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Abstract

Automatic speech recognition systems often achieve remarkable performance when
trained on thousands of hours of manually annotated and time-aligned speech.
However, when applied in other conditions and domains than they were trained
on, the systems’ recognition quality often deteriorates, substantially limiting their
real-world application. One of these applications is the automatic transcription of
oral history interviews, i.e., interviews with witnesses of historical events. For the
past twenty years, oral history interviews have been among the most challenging
use cases for speech recognition due to a lack of representative training data,
diverse and often poor recording conditions, and the spontaneous and occasionally
colloquial nature of the speech.

This thesis proposes and studies the combination of different domain adapta-
tion approaches to overcome the lack of representative training data and cope with
the unpredictability of oral history interviews. We employ and investigate data
augmentation to adapt broadcast training data to cover the challenging recording
conditions of oral history interviews. We compare data augmentation approaches
to conventional speech enhancement. To improve the system’s performance fur-
ther, we study domain adaptation via fine-tuning to adapt the acoustic mod-
els trained robustly on thousands of hours of annotated speech using a minimal
amount of manually transcribed oral history interviews. We employ automatic
transcript-alignment to generate adaptation data from transcribed but not time-
aligned interviews and investigate the influence of different adaptation data sizes
on domain overfitting and generalization. We reduce domain overfitting and im-
prove the generalization of the adapted models employing cross-lingual adaptation
in a multi-staged setup to leverage the vast availability of English speech corpora.
Additionally, in this thesis, a human word error rate for German oral history in-
terviews recorded under clean conditions is experimentally estimated to study and
highlight the challenges of transcription even for humans and put current results
of automatic transcription into perspective.

The proposed methods are evaluated on a representative oral history test set for
the target domain and several additional German test sets from different domains.
With this evaluation, we assure high robustness, obtain a reliable estimate of the
real-world performance for conditions not seen in training, and avoid selecting
models that suffer from domain overfitting. Overall, we halved the word error rate
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compared to the baseline using the proposed methods, simultaneously improving
the recognition performance on the other domains by a substantial margin.
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1 Introduction

Nowadays, automatic speech recognition (ASR) is probably one of the best-known
and most successful disciplines of artificial intelligence. Automatic speech recog-
nition has become an indispensable part of many everyday applications. Only the
precise translation of speech to text with seemingly unlimited vocabulary enabled
the widespread application of speech assistants in smartphones, smart speakers,
and other devices. For many applications, speech recognition systems achieve a
recognition accuracy close to humans. However, automatic speech recognition is
not a solved problem. There is still no system robustly providing high transcrip-
tion accuracy in all possible domains, applications, and speech situations. This
statement is particularly true for languages other than English, where an enormous
amount of transcripted speech is used for training.

One application that still poses enormous challenges for automatic transcrip-
tion systems is oral history. In the humanities, oral history refers to conducting
and analyzing interviews with contemporary witnesses to historical events. Oral
history archives are often large audiovisual data repositories composed of numer-
ous interviews, often a few hours in length per interview. Despite the enormous
progress in speech recognition, for many archives, the transcription accuracy of
interviews is still in a range that, at best, allows for a keyword-based search in
transcripts. Therefore, the transcription is still performed entirely by humans
in many archives. Oral history interviews pose a great challenge for automatic
transcription systems due to their heterogeneity in terms of language, recording
quality, speech type, dialects, speaker characteristics, and more. A lack of suitable,
representative training data further limits the development of robust systems for
interview transcription.

Many oral history interviews were recorded decades ago, and many interviewees
have passed away in the meantime, leaving only their interview recording as a
legacy for posterity and historical research. Therefore, the automatic transcription
of these interviews is of great interest, not only because of the technical challenges.
Automatic transcription can facilitate the work of historians, making interviews
accessible and searchable for posterity and the research community in the form
of time-aligned transcripts and subtitles. The automatic transcription of archives
could even open up new research opportunities.

