ex- = -

isting labeled data. As shown in Fig- Lajectory ﬁ
ure 2, we first generate a hurricane tra-
jectory (Step 1), and then, given the co-
ordinate of hurricane center in the tra-

Hurricane
Discriminator

Hurricane
Generator

e
-

. h . . Observed trajectory Generated Density-map
]ectory, we generate a hurricane 1mage Step 1. Trajectory Generation Step 2. Image Generation
corresponding to the channels with cli-

mate variables (Step 2). Key features Figure 2: Our data augmentation approach.

of the architecture are discussed below.
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Trajectory Generation. The hurricane trajectory generation model is based on Social
GAN (SGAN) [9], where the future trajectories of multiple people are predicted simultane-
ously from trajectories of each person in the scene.

Given an input trajectory of a hurricane {yi,...,y;}, our task is generating its future
trajectory from 7+ 1 to T, where each y; = {x;,y;,w;,h;} is a bounding box element. The
Generator takes {yi,...,y,} as input and produces {§,11,...,§7}. The discriminator takes
the entire sequence, either from the real sequence {yi,...,yr} or from the generated one
{¥1,--,¥e:¥141,---, 97}, and classify it as either real or fake.

First, the location and scale of the hurricane is embedded and fed into the encoder
LSTMs. That is, the encoder hidden state h£l> fori=1,...,t is given by

b —LsT™ ({0 (v)) @

where ¢ is an embedding function of a bounding box, followed by a multi-Layer perceptron
(MLP) 7. Next, we concatenate the output of ¥ with a Gaussian noise z ~ A/(0,I) to initialize

the hidden state of the decoder hg):

b = [v(n"):7] (5)

()

After initializing the decoder hidden state h;”, we predict the next coordinate of trajectory
¥i+1 from its previous coordinate §; = {x;,y;,w;, h;} fori=1,....,T — 1 as

By =LST™ (0. 0(v).  §i1 = (b)) ©

where ¢ is an embedding function and Y is an MLP.

Image Generation. We adapt the image generation from the pix2pix model [11] to
synthesize a hurricane image from a density map. From the hurricane trajectory generated
in the previous step, we first generate a hurricane density map using a Gaussian mixture. We
then train conditional GANs that map the density map to a climate image whose channels are
climate variables. The discriminator learns to classify between a fake and a real hurricane
image, given a density map. The generator learns to fool the discriminator. In the pix2pix
model, both the generator and discriminator take the input density map.

5 Experiments

We first evaluate our proposed models to track hurricanes on large-scale climate data. We
also evaluate the performance improvements due to our proposed data augmentation. As
our baselines, we compare our proposed model against Real-time MDNet [13], MDNet [24],
ECO [5], and Siam-FC [2].

5.1 Experimental Settings

Dataset. We use 20-year-long records from 1996 to 2015 of Community Atmospheric Model
v5 (CAMS) dataset. It contains snapshots of the global atmospheric states for every three
hours. Each snapshot contains multiple physical variables, among which we use surface-
level pressure (PSL), zonal wind (U850), and meridional wind (V850) given their relevance
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Figure 3: (Left) 4-layer ConvLSTM archi- ) + Output
tecture used for f, g. (Right) Bounding- Tslgexnil(% analp FC: flatten x5
box regressor (w) with 4-layer CNNs with 50X 100 X 24 6x12(64) (2x2)
a fully-connected layer; the numbers at 50 x 100 x 12 g i 2(5) 82 8 i g
each layer are the input size (the number of 50 x 100 x 6 50 % 100 (12) 2 % 2)

1 Input

features) (the max-pooling window size). 1 Density map

to hurricane identification from scientific literature. As ground truth, we use the correspond-
ing TECA labels [29], which contain the latitude and longitude of each hurricane and the
diameter of hurricane-force winds.

In order to fit the model in memory, we split the global map into several patches within
non-overlapping Northern tropical cyclone basins” of a 25° x 50° sub-image (1° ~ 111 km).
From 400 hurricane trajectories in this dataset, we create 11,160 sub-sequences of ten frames
(corresponding to 30 hours), and use 80% for training, 10% for validation, and the other 10%
for testing. The input image size is 50 x 100 pixels with around 0.5° (55.5 km) resolution.

Models and Hyper-parameters. Both for the focus learning module and the tracking
module, we use four-layered ConvLSTM architectures, as illustrated in Figure 3 (leff). All
the input-to-state and state-to-state kernels are of size 3 x 3 which is consistent with the size
of hurricane. Both for the bounding box regressor and the discriminator, multi-layered CNNs
followed by a fully-connected layer are utilized as in Figure 3 (right). The batch size is 24,
and all ConvLSTM layers have the forget bias of 0.5. We use AdaGrad optimizer with the
learning rate of 0.0005, and apply 10% dropout during training. We initialize all the states
of the ConvLSTMs to zero before the first input comes, meaning that no information has
been memorized in cell from the past. The Proposed tracking framework is built on Python
using TensorFlow, trained and tested on a machine with Intel(R) Xeon(R) CPU E5-2640 v4
@ 2.40GHz and six NVIDIA Tesla K80 with 12GB memory per GPU. The average testing
speed of the proposed framework is about 809.32 images per second.

