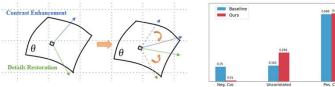
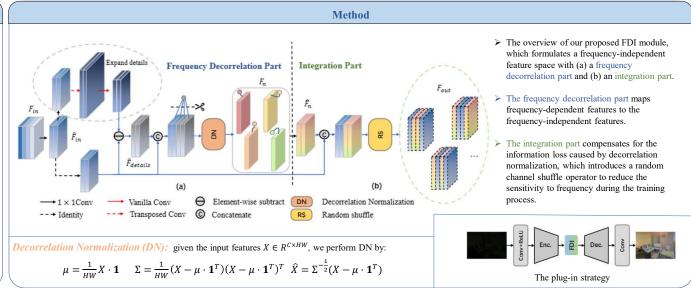
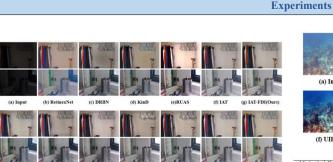


Frequency-Consistent Optimization for Image Enhancement Networks


Bing Li, Naishan Zheng, Qi Zhu, Jie Huang, Feng Zhao University of Science and Technology of China Paper id: 274


Introduction


Motivation:

- Image enhancement aims at enhancing the overall contrast (low frequency) while reconstructing details (high frequency). Existing studies typically achieve these two objectives with a heuristically constructed complex architecture (i.e., two-stage or two-branch).
- However, the complex designs result in unsatisfactory flexibility and transferability. What's more, two-stage approaches lead to the accumulation of errors, resulting in sub-optimization.

- > Our aims is to perform the image enhancement task within a single-stage and single-branch network.
- However, directly employing a single network to optimize the two objectives simultaneously will lead to an optimization conflict.
- To alleviate this problem, we construct a frequency-independent feature space for maintaining optimization consistency

(a) EalightenGAN (i) SID (i) MSID(Ours) (i) MPRNet (i) MPRNet. (iii) M-MPRNet(Ours) (ii) GT Figure 4: Visual comparison on LOL dataset. M-SID and M-MPRNet denote SID and MPR-Net incorporated with the proposed FDI module by strategy (ii) mentioned in Sec. 3.4.

Table 1: Quantitative results on LOL dataset. The best results are highlighted in bold.

Method	RetinexNet	KinD	KinD++	RUAS	DRBN	EnlightenGAN	SCI
PSNR([†])	16.77	20.87	18.97	18.23	19.86	17.48	14.78
SSIM(†)	0.5671	0.7988	0.8441	0.7170	0.8342	0.7330	0.6350
LPIPS(1)	0.474	0.207	0.175	0.257	0.155	0.306	0.3334
#Param	0.62M	8.03M	9.63M	45K	2.21M	8.64M	43k
Method	SID	SID-L	M-SID	MPRNet	MPRNet-L	M-MPRNet	LEDNet
PSNR(†)	19.16	18.99	21.07(+1.91)	20.13	20.22	21.59(+1.46)	20.94
SSIM(†)	0.7862	0.8242	0.8360(+0.0498)	0.8170	0.8095	0.8512(+0.0342)	0.8506
LPIPS(1)	0.440	0.258	0.227(+0.213)	0.266	0.261	0.154(+0.112)	0.2609
#Param	29.6M	118M	35.1M	17.5M	34.3M	18.2M	28.4M
Method	LEDNet-FDI	Restormer	Restormer-FDI	NAFNet	NAFNet-FDI	IAT	IAT-FDI
PSNR(†)	21.59(+0.65)	20.67	20.79(+0.12)	22.44	22.79(+0.35)	23.38	23.59(+0.21)
SSIM(†)	0.8618(+0.0112)	0.8193	0.8212(+0.0019)	0.8608	0.8620(+0.0012)	0.8675	0.8704(+0.0029)
LPIPS(1)	0.2484(+0.0125)	0.2145	0.2107(+0.0038)	0.1482	0.1467(+0.0015)	0.2158	0.2049(+0.0109)
#Param	28.7M	99.8M	102.9M	65.5M	71.0M	0.41M	0.43M

