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This supplementary material includes more detailed descriptions of the datasets, and addi-
tional experimental results.

1 Datasets and Implementation Details
Human3.6M is a large-scale dataset containing more than 3.6 million human poses, and
includes 15 different human activities performed by 11 actors [3]. During training, we use
5 subjects (S1, S5, S6, S7, S8), and during testing, we use 2 subjects (S9, S11) from the
dataset.

MPI-INF-3DHP contains 1.3 million frames and features 8 actors performing 8 actions,
providing a wider range of poses [8]. It includes a test set with 6 subjects in both indoor
and complex outdoor scenes, enabling the evaluation of the model’s generalization ability to
unseen environments.

More Implementaion Details. All experiments are conducted on a single NVIDIA GeForce
RTX 3070 GPU with 8G memory, and our model is implemented in PyTorch. For the 2D
ground truth, we set the batch size to 256, L = 3, F = 128, and R = 256. To prevent overfit-
ting, we also add dropout with a factor of 0.2 after each graph weighted Jacobi layer.

2 Additional Experimental Results
Quantitative Results. Table 1 reports the results of our MLP-GraphWJ mixer model and
various competing baselines when using 2D ground truth keypoints as input. The findings
indicate that our model outperforms GraphMDN [9] on 12 out of 15 actions with an average
error reduction of approximately 2.42% under Protocol #1. Moreover, our model shows
better performance compared to MGCN [18], High-Order GCN [19], SemGCN [16], and
Weight Unsharing [6] on average, while having a lower number of learnable parameters and
inference time. These results highlight the effectiveness of our proposed method.

Qualitative Results. Figure 1 shows some additional visualization results of the proposed
MLP-GraphWJ mixer model on the Human3.6M dataset. Our model demonstrates a high
degree of accuracy in predicting hand poses, even in scenarios where joints overlap or oc-
clusions occur, while MGCN [18] struggles to perform the same task effectively.
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Table 1: Performance comparison of our model and baseline methods on Human3.6M under
protocol #1 using the ground truth 2D pose as input. Boldface numbers indicate the best
performance, whereas the underlined numbers indicate the second-best performance. (†) -
uses temporal information.

Action

Protocol #1 Dire.Disc. Eat GreetPhonePhotoPosePurch. Sit SitD.SmokeWaitWalkD.WalkWalkT.Avg.

Martinez et al. [7] 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Pavlakos et al. [10] 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.1 48.3 52.9 41.5 46.4 51.9
Hossain et al. [2] (†) 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39. 44.1
Cai et al. [1] (†) 32.9 38.7 32.9 37.0 37.3 44.8 38.7 36.1 41.0 45.6 36.8 37.7 37.7 29.5 31.6 37.2
Liu et al. [6] 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8
Pavllo et al. [11] (†) 35.2 40.2 32.7 35.7 38.2 45.5 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8
Zou et al. [18] - - - - - - - - - - - - - - - 37.4
Oikarinen et al. [9] 33.9 39.9 33.0 35.4 36.8 44.4 38.9 33.0 41.0 50.0 36.4 38.3 37.8 28.2 31.5 37.2
Lee et al. [4] 34.6 39.6 31.3 34.7 33.9 40.3 39.5 32.2 35.4 43.5 34.0 35.0 36.9 29.7 31.4 35.6
Zhang et al. [15] - - - - - - - - - - - - - - - 35.3
Zhao et al. [17] 32.0 38.0 30.0 34.4 34.7 43.3 35.2 31.4 38.0 46.2 34.2 35.7 36.1 27.4 30.6 35.2
Zhan et al. [14] (†) 31.2 35.7 31.4 33.6 35.0 37.5 37.2 30.9 42.5 41.3 34.6 36.5 32.0 27.7 28.9 34.4

Ours (†) 31.6 35.6 31.5 31.0 32.1 35.1 36.3 30.1 38.8 41.4 32.6 34.6 31.4 25.5 25.8 32.9

Input MGCN Our Prediction Ground Truth
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Figure 1: Qualitative comparison between our model and MGCN on Human3.6M actions.
The red circle indicates the locations where our model yields better results.

