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The purpose of this document is to provide extra material to complement the main paper.
In Sec. 1, we present additional experiments on the proposed Viewport Spatio-Temporal
Attention (VSTA) mechanism. In Sec. 2, we give the implementation details of our proposed
Viewport Augmentation Consistency (VAC) loss. Finally, in Sec. 3, we evaluate our method
and the competing approaches on a downstream task, which involves assessing the visual
quality of omnidirectional videos. The code and pre-trained models will be available.

1 Viewport Spatio-Temporal Self-Attention

1.1 Temporal Window Size

To investigate the impact of temporal window size (F) on the representational power of our
omnidirectional video saliency prediction model, we vary the number of frames in a video
clip, and analyze its effect. These experiments are performed on our VSTA baseline, which
consists of 6 transformer blocks with an embedding dimension of D = 512 and 8 attention
heads. We present the results of our experiments using four saliency evaluation metrics
in Fig. 1, providing insights into the performance of our model across different temporal
window sizes.
Fig. 1 shows that increasing temporal window size gradually leads to a performance boost
in three metrics and an insignificant performance drop in NSS for F > 2. We conclude our
experiments at F = 8, considering the memory limit of a single Tesla V100 GPU.
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Figure 1: Performance of our ODV saliency prediction model in terms of four evaluation
metrics (NSS, KLD, CC, SIM) as a function of temporal window size (F) on the validation
split of VR-EyeTracking [1] dataset.

1.2 Transformer Depth

We analyze the influence of the number of transformer blocks on the performance and the
computational complexity of our saliency prediction model for omnidirectional videos. In
Fig. 2, we present our experimental results, showing how the performance varies with differ-
ent numbers of transformer blocks.
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Figure 2: Performance of our ODV saliency prediction model in terms of four evaluation
metrics (KLD, NSS, CC, SIM) as a function of VSTA depth (N) on the validation split of
VR-EyeTracking dataset.

In Fig. 2, the performance gain from N = 0 to N = 1, highlights the effectiveness of our pro-
posed VSTA mechanism for saliency prediction in omnidirectional videos. Notably, even
with a single VSTA transformer block, our model shows the ability to capture rich 360◦

spatio-temporal features. As the depth of the transformer blocks increases, the model perfor-
mance continues to improve. However, we conclude our experiments after N = 6 transformer
blocks, taking into consideration the model size as reported in Table 1.

1.3 Comparison with Joint Spatio-Temporal Attention

Table 1 compares our proposed VSA and VSTA mechanisms with joint spatio-temporal at-
tention, which computes self-attention among all frames and tokens in a video clip. Since
VSTA computes spatio-temporal attention in two stages (time and space), the model size
becomes larger than VSA / JSTA. On the other hand, VSTA is computationally more effi-
cient as its complexity grows linearly with respect to temporal window size, where it grows
quadratically in JSTA.
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Attention # params GFLOPs NSS↑ KLD↓ CC↑ SIM↑
None 11.81M 0.00 2.306 7.718 0.497 0.434
VSA 30.78M 57.08 2.575 6.221 0.563 0.475

VSTA 37.07M 63.30 2.664 6.174 0.570 0.479
JSTA 30.78M 77.57 n/a n/a n/a n/a

Table 1: Quantitative comparison for space-only attention, the proposed Viewport Spatio-
Temporal Attention and existing Joint Spatio-Temporal attention for omnidirectional video
saliency prediction on the validation split of VR-EyeTracking dataset. Due to memory limi-
tations, JSTA model could not be trained on our GPU.

2 Viewport Augmentation Consistency (VAC)

In this section, we describe the proposed Viewport Augmentation Consistency in more detail.
To address the discrepancies in overlapping regions of tangent predictions, we propose to use
a second -augmented- tangent image set and minimize the difference between the predictions
of these pairs with an additional loss term. Following [2], we sampled T = 18 tangent images
at four latitudes: −67.5◦,−22.5◦,22.5◦,67.5◦ for the original set. The tangent images are
sampled for each latitude level with 90◦ apart in longitude. We extracted each tangent image
with a resolution of 224×224 and field-of-view (FOV) of 80◦. We generated the augmented
tangent image set under three configurations: (1) horizontally shifting viewports, (2) using a
larger FOV for each viewport, and (3) varying the number, position, and FOV of the tangent
viewports. It is important to emphasize that the augmented tangent images share weights
with the original set, which neither requires extra parameters nor increases model complex-
ity during training. Our experimental results in Fig. 4 demonstrate that each augmentation
method improves model consistency significantly.

2.1 Approaches for Augmenting Tangent Images

Shifting Viewport Centers. In this setting, we keep the number and FOV of tangent images
the same. We obtain the shifted tangent image set by applying a 45◦ horizontal shift on each
viewport.
FOV Augmentation. In the second set, we keep the position of each tangent image the
same and generate the augmented set by increasing their FOV to 120◦. Augmented FOV
also provides the model with a multi-scale representation for the same input.
Viewport Augmentation. In the last setting, we generate the second set with T ′ = 10 tangent
images with a FOV of 120◦, located in three latitudes: −60◦,0◦,60◦. We sample 3,4,3
viewports for each latitude.

2.2 Mask-weighted VAC Loss.

We use an optional weight for the proposed LVAC(P, P′) loss to increase consistency, espe-
cially on the overlapping regions on ERP. In Fig. 5, we provide the weight mask computed
from the gnomonic projection for the original tangent image set. The performance compari-
son in Table 2 demonstrates the effectiveness of the proposed masking operation.
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Figure 3: A tangent viewport from the original projection, highlighted on Equirectangular
Projection (ERP) (top), compared with three augmentation methods (bottom).
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Figure 4: Performance of our VSTA baseline compared with three augmentation consistency
methods on four metrics, on the validation split of VR-EyeTracking dataset.

Figure 5: Weight mask used for VAC Loss.
Each pixel coordinate in ERP takes a value
based on the number of tangent viewports it
is projected onto (max. 4). Brighter colours
represent increasing overlaps.

Model NSS↑ KLD↓ CC↑ SIM↑
VSTA + VAC

(w/o mask) 2.624 6.011 0.576 0.490

VSTA + VAC
(w/ mask) 2.630 5.744 0.586 0.492

Table 2: Quantitative comparison for
the proposed VAC Loss with and with-
out mask, on the validation split of VR-
EyeTracking dataset.
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3 Use Case: Saliency-Guided Omnidirectional Video
Quality Assessment

In Table 3, we report the performance of two PSNR variants compared to ground-truth
DMOS values in the VQA-ODV [3] dataset. Each row corresponds to saliency weights
that supply human-perceptual information to PSNR and WS-PSNR metrics. The ground
truth head movement (HM) maps refer to the viewports that human subjects have viewed
while rating the visual quality of ODVs. Predicting saliency maps that better capture hu-
man head movements will result in better performance in the PSNR metrics. The table
demonstrates that our proposed saliency prediction model better highlights the perceptually
important regions in 360◦ videos compared to the state-of-the-art for omnidirectional video
quality assessment downstream task.

Following the prior work [4], the saliency-weighted PSNR and WS-PSNR values are
calculated as:

PSNRsal = 10log10
Y 2

max ·∑p∈P wsal(p)

∑p∈P(Y (p)−Y ′(p))2 ·wsal(p)
(1)

WS−PSNRsal = 10log10
Y 2

max ·∑p∈P wsal(p)cosθp

∑p∈P(Y (p)−Y ′(p))2 ·wsal(p)cosθp
(2)

where Ymax is the maximum intensity of the frames, Y (p) and Y ′(p) denote the intensities for
of pixel p in the reference and impaired videos, and θp is the latitude at pixel p.

Weight
PSNR WS-PSNR [5]

PCC↑ SRCC↑ RMSE↓ PCC↑ SRCC↑ RMSE↓
None 0.650 6.664 7.502 0.671 0.686 7.233
PAVER [4] 0.661 0.667 7.481 0.679 0.691 6.914
Djilali et. al. [6] 0.648 0.721 7.336 0.684 0.721 6.829
SalViT360 (ours) 0.688 0.733 7.295 0.689 0.737 6.673

HM (Supervised) 0.764 0.759 6.601 0.759 0.756 6.612

Table 3: Comparison with state-of-the-art saliency models for saliency-guided omnidirec-
tional video quality assessment on VQA-ODV [3] dataset, as a downstream task.
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