(a) Input (b) H	Fusion (c)	Water-Net (d)	PUIE-Net(MC)	(e) MLLE
	C^2(Ours) (h) ure 5: Visual com		I-MPRNet(Ours)	() GT

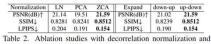

Ph.,	Method	Fusion	Water-Net	PUIE-Net(MC)	MLLE	UIEC^2	M-UIEC^2	MPRNet	M-MPRNet
	PSNR(↑)	21.47	18.92	22.09	18.58	21.41	22.27(+0.86)	21.33	23.39(+2.06)
R-	SSIM(†)	0.8739	0.8533	0.8441	0.7706	0.9357	0.9433(+0.0076)	0.9154	0.9387(+0.0233)
	$LPIPS(\downarrow)$	0.158	0.158	0.156	0.312	0.128	0.125(+0.003)	0.178	0.147(+0.031)
	#Param	N/A	4.16M	61.5M	N/A	2.05M	2.32M	17.5M	18.2M

Table 4: Quantitative results on LOL dataset. H-, R-, and M- denote incorporating the FDI module at the head, rear, and middle of networks, respectively.

Method	PSNR(†)	SSIM(†)	$LPIPS(\downarrow)$	#Param(M)
SID	19.16	0.7862	0.439	29.6
H-SID	19.24(+0.08)	0.7846(-0.0016)	0.288(+0.218)	29.6
R-SID	20.18(+1.02)	0.8330(+0.0468)	0.221(+0.218)	29.6
M-SID	21.07(+1.91)	0.8360(+0.0498)	0.227(+0.212)	35.1
MPRNet	20.13	0.8170	0.266	17.5
H-MPRNet	20.72(+0.59)	0.8040(-0.0130)	0.259(+0.007)	17.6
R-MPRNet	20.63(+0.50)	0.8192(+0.0022)	0.231(+0.035)	17.6
M-MPRNet	21.59(+1.46)	0.8512(+0.0342)	0.154(+0.112)	18.2

Table 5: Ablation study with decorrelation normalization on LOL dataset.

Method	PS	SNR(†) S	SIM(†)	LPIPS(1)
baseline		20.13		0.8170	0.266	
LN	21.1	4(+1.0	01) 0.828	81(+0.011)	1) 0.204(+0.0	62)
IN	21.1	0(+0.9	97) 0.833	80(+0.0208	3) 0.208(+0.0	58)
PCA	19.5	51(-0.6	62) 0.824	1(+0.0071	0.191(+0.0	75)
ZCA	21.5	9(+1.9	91) 0.836	60(+0.0498	8) 0.154(+0.1	12)
	huff	e, re	spective PSNR (†)	ely.	g, and Ra	n-
			20.13	0.8170	0.266	
	~	~	20.37	0.8199	0.250	
~		1	20.82	0.8202	0.243	
1		100	20.61 21.59	0.8243	0.244 0.154	

expand operator on LOL dataset (using MPRNet as the backbone).

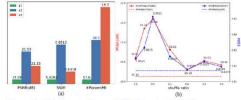


Figure 6: Ablation studies on LOL dataset. (a) Performance versus expanding resolution; (b) performance versus shuffle ratio.

Conclusions

Ablations

- We point out the optimization inconsistency between contrast enhancement and texture restoration in image enhancement. To this end, we construct a frequency-independent feature space with a Frequency Decorrelation and Integration (FDI) module.
- Within the FDI module, we design a frequency decorrelation part for mapping features to a frequencyindependent space, and an integration part for reducing the sensitivity to the frequency during the optimization process.
- Our FDI module is general and can be integrated into the existing image enhancement methods with negligible parameters. Extensive experiments demonstrate consistent performance gains by introducing our proposed module.