The presented research in this thesis aims to develop and improve robust speech
recognition for German oral history interviews of a large archive. We explore
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1 Introduction

and study several approaches for the adaptation to improve systems’ transcription
accuracy and robustness and overcome the lack of training data. In the following,
we first give a brief historical outline of research on automatic speech recognition
in general to position robust speech recognition for oral history interviews in this
vast field and put the challenge into perspective to past and current tasks.

1.1 Historical Outline of Automatic Speech
Recognition

The first basic automatic speech recognition systems date back to the mid-twenties.
These systems could recognize a very limited vocabulary such as digits or syllables,
usually for a single speaker. One example of such a system that could recognize
spoken digits is the Audrey system by Davis et al. [1952] from the Bell Laboratories.

The widespread application of hidden Markov models (HMM) in the 1980s to
model speech with a statistical approach, e.g., by Levinson et al. [1983], can be
regarded as the beginning of speech recognition as we understand it today. These
approaches shaped the research and development of speech recognition systems
for many decades. With the continuously improving recognition performance of
proposed systems, increasingly challenging tasks became the focus of research and
development.

Figure 1.1 by Huang et al. [2014, p. 96] illustrates the historical progress from
1988 to 2006 for various well-known English continuous speech recognition tasks.
In the early 1990s, the primary challenge was speech recognition of read-aloud texts
(read speech) with a very limited vocabulary of 1000 different words. In 1992, the
Wall-Street-Journal-based continuous read speech recognition corpus [Paul and
Baker, 1992] was published and became the focus of ASR research. The corpus
proposed two tasks, one with a vocabulary of 5000 different words and one with
20,000.

Robust speech recognition, i.e., the automatic recognition of speech distorted
by different acoustic effects, was considered in the mid-1990s and then gained
attention again with the Aurora4 task [Parihar and Picone, 2002] (not shown in
the graph). In this task, various noise classes from real-life recordings were added to
the Wall Street Journal corpus to simulate realistic speech recognition challenges.
According to Benesty et al. [2008, p. 654] and Li et al. [2014], the Aurora4 task
can be considered a standard noise-robustness large vocabulary continuous speech
recognition (LVCSR) task.

The Wall Street Journal and Aurora4 tasks were proposed as large vocabulary
tasks. However, from today’s perspective, where ASR systems recognize several
hundred thousand to several million different words, a few-thousand-word vocab-
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1.1 Historical Outline of Automatic Speech Recognition

review articles
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Here, we highlight major speech 
recognition technologies that worked 
well in practice and summarize six 
challenging areas that are critical to 
move speech recognition to the next 
level from the current showcase ser-
vices on mobile devices. More com-
prehensive technical discussions may 
be found in the numerous technical 
papers published over the last de-
cade, including IEEE Transactions on 
Audio, Speech and Language Processing 
and Computer Speech and Language, 
as well as proceedings from ICASSP, 
Interspeech, and IEEE workshops on 
ASRU. There are also numerous arti-

cles and books that cover systems and 
technologies developed over the last 
four decades.9,14,15,19,25,33,36,43 

Basic Speech Recognition
In 1971, a speech recognition study 
group chaired by Allen Newell recom-
mended that many more sources of 
knowledge be brought to bear on the 
problem. The report discussed six lev-
els of knowledge: acoustic, paramet-
ric, phonemic, lexical, sentence, and 
semantic. Klatt23 provides a review of 
performance of various ARPA-funded 
speech understanding systems initiat-
ed to achieve the goals of Newell report. 

