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Introduction and Motivation Experiments

-A graph is a data structure that can be used to model many problems with entities (graph nodes) and
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to generalize the convolution operation to graph structures. -
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Table 1: Evaluation results and comparison with other methods (dim is 16). ROC AUC results are reported for

Link Prediction (LP) tasks and F1 scores are reported for Node Classification (NC) tasks
Dataset dim GAT HGCN HAT LGCN  HYPONET SRBGCN
Disense 4 49.4x6.3 73.246.5 - 87.4+3.1 91.01=3.8 93.110.3
3 76.7=0.7 &81.50%+1.3 &82.3=1.2 82.9x1.2 92.9+1.0 93.31+-0.4
Cora 64 &83.1+0.6 82.1x0.7 &3.1=0.5 83.5£0.5 81.5+0.9 83.8+0.3

(a) Initial embeddings (b) GCN (c) HGCN

Table 2: Comparison between different methods using different dimensions (dim) on the Disease and Cora

Figure 1: Distortion visualization _ .
datasets for the node classification task
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. Transformation LP NC LP NC LP NC LP NC
Methods in SRBGCN -
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where g, = diag(—1,1,...,1) is a diagonal matrix that represents the

Table 3: Ablation study on different datasets to show the effect of using only the spatial rotation (SR)
operation, the boost (B) operation and both the spatial rotation and the boost (SR and B) operations

-Four publicly available static graph datasets: Disease, Airport, PubMed and Cora. Table 1 shows
the performance of different methods. For Disease dataset that has a tree structure with depth of 4,
our method achieved a very good performance using dimension of 4 or 8 compared to other methods.

Riemannian metric for the hyperbolic manifold. A Lorentz transformation
matrix is orthogonal with respect to the Minkowski metric ¢g,.

-The Lorentz transformation can be decomposed into two operations;
The Spatial Rotation operation matrix is given by:

Figure 2: feature transformation

P 1 O (2) For larger datasets with higher o-hyperbolicity, our method achieved better performance using higher
N 0 Q (d+1) X (d41) dimensional latent representation. Table 2 shows this comparison between the different methods.
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peration matrix 1s given by Disease and Airport datasets. Our model PIESEIVES  \uort  175.024216.90 1.3940.64 0.2740.00

] . - the graph structure of the dataset as can be seen in
cosh w (sinhw)n} : ( :
L = (3) Figure 1 for the Disease dataset.

Table 4: Distortion for Disease and Airport datasets

(sinhw)ng I —(1—coshw)ng®@ng (A1) (d4 1)

Figure 3: feature aggregation

. Contact Information
where @ represents the outer product operation.

-Lorentz centroid is used for feature aggregation in SRBGCN.
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