Model Size Comparison. The proposed framework employs a weighted Jacobi (WJ) fea-
ture propagation rule obtained via graph filtering with implicit fairing. One of the key bene-
fits of our model is that it presents a simple and competitive alternative to existing approaches
that do not use self-attention mechanisms, while outperforming previous work and retaining
a small model size, as illustrated in Figure 2. Moreover, our approach effectively merges
temporal information within the feature channels, while incurring minimal computational
cost in terms of sequence length.

Hyper-Parameter Sensitivity Analysis. We start by investigating the impact of the dif-
ferent hyper-parameters on model performance. Results are reported in Table 2. It can be
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Figure 2: Performance and model size comparison between our model and state-of-the-art
methods for 3D human pose estimation, including MGCN [18], SemGCN [16], High-Order
GCN [19], ST-GCN [1], and Weight Unsharing [5]. Lower Mean Per Joint Position Error
(MPJPE) values indicate better performance. Evaluation conducted on a single frame of
Human3.6M [3] dataset with 2D joints as input. (§) - uses a pose refinement network.

observed that the expanding ratio of 2 (F = 384, R= 768) performs better than the commonly
used ratio of 4 in vision Transformers and MLPs. The value of the skeleton embedding hid-
den dimension F affects the model ability to capture patterns. When increasing F from 128
to 384 and R from 256 to 768, the MPJPE decreases from 47.5mm to 45.3mm. However,
the number of trainable parameters increases from 0.65M to 5.48M. The best results are
obtained using F = 384, and R = 768. Using three MLP-GraphWJ mixer layers yields the
best performance, while increasing or decreasing the number of layers negatively impacts
performance.

Table 2: Ablation study on various configurations of our approach without pose refinement
on Human3.6M under protocol#1 using detected 2D pose as input. L is the number of MLP-
GraphWJ mixer layers, F is the hidden dimension of skeleton embedding and joints mixing
MLP and R is the hidden dimension of GraphWJ mixing layer. The number of input frames
is set to T = 81. Boldface numbers indicate the best performance.

L F R Params. (M) MPJPE (↓)

3 128 256 0.65 47.5
3 256 256 1.28 47.7
3 256 512 2.47 47.9
3 256 1024 4.86 47.3
3 384 384 2.80 46.8
3 384 768 5.48 45.3
3 384 1536 10.83 46.1
1 384 768 1.87 48.3
2 384 384 3.68 46.6
4 384 768 7.29 46.6
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Comparison with GCN-based Methods. In order to bypass the influence of 2D pose
detectors and gain further insight into the importance of our network architecture and graph
propagation rule, we train our model on the Human3.6M dataset using 2D ground truth
poses by maintaining the expanding ratio of 2 (F = 128, R = 256) and we report the results
in Table 3. Our method demonstrates superior performance compared to recent state-of-art
methods based on a single frame, despite utilizing fewer trainable parameters.

Table 3: Performance comparison of our model and baseline methods without pose refine-
ment using ground-truth keypoints. Boldface numbers indicate the best performance.

Method Filters Params MPJPE PA-MPJPE Infer.
(M) (↓) (↓) Time

SemGCN [16] 128 0.43 40.78 31.46 .012s
High-Order GCN [19] 96 1.20 39.52 31.07 .013s
Weight Unsharing [6] 128 4.22 37.83 30.09 .032s
MGCN [18] 256 1.10 37.43 29.73 .008s

Ours - 0.63 36.34 28.97 .005s

Improvements on Hard Poses. Hard poses, which are characterized by high prediction
errors, are specific to the model being used. These poses often have certain inherent char-
acteristics, such as overlapping and self-occlusion. The way in which such cases are dealt
with, however, may vary across different models [12, 13, 16]. For instance, when a per-
son is sitting down in a position with their legs crossed, estimating their 3D pose accurately
can be difficult due to the complex interactions between different body parts. Our proposed
method aims to address this challenge by learning to capture the complex relationships be-
tween the joints via the joints mixing MLP layer and GraphWJ mixing layer. As reported in
the first table of the main paper, our method yields better performance on hard poses (e.g.,
Directions, Sitting Down, Photo, and Purchase) compared to recent GCN-based state-of-art
methods [13, 16, 18]. In addition, we test our model on the top 5% hardest poses following
[12, 13], yielding superior performance over the baselines, as shown in Figure 3.
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Figure 3: Comparison of our model and baselines on the 5% hardest poses under Protocol
#1.
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