By 1976, Reddy was leading a group 
at Carnegie Mellon University that 
was one of a small number of research 
groups funded to explore the ideas in 
the Newell report under a multiyear De-
fense Advanced Research Project Agen-
cy (DARPA)-sponsored Speech Under-
standing Research (SUR) project. This 
group developed a sequence of speech 
recognition systems: Hearsay, Dragon, 
Harpy, and Sphinx I/II. Over a span of 
four decades, Reddy and his colleagues 
created several historic demonstra-
tions of spoken language systems, 
for example, voice control of a robot, 
large-vocabulary connected-speech 
recognition, speaker-independent 
speech recognition, and unrestricted 
vocabulary dictation. Hearsay-I was one 
of the first systems capable of continu-
ous speech recognition. The Dragon 
system was one of the first systems to 
model speech as a hidden stochastic 
process. The Harpy system introduced 
the concept of Beam Search, which for 
decades has been the most widely used 
technique for efficient searching and 
matching. Sphinx-I, developed in 1987, 
was the first system to demonstrate 
speaker-independent speech recog-
nition. Sphinx-II, developed in 1992, 
benefited largely from tied parameters 
to balance trainability and efficiency 
at both Gaussian mixture and Markov 
state level, which achieved the highest 
recognition accuracy in DARPA-funded 
speech benchmark evaluation in 1992.

As per the DARPA-funded speech 
evaluations, the speech recognition 
word error rate has been used as the 
main metric to evaluate the progress. 
The historical progress also directed 
the community to work on more diffi-
cult speech recognition tasks as shown 
in Figure 1. On the latest switchboard 
task, the word error rate is approach-
ing an impressive new milestone by 
both Microsoft and IBM researchers 
respectively,4,22,37 following the deep 
learning framework pioneered by re-
searchers at the University of Toronto 
and Microsoft.5,14 

It was anticipated in the early 1970s 
that to bring to bear the higher-level 
sources of knowledge might require 
significant breakthroughs in artifi-
cial intelligence. The architecture of 
the Hearsay system was designed so 
that many semiautonomous modules 
can communicate and cooperate in 

What we did not know how to do in 1976.v

Statistical modeling and machine learning: Elaboration of HMM, context-dependent phoneme 
modeling, statistical smoothing and back-off strategies, DNN, semi-supervised learning, discriminative 
training such as Maximum Mutual Information Estimation (MMIE) and MPE

Training data and computing resources: Several orders of magnitude increase in the size of 
speech (thousands of hours) and text data (trillions of words) accompanied by the steadily increased 
distributed CPU and RAM resources 

Signal processing dealing with noisy environments: DNN-learned features, MFCC appropriate  
for Gaussian mixture models, lower-level raw features such as filterbanks appropriate for DNN, 
Cepstral mean subtraction, 1st and 2nd order delta features, online environment adaptation, and 
noise-canceling microphone/microphone array

Vocabulary size and dis-fluent speech: From thousands to millions of words supported by n-grams 
and RNN as the language model, explicit garbage models, and the flexibility to add new words with 
grapheme form 

Speaker independent and adaptive speech recognition: Mixture distributions, speaker training 
data across different dialects and populations, vocal tract normalization, Maximum a Posteriori (MAP), 
Maximum Likelihood Linear Regression (MLLR), and unsupervised speaker-adaptive learning

Efficient decoder: Time-synchronous Viterbi search and A* stack decoder with sophisticated pruning 
techniques, distributed implementation to support large-scale server-based runtime decoder

Spoken language understanding and dialog: Case-frame based robust parser, semi-Markov 
conditional random field (CRF), boosted decision tree, rule-based or Markov decision process-based 
dialog management, and recurrent neural networks for sentence understanding

Figure 1. Historical progress of speech recognition word error rate on more and more  
difficult tasks.10 The latest system for the switchboard task is marked with the green dot.

1%

10%

Read speech (vocabulary: 1K, 5K, 20K) Broadcast speech Conversational speech

Read Speech

1K

5K

20K
Poor Microphones

Broadcast
Speech

Conversational
Speech

Switchboard Cellular

Switchboard

2012 System
20K

Clean

Noisy

100%
19

88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
0

0

20
0

1

20
0

2

20
0

3

20
0

4

20
0

5

20
0

6

Year of Annual Evaluation

W
or

d
 E

rr
or

 R
at

e

Figure 1.1: Historical progress of word error rates on more and more challenging speech
recognition tasks [Huang et al., 2014, p. 96].

ulary task is considered relatively simple. As shown in one of our primary works
[Hirsch and Gref, 2017], very low word error rates can be achieved on the Aurora4
task with relatively simple neural network architectures, both by speech enhance-
ment and multi-condition training.

