Prompting Visual-Language Models
Dynamic Facial Expression Recognition

Zengqun Zhao

ol
xQ Queen Mary  for

University of London
loannis Patras

Queen Mary University of London

Overview Comparison with SOTA
. | E—
L [eeiness] el ——— DFEW FERV39%k MAFW
- HA I: P f [sadness] Encoder : Methods
e eI — UAR WAR | UAR WAR/| UAR WAR
= i encoder [ T———1 Former-DFER [1] [MM'21]]53.69 65.70/37.20 46.85/31.16 43.27
. | " Fine-tuning DPCNet [2] [MM'22] | 57.11 66.32 - - - -
_____la)Previous Approach | _______ bcte T-ESFL (3] [MM'22] . . .. 33284818
T e —— EST [4] [PR'23] 53.94 65.85 - - - -
XX pescriptions | Encoder | ——— AL [5] [AAAI'23] 55.71 69.2435.82 48.54 - -
(c) Our Approach CLIPER [6] [arXiv'23] | 57.56 70.84 41.23 51.34 - :
M3DFEL [7] [CVPR'23] 56.10 69.25 35.94 47.67 - -
L T AEN [8] [CVPRW'23]  56.66 69.37/38.18 47.88| - -
Y Fine-tunin rain from scratc
renng e from seraieh DFER-CLIP (Ours)  59.61 71.25 41.27 51.65/39.89 52.55
We propose a novel visual-language model called DFER-CLIP, based on the
CLIP model and designed for in-the-wild Dynamic Facial Expression Recog- Ablation Anal_ysis

nition (DFER). The DFER-CLIP:

= Temporal feature learning: learns spatial as well as temporal facial Table 1. Evaluation of the learnable context prompt numbers & the temporal model depths.
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e By adopting the temporal model, the UAR performance can be improved by 2.22%, and
1.38%, and WAR performance can be improved by 2.25%, 0.73%, and 1.64% on DFER,
FERV39k, and MAFW datasets, respectively.

Method

/> Maximize the Score for the GT Class

Table 2. Evaluation of different training strategies. TM stands for the temporal model.
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a smiling mouth,
raised cheeks,
wrinkled eyes, ...

widened eyes, an
open mouth,
raised eyebrows, ...

e Our method outperforms Fully Fine-tuning in UAR by 3.91%, 1.63%, and 2.36%, and in
WAR by 2.84%, 0.88%, and 2.0/% on DFER, FERV3%k, and MAFW datasets, respectively.
Even without the temporal model, our method is better than all the classifier-based methods.
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Table 3. BEvaluation of different prompts.
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= Textual part: we utilize descriptions related to facial behaviour instead of
| for the text Curth dopt the | N w/ [Learnable Prompt] [Class] 58.28 70.29140.60 51.1839.64 51.21
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prompt as a context for descriptors of each class, which does not require
experts to design context words and allows the model to learn relevant
context information for each expression during training.

e Our method outperforms manually designed prompts on both DFEW and FERV39k
datasets. Furthermore, our method outperforms the prompt of the class name with the learn-
able context approach, which indicates the effectiveness of using descriptions.
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Code is avallable at https://github.com/zengqunzhao/DFER-CLIP
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