Declarative Visitors to
Ease Fine-grained
Source Code Mining

with Full History on Billions of AST Nodes

Robert Dyer, Hridesh Rajan, and Tien Nguyen
{rdyer,hridesh,tien}@iastate.edu

lowa State University

The research and educational activities described in this talk was supported in part by the US National Science Foundation (NSF)
under grants CCF-13-49153, CCF-13-20578, TWC-12-23828, CCF-11-17937, CCF-10-17334, and CCF-10-18600.

What is actually practiced
Keep doing what works

To find betteREee i Empirical validation

Spot (anti-)patterns

Why mine software repositories?

Learn from the past —_— Inform the future

= Java.net

SOURCEFORGE.NET®

N
L

launchpad

Consider a task to answer

"How many bug fixes add checks for null?"

mine project
ine proj foreach

SOURCEFORGE.NET®_—metadata project

Output count

of all null
checks

Find null

checks in
each source

repository?

code

Accoss Find all
_ : > emsessm = Java source
repository mine files
revisions

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

A solution in Java...

class AddNullCheck {
static void main(String[] args) {
/* create and submit a Hadoop job */
}

static class AddNullCheckMapper extends Mapper<Text, BytesWritable, Text, LongWritable> ({ I u II prog ral I I

static class DefaultVisitor {

- over 140 lines of code

}

void map (Text key, BytesWritable value, Context corffle

- cO Uses JSON, SVN, and

boolean preVisit (Expr

— \
if (e.kin ﬂnmmm.mea)d ExpressionKind.NEQ) Eclipse JD T Iibraries

S

fo xPression expgt : efx
Oo if (exp.klgtp ssionKind.LITERAL && exp.literal.equals("null")) ({
c“

write (new Text ("count"), new LongWritable(l));

| o~ Uses Hadoop framework

}.visit(p);

}

L L]
static class AddNullCheckReducer extends Reducer<Text, LongWritable, Text, LongWritable> ({ Expl ICIt/I I Ial lual

void reduce (Text key, Iterable<LongWritable> vals, Context context) { - 1
e s parallelization
for (LongWritable value : vals)
sum += value.get();

context.write (key, new LongWritable (sum)) ;

A better solution...

ép: Project = input;

: count: output sum of int;

. visit(p, visitor {
before e: Expression ->

if (e.kind == ExpressionKind.EQ || e.kind == ExpressionKind.NEQ)
exists (i: int; isliteral (e.expressions[i], "null"))
count << 1;

Full program 8 lines of code!
Automatically parallelized!
No external libraries needed!

Analyzes 28.8 million source files in about 15 minutes!

(only 32 microseconds each!)

A better solution...

Ep: Project = input;

Ecount: output sum of int;

visit(p, visitor {
before e: Expression ->
if (e.kind == ExpressionKind.EQ || e.kind == ExpressionKind.NEQ)
exists (i: int; isliteral (e.expressions(i], "null"))

count << 1;

Solution utilizes the Boa framework [pyer-etal-13]

= This talk: Domain-specific language features for source code mining <

[Dyer-etal-13] Robert Dyer, Hoan Nguyen, Hridesh Rajan, and Tien Nguyen. Boa: A language and Infrastructure for
Analyzing Ultra-Large-Scale Software Repositories. |ICSE’13

Related Works

e OO Visitors

o GoF, hierarchical, visitor combinators, visitor pattern
libraries, recursive traversals

e DJ, Demeter/Java

e Source/program query languages
o PQL, JQuery, CodeQuest

Declarative Visitors in Boa

http://boa.cs.iastate.edu/

Basic Syntax

1d := wvisitor {
before i1id:T -> statement
after 1i1d:T -> statement

Execute statement either before or after
visiting the children of a node of type T

Basic Syntax

visit (startNode, id) ;

Starts a visit at the specified startNode using the visitor
with the name id

Depth-First Traversal

Provides a default, depth-first traversal strategy

A->B->C->D->E

before
before
before
after
before
after
after
before
after

after

» H H W U O 0 Q0 W Pp

statement
statement
statement
statement
statement
statement
statement
statement

statement

statement

Type Lists and Wildcards

visitor {

before id:T -> statement
after T2,T3,T4 -> statement
after —> statement

Single type (with identifier)