In the late nineties, the focus shifted from read speech to more challenging
broadcast and conversational speech tasks. In particular, the Switchboard English
Conversational Telephone Speech Recognition task (part of the NIST 2000 Hub-5
benchmark) was regularly used until the late 2010s by major research laboratories
(such as IBM T. J. Watson Research Center [Saon et al., 2015], [Saon et al., 2016],
[Saon et al., 2017] and Microsoft Research [Xiong et al., 2017b], [Xiong et al.,
2018]) to competitively evaluate the performance of English ASR systems. The
corpus consists of recordings of telephone conversations between strangers about
random topics.

Hidden Markov models were extensively used to build ASR systems until the
2010s. Then, empowered by the increasing popularity of the deep learning paradigm,
deep neural networks (DNN) were applied more and more frequently in automatic
speech recognition for acoustic modeling. Often, DNNs were used to extend the
conventional HMM approach in a hybrid DNN-HMM system. Hinton et al. [2012]
give an overview of the progress and developments of such hybrid DNN-HMMs at
that time.
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Figure 1.2: Improvements in word error rate over time on the Switchboard conversational
speech recognition benchmark.1

The application of neural networks for acoustic modeling in automatic speech
recognition is not entirely new. For example, in the survey given by Trentin and
Gori [2001], in the time before the deep learning paradigm, many systems and ap-
proaches have been described that combine hidden Markov models and artificial
neural networks for acoustic modeling. Some of these systems have already used
recurrent neural networks and time delay neural networks—architectures redis-
covered for acoustic modeling by recent research and applied in ASR systems en-
abling cutting edge results. However, it took time until the deep learning paradigm
for neural-network-based systems regularly outperformed traditional GMM-HMM-
based systems. It was observed that neural networks generalize better than GMM-
HMM-based models being trained with the same large amounts of training data.
Therefore, it is not surprising that nowadays, the amount of training data plays an
enormous role in developing modern speech recognition systems, and models are
trained on a vast amount of annotated speech. For instance, Soltau et al. [2017]
trained a model on 125,000 hours of annotated speech, i.e., more than 14 years of
non-stop speech, for Google’s speech recognition.

Through the advances of DNNs, automatic speech recognition research gained
new momentum that continues until today. The impact of neural networks on
speech recognition becomes clear considering the results of speech recognition sys-
tems on the aforementioned switchboard task in recent years. As an example,
Figure 1.2 shows the results of some ASR systems between 2012 and 2017, which
were state-of-the-art at the respective time.

In 2017, Saon et al. [2017] from IBM Watson achieved 5.5 % word error rates on
the Switchboard task. This word error rate is considered by some researchers, e.g.,
by Xiong et al. [2017a], to be at the same level as professional human transcribers.
Parallel to these advances, new challenges emerged, particularly in recognition of

1Source: https://awni.github.io/speech-recognition
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spontaneous, informal speech, speech recorded under difficult acoustic conditions,
dialects, and low-resourced languages, to name but a few. This is partly due to the
increasing popularity of speech assistants at that time, such as Amazon’s Alexa,
Google Home, Microsoft’s Cortana, and Apple’s Siri, and the associated growing
expectations of customers for the systems to work robustly in all situations and
for every language.

Therefore, recent ASR tasks explore these new scenarios, such as the dinner
party scenario of the 5th CHiME Speech Separation and Recognition Challenge
(CHiME-5) [Barker et al., 2018]. This challenge addresses the combined problem
of distant multi-microphones, spontaneous conversations in the presence of back-
ground noise, and simultaneously talking speakers. Even cutting-edge systems in
2018 achieved a word error rate higher than 45 % [Du et al., 2018], [Kanda et al.,
2018] on this task.

