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1. INTRODUCTION

* self-supervised framework for video object segmentation (VOS)
* matches state-of-the-art (SOTA) performance on DAVIS16

* establishes a new SOTA on SegTrackv2 (+1 mloU)

* inference with single images (no additional inputs required!)

* no post-processing! (deployable in real-world applications)

* trained on videos; exemplary zero-shot performance on images
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1. Graph-cut

* Given video frame f, divide f into square patches v; of size p, x p.
* Build a fully-connected graph G=(V,E) on these image patches. V= {v;}
* E(v,v) is given by: cosine similarity (S) scores of the patch features from DINO (@) [5].
» Specifically,
E(v) = a S(O(v), B(v)) + (I- @) S(B(flow,), O(flow)

where a € [0,], flow;, flow; are the corresponding optical flow patches.

2. Bootstrapped self-training

* Given N video frames, x; € R#*W*3 with corresponding graph-cut masks m; € R#*Wx1
* We train a segmentation network, g, minimizing cross-entropy(CE):

X : 1 i
6, = argmin N Z Lce(mi,go(xi))
0 i=1

* Next, we iteratively train g, with its outputs from previous rounds as supervisory signal

* .1 Al
0 =argmin - ) Lcr(gor  (xi),80,(xi))
O; =1

3. QUANTITATIVE RESULTS

Ponimatkin et. al. [1] None CRF 80.2 74.9 70.0
OCLR [2] Synth. DINO-based TTA 80.9 723 727
DyStaB [3] Sup. feats. CRF 80.0 742 73.2
GWM [4] Sup. feats. CRF + DINO 80.7 78.9 78.4
LOCATE (Ours) None None 80.9 79.9 68.8

For detailed comparison, please check out the paper here: https://arxiv.org/abs/2308.11239
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