During training, we fix the video length to ten frames (30 hours). In testing, we divide
the entire hurricane video (of an arbitrary length) for each 10 frames and test each sub-video
separately. Except for the first sub-video, where the actual ground truth location is given,
we give as input the estimated bounding box from the last frame of the previous sub-video
in replacement of the initial location to the focus learning module. The density map input
for the focus learning module has been synthesized based on the bounding box input on the
fly; formally, N/ ((x+ 5,9+ %),621), where the bounding box is given as {x,y,w,h} and
o = max{w,h}. To be consistent with the training phase, we initialize all hidden states of
the ConvLSTM to zero.

Evaluation Metrics. We follow the evaluation protocol widely used in visual object
tracking benchmarks [19, 40], using two evaluation criteria. First, a success plot shows the
success ratio of each method for overlap thresholds from O to 1 (the x-axis of the plot),
where we count a frame as success if the intersection over union (IOU) of the bounding
boxes between prediction and ground truth is greater than the overlap threshold. Second, the
precision plot shows the ratio of successful frames whose tracker output is within the given
threshold (the x-axis of the plot, from O to 100 pixels) from the ground truth, measured by
the center distance between bounding boxes. For both plots, we also report the area under

2Typically, seven commonly accepted basins include North Atlantic, Northeast Pacific, Northwest Pacific, North
Indian, South Indian, South Pacific, and South Atlantic. Due to the local environment, tropical cyclones do not cross
the border of these basins. That is, hurricanes always occur, develop, and disappear within the same basin.
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Figure 4: Success plot (top) and Precision plot (bottom) of experiments.

the curve (AUC) score of each method in the legend of the plot (higher values are better).

5.2 Hurricane Tracking Results

The main contribution of our tracking framework is the capability of the focus learning
module to accurately learn the feature of the target by repeating learning steps. To show the
effectiveness of repeated feature learning, we conduct comparison among variations of focus
learning steps. Figure 4(a) shows the success plot and the precision plot of hurricane tracking
trained and tested with CAMS climate data. We observe that increasing focus learning steps
slightly improves the tracking performance, because with larger learning steps, the model
imprints the feature of target more strongly in its hidden state.

=0 =10 t=20 =30 =40 =50 t=60 =70 =80 i =90 =100 t=110

Out GT Img

Figure 5: Hurricane tracking results. Top: inputs overlaid with ground truth (white) and
prediction (green), Middle: ground truth density map, Bottom: predicted density map.

Figure 5 shows a challenging example of our hurricane tracking, where a new hurricane
emerges from the right side of the image around ¢ = 90. Both from the bounding box (top
row) and density map (bottom row) results, one can see that our model robustly tracks the
target hurricane from start to end for a long period (t = 110 in this example, corresponding
to 330 hours) even at the presence of another similar object.

Lastly, we compare our tracking performance against other state-of-the-art baselines,
including Real-time MDNet [13], MDNet [24], ECO [5], and Siam-FC [2]. We compare
both success and precision plots including AUC scores. As shown in Figure 4(b), our track-
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ing framework significantly outperforms all baselines. For instance, our proposed method
outperforms the best performing baseline (RT-MDNET) by 20.8% in terms of the AUC of
success rates.

5.3 Effects of Data Augmentation

To see the effect of data augmentation introduced in Section 4.3, we train the proposed
model with the augmented data in conjunction with CAMS5 data. Figure 6 illustrates an
example of real CAMS hurricane data in North America (fop) and that of synthesized hur-
ricane data when applying our data augmentation (bottom). Visually inspecting the exam-
ples, we see that the synthesized hurricane data successfully mimics the key properties of
hurricane, which has low pressure at the center and spirally rotating wind vectors with a
counter-clockwise direction around the center.

As shown in Figure 4(c), data augmentation significantly improves the tracking perfor-
mance. Comparing the performance with and without augmented data, we observe 34.5%
improvement in the AUC of success rates over our best model without data augmentation.
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Figure 6: Real hurricane example (top) and augmented synthesized one (botfom) in North
America for each climate variable channel.

6 Conclusions

This paper proposed a simple but robust end-to-end model to tackle the extreme climate event
tracking problem. Due to its unique challenges, including wider ranges of spatio-temporal
dynamics, the blur boundary of a target, and the shortage of labeled dataset, we design our
ConvLSTM-variant model to learn a wide range of spatio-temporal dynamics even at the
absence of the clear boundary of the target. Also, we presented a novel data augmentation
approach based on conditional GANs to overcome the data shortage problem in climate
science. Extensive experiments indicate that the proposed framework significantly improves
hurricane tracking performance over several state-of-the-art methods.
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