In particular, these newer challenges are, at least in some aspects, similar to oral
history interviews as they study poor recording conditions and spontaneous speech.
However, the challenges are quite limited, and the conditions are much more pre-
dictable than for oral history. Hardly any common ASR task models challenges
in a way comparable to oral history interviews. As we discuss in Section 3.3, for
twenty years, researchers studied automatic transcription of oral history interviews
for various languages. However, many works are usually characterized by a much
higher error rate than common ASR challenges, leaving automatic transcription
of oral history an unsolved issue.

1.2 List of Key Contributions
List of key contributions in this thesis:

• A human word error rate on German oral history interviews in clean acoustic
conditions is experimentally estimated in Chapter 3.

• Noise and reverberation data augmentation is proposed and studied to im-
prove the real-world performance of LF-MMI acoustic models for oral history
interviews and other domains with unseen conditions by reducing the domain
mismatch and improving acoustic robustness in Chapter 4.

• Two-staged LF-MMI acoustic model domain adaptation is proposed and in-
vestigated, combining data augmentation for acoustic robustness with acous-
tic model fine-tuning in Chapter 5. The approach is studied using a leave-
one-speaker-out cross-validation and semi-automatically created adaptation
data using automatic transcript alignment.
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• Multi-staged cross-lingual adaptation is proposed and investigated that re-
duces domain overfitting and increases the robustness of the domain-adapted
LF-MMI acoustic model with a cross-lingual pre-training stage in Chapter 6.

Further contributions are summarized at the end of each chapter.

1.3 List of Publications
Parts of this thesis have been published in peer-reviewed journals and conference
proceedings. The most relevant publications covering the main chapters of this
thesis are presented below in chronological order:

Michael Gref, Joachim Köhler, and Almut Leh. Improved transcription
and indexing of oral history interviews for digital humanities research.
In 11th International Conference on Language Resources and Evalua-
tion (LREC), pages 3124–3131. European Language Resources Association
(ELRA), 2018a. URL https://aclanthology.org/L18-1493

Michael Gref, Christoph Schmidt, and Joachim Köhler. Improving robust
speech recognition for German oral history interviews using multi-condition
training. In 13th ITG Conference on Speech Communication, pages 256–260.
VDE / IEEE, 2018b. URL https://ieeexplore.ieee.org/document/8578034

Michael Gref, Christoph Schmidt, Sven Behnke, and Joachim Köhler.
Two-staged acoustic modeling adaption for robust speech recognition
by the example of German oral history interviews. In IEEE Interna-
tional Conference on Multimedia and Expo (ICME), pages 796–801, 2019.
doi:10.1109/ICME.2019.00142

Michael Gref, Oliver Walter, Christoph Schmidt, Sven Behnke, and Joachim
Köhler. Multi-staged cross-lingual acoustic model adaption for robust
speech recognition in real-world applications - A case study on German oral
history interviews. In 12th International Conference on Language Resources
and Evaluation (LREC), pages 6354–6362. European Language Resources
Association (ELRA), 2020. URL https://aclanthology.org/2020.lrec-1.780

Michael Gref, Nike Matthiesen, Christoph Schmidt, Sven Behnke, and Joachim
Köhler. Human and automatic speech recognition performance on german
oral history interviews. arXiv:2201.06841 [eess.AS], 2022b. URL https:
//arxiv.org/abs/2201.06841
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1.3 List of Publications

The following publications (in chronological order) related to the thesis’ research
topic were written with the thesis author’s contribution as a co-author. These are
cited in the present research work as external literature and do not cover significant
parts of the chapters:

Joachim Köhler, Michael Gref, and Almut Leh. KA3. Weiterentwicklung von
Sprachtechnologien im Kontext der Oral History. BIOS – Zeitschrift für Bi-
ographieforschung, Oral History und Lebensverlaufsanalysen, Schwerpunk-
theft: Digital Humanities und biographische Forschung, 30(1-2/2017):44–59,
2019. doi:10.3224/bios.v30i1-2.05