Attributes of the node available via identifier

Type Lists and Wildcards

visitor {

before 1d:T -> statement
after T2,T3,T4 -> statement
after —-> gstatement

Type list (no identifier)

Executes statement when visiting nodes
of type T2, T3, or T4

Type Lists and Wildcards

visitor {

before 1d:T -> statement
after T2,T3,T4 -> statement
after -> statement

Wildcard (no identifier)

Executes statement for any node not already listed in
another similar clause (e.g., T but not T2/T3/T4)

Provides default behavior

Type Lists and Wildcards

visitor {

before id:T -> statement
after T2,T3,T4 -> statement
after -> statement

Types can be matched by at most 1 before clause
and at most 1 after clause

Custom Traversals

A>E->B->C->D

_
/\

I

before n: A -> {
visit(n.E) ;
visit(n.B);
stop;

That’s the language...

what can we do with it?

Mining Revision Pairs
files: map[string] of ChangedFile;

v := visitor {
before cf: ChangedFile -> ({
if (haskey(files, cf.name)) {
prevCf = files[cf.name];

. # task comparing cf and prevCf
}
files[cf.name] = cf;

};

Useful for tasks comparing versions of same file

Mining Snapshots in Time

snapshot: map[string] of ChangedFile;

visit(node, visitor {
before n: Revision -> if (n.commit date > TIME) stop;

before n: ChangedFile ->
if (n.change == ChangeKind.DELETED)

remove (snapshot, n.name);

else
snapshot[n.name] = n;

})

Computes the snapshot for a given TIME

Mining Snapshots in Time
Previous code provided as domain-specific function

Using that code to visit each file in the snapshot:

visitor {
before n: CodeRepository -> {
snapshot := getsnapshot(n);
foreach (i: int; def (snapshot[i]))
visit (snapshot[i]) ;

stop;

Expressiveness

Treasure study reproduction creceniio
= 22 tasks

Feature study reproduction pyeret. s
= 18 tasks

3 additional tasks (on Boa website)

> See paper for details ¢

Source Code Comprehension [1/3]

e Controlled Experiment
o Subjects shown 5 source code mining tasks in Boa
o Asked to describe (in own words) each task
o Same tasks shown again (random order)
m Multiple choice this time

o Experiment repeated 6 months later in Hadoop
m Same tasks
m Same wording for multiple choice answers

Source Code Comprehension [2/3]

Q1
Q2
Q3
Q4
Q5

Count AST nodes
Assert use over time
Annotation use, by nhame

Type name collector, by project and file

Null check

Source Code Comprehension [3/3]

Boa Programs Hadoop Programs
Q1 Q2 Q@3 Q4 Q5

(1) (¥)
) v
N Y N
NO,

T
@n

N N

D0

Source Code Comprehension [3/3]

Grading: Use Multiple Choice

Boa Programs Hadoop Programs

77.5% 62.5%

Source Code Comprehension [3/3]

Grading: Use Free-form

Boa Programs Hadoop Programs

67.5% 30%

Boa with Domain-specific features for mining code

o Easy to use - familiar syntax despite lack of objects
o Can query full history of source files
o Fine-grained access to code down to expressions

@™ Run Examples | Boa - Mozilla Firefox

iastate.edu

Boa

Mining Ultra-Large-Scale Software Repositories

Detailed tutorial

Programming Guide

Run Examples

Researcher's Guide Run an Example

We d Publications How many valid Java files in latest snapshot?
demo Logged In

Job List

counts: output sum of
™ My Account =i .
- [} input;
] Log Out

About 5 isit(p,
before node

Privacy & Terms -
counts << len(getsnapshot(node, "SO!

Norway
United 6}
Kingdom
{} Canada ’ Poland
Ukrain,
y o Kazakhstan
France Mongolia
A

. Q Spain ¥
United Sta -t Turkey Japan
South
Atlé Afghanistan
iy &8 | G o AN Demo
A
onll 8

geria Libya A Pakistan
S
Mexico Arabia India

Thailand

Mali Niger Sudan l l I !;
Chad
S

Venezuela Nigeria Ethiopia

Colombia (’i}
» DR Congo penye

Indonesia Papua Ne I I. I - I Z
Brazil Tanzania Guinea -
Pery
Bolivia

Angola

Namibia

Madagascar ndian
c f Botswana 9) .
¢ Jcean Australia

Chile

