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Introduction and Motivation
-A graph is a data structure that can be used to model many problems with entities (graph nodes) and
the relations between these entities (graph edges). Graph Convolutional Networks (GCNs) were proposed
to generalize the convolution operation to graph structures.
-However, these models embed the features into the Euclidean space which has been shown to incur
a large distortion. The hyperbolic space is ideal for embedding trees as the number of tree nodes is
growing exponentially with respect to the tree depth. Motivated by this, recent works built GCNs in the
hyperbolic space. HGCNs achieved better performance than the corresponding Euclidean one.
-However, these works performed the network operations in the tangent space of the manifold which is a
Euclidean local approximation to the manifold at a point. In this work, we propose a manifold-preserving
feature transformations to build SRBGCN without resorting to the tangent space.
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Figure 1: Distortion visualization

Methods in SRBGCN
-Lorentz transformations are linear transformations which are manifold-
preserving and can be used to transform features in the hyperbolic space.
-A Lorentz transformation matrix Λ should satisfy:

ΛT gLΛ = gL (1)

where gL = diag(−1, 1, . . . , 1) is a diagonal matrix that represents the
Riemannian metric for the hyperbolic manifold. A Lorentz transformation
matrix is orthogonal with respect to the Minkowski metric gL.
-The Lorentz transformation can be decomposed into two operations;
The Spatial Rotation operation matrix is given by:

P =

[
1 0
0 Q

]
(d+1)×(d+1)

(2)

where Q belongs to the special orthogonal group SO(d) i.e. QTQ = I.
The Boost operation matrix is given by:

L =

[
coshω (sinhω)nT

d

(sinhω)nd I− (1− coshω)nd ⊗ nd

]
(d+1)×(d+1)

(3)

where ⊗ represents the outer product operation.
-Lorentz centroid is used for feature aggregation in SRBGCN.

Figure 2: feature transformation

Figure 3: feature aggregation

Experiments
Dataset Disease (δ = 0) Airport (δ = 1) PubMed (δ = 3.5) Cora (δ = 11)

Method LP NC LP NC LP NC LP NC

GCN 64.7±0.5 69.7±0.4 89.3±0.4 81.4±0.6 91.1±0.5 78.1±0.2 90.4±0.2 81.3±0.3
GAT 69.8±0.3 70.4±0.4 90.5±0.3 81.5±0.3 91.2±0.1 79.0±0.3 93.7±0.1 83.0±0.7
SAGE 65.9±0.3 69.1±0.6 90.4±0.5 82.1±0.5 86.2±1.0 77.4±2.2 85.5±0.6 77.9±2.4
SGC 65.1±0.2 69.5±0.2 89.8±0.3 80.6±0.1 94.1±0.0 78.9±0.0 91.5±0.1 81.0±0.1

HGCN 91.2±0.6 82.8±0.8 96.4±0.1 90.6±0.2 96.1±0.2 78.4±0.4 93.1±0.4 81.3±0.6
HAT 91.8±0.5 83.6±0.9 - - 96.0±0.3 78.6±0.5 93.0±0.3 83.1±0.6
LGCN 96.6±0.6 84.4±0.8 96.0±0.6 90.9±1.7 96.8±0.1 78.6±0.7 93.6±0.3 83.3±0.7
HYPONET 96.8±0.4 96.0±1.0 97.3±0.3 90.9±1.4 95.8±0.2 78.0±1.0 93.6±0.3 80.2±1.3
SRBGCN 97.3±0.2 93.0±0.4 97.3±0.0 91.6±0.9 97.2±0.0 79.1±0.3 95.2±0.0 82.9±0.2
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Table 1: Evaluation results and comparison with other methods (dim is 16). ROC AUC results are reported for
Link Prediction (LP) tasks and F1 scores are reported for Node Classification (NC) tasks

Dataset dim GAT HGCN HAT LGCN HYPONET SRBGCN

Disease 4
8

49.4±6.3
76.7±0.7

73.2±6.5
81.5±1.3

-
82.3±1.2

87.4±3.1
82.9±1.2

91.0±3.8
92.9±1.0

93.1±0.3
93.3±0.4

Cora 64 83.1±0.6 82.1±0.7 83.1±0.5 83.5±0.5 81.5±0.9 83.8±0.3

Table 2: Comparison between different methods using different dimensions (dim) on the Disease and Cora
datasets for the node classification task

Dataset Disease Airport PubMed Cora

Transformation LP NC LP NC LP NC LP NC

B only
Yl

h = Xl
hL

l 97.2±0.3 91.4±1.9 94.4±2.8 87.3±1.4 96.9±0.1 76.6±1.7 94.1±0.2 81.7±0.7

SR only
Yl

h = Xl
hP

l 97.2±0.3 92.1±0.6 97.3±0.0 89.7±1.4 97.2±0.0 78.8±0.4 95.2±0.0 81.4±0.4

SR and B
Yl

h = Xl
hP

lLl 97.3±0.2 93.3±0.4 96.8 ±0.0 91.6±0.9 97.2±0.0 79.1±0.3 94.3±0.0 83.8±0.3

Table 3: Ablation study on different datasets to show the effect of using only the spatial rotation (SR)
operation, the boost (B) operation and both the spatial rotation and the boost (SR and B) operations

-Four publicly available static graph datasets: Disease, Airport, PubMed and Cora. Table 1 shows
the performance of different methods. For Disease dataset that has a tree structure with depth of 4,
our method achieved a very good performance using dimension of 4 or 8 compared to other methods.
For larger datasets with higher δ-hyperbolicity, our method achieved better performance using higher
dimensional latent representation. Table 2 shows this comparison between the different methods.
-Table 3 shows an Ablation study using different
operations. Table 4 shows distortion values for the
Disease and Airport datasets. Our model preserves
the graph structure of the dataset as can be seen in
Figure 1 for the Disease dataset.

Dataset GCN HGCN SRBGCN

Disease 67.92±54.91 1.04±0.55 0.35±0.03
Airport 175.02±216.90 1.39±0.64 0.27±0.00

Table 4: Distortion for Disease and Airport datasets
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