Almut Leh, Joachim Köhler, Michael Gref, and Nikolaus Himmelmann. Speech
analytics in research based on qualitative interviews. experiences from KA3.
VIEW Journal of European Television History and Culture, 7(14):138–149,
2018. doi:10.18146/2213-0969.2018.jethc158

Almut Leh, Michael Gref, and Joachim Köhler. Audio mining. advanced
speech analytics for oral history. Words and Silences/Palabras y Silencios,
(2018-2019):1–9, 2019. URL https://www.ioha.org/wp-content/uploads/
2019/10/Leh_IOHA_2018_Audiomining_English.pdf

Jan Gorisch, Michael Gref, and Thomas Schmidt. Using automatic speech
recognition in spoken corpus curation. In 12th International Conference on
Language Resources and Evaluation (LREC), pages 6423–6428. European
Language Resources Association (ELRA), 2020. URL https://aclanthology.
org/2020.lrec-1.790

Yao Wang, Michael Gref, Oliver Walter, and Christoph Schmidt. Bilin-
gual i-vector extractor for DNN hybrid acoustic model training in German
speech recognition systems. In 14th ITG Conference on Speech Communi-
cation, pages 29–33. VDE / IEEE, 2021. URL https://ieeexplore.ieee.org/
document/9657501

Michael Gref, Nike Matthiesen, Sreenivasa Hikkal Venugopala, Shalaka
Satheesh, Aswinkumar Vijayananth, Duc Bach Ha, Sven Behnke, and
Joachim Köhler. A study on the ambiguity in human annotation of ger-
man oral history interviews for perceived emotion recognition and senti-
ment analysis. In 13th International Conference on Language Resources
and Evaluation (LREC), pages 2022–2031. European Language Resources
Association (ELRA), 2022a. URL https://aclanthology.org/2022.lrec-1.217
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The following publications (in chronological order) related to speech processing
and automatic speech recognition were written with the thesis author’s contribu-
tion as a co-author during the presented research. These are cited in the thesis as
external literature and do not cover significant parts of the chapters:

Hans-Günter Hirsch and Michael Gref. On the influence of modifying magni-
tude and phase spectrum to enhance noisy speech signals. In 18th Annual
Conference of the International Speech Communication Association (Inter-
speech), pages 1978–1982, 2017. doi:10.21437/Interspeech.2017-1173

Hans-Günter Hirsch and Michael Gref. Keyword detection for the activation of
speech assistants. In 13th ITG Conference on Speech Communication, pages
186–190. VDE / IEEE, 2018. URL https://ieeexplore.ieee.org/document/
8578020

Hans-Günter Hirsch, Alexander Micheel, and Michael Gref. Keyword de-
tection for the activation of speech dialogue systems. In Studientexte
zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung (ESSV),
pages 2–9. TUDpress, Dresden, 2020. ISBN 978-3-959081-93-1. URL
https://www.essv.de/paper.php?id=431

Julia Pritzen, Michael Gref, Christoph Schmidt, and Dietlind Zühlke. A
comparative pronunciation mapping approach using G2P conversion for
anglicisms in German speech recognition. In 14th ITG Conference on
Speech Communication, pages 24–28. VDE / IEEE, 2021. URL https:
//ieeexplore.ieee.org/document/9657500

Julia Pritzen, Michael Gref, Dietlind Zühlke, and Christoph Andreas Schmidt.
Multitask learning for grapheme-to-phoneme conversion of anglicisms in
German speech recognition. In 13th International Conference on Language
Resources and Evaluation (LREC), pages 3242–3249. European Language
Resources Association (ELRA), 2022. URL https://aclanthology.org/2022.
lrec-1.346

1.4 Public Model Access
We provide public access for academic research to the best performing model
from Chapter 4 with a free