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Motivation
The classifier of MAML family is highly sensitive to the
pseudo query data.
The feature extractor of MAML family is highly adaptable to
the pseudo query data.
The imbalance of pseudo query data may have negative
impact.

Contribution
This work is the first to incorporate label propagation used in
transductive methods to generate pseudo-labels for MAML.
We propose to use adaptive picking to select instances from
the pseudo query set to balance the number of samples for
each class.
We apply our Generative Pseudo-label method to two typical
variants of MAML, and improve their performance,
demonstrating the applicability of our approach.
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Step 2: Pseudo-labeling and adaptive picking
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In phase 1, the few-shot model up-dates its parameters through the
support set.
In phase 2, we adopt the label propagation of TPN to label the query
set, which will be filtered by adaptive picking to select the pseudo
query data.
In phase 3, the picked pseudo query data will be added to the
support set for re-training, then the loss of the query set is calculated
as in MAML.

Formulation
For all tasks, we compute adapted body parameters :

We construct the weighted graph: 

We Re-update parameters with new support set examples:

Experiments

Method
MiniImageNet CIFAR-FS FC100

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML 48.24 61.52 57.57 72.31 36.64 47.26

ANIL 49.61 64.90 58.34 72.34 36.38 47.16

BOIL 49.82 67.60 58.69 75.31 38.80 51.42

MAML(w. qry) 34.89 50.11 43.71 58.40 25.24 30.51

ANIL(w. qry) 37.49 48.41 46.23 59.52 25.68 30.97

BOIL(w. qry) 49.88 68.08 60.91 76.32 39.67 52.02

MAML(w. AP) 51.37 63.82 62.58 75.08 38.65 48.92

ANIL(w. AP) 53.00 67.86 63.44 75.12 38.37 48.71

BOIL(w. AP) 52.42 69.84 63.51 77.76 40.76 52.97

GP-MAML 52.71 68.06 64.03 75.60 38.57 48.50

GP-ANIL 55.92 70.73 65.66 75.08 38.95 51.16

GP-BOIL 55.55 71.36 66.55 78.50 41.80 53.71

We conduct a comprehensive experimental analysis
of our GP-MAML, GP-ANIL, and GP-BOIL.

Conclusion
We generated pseudo-labels by using label propagation with adaptive picking,
introduced transductive methods to typical inductive methods.
We address the problem that inductive methods can not fully utilize information
of the query set.  
We also proposed a simple yet effective method called adaptive picking to
select samples from distinctclasses with balanced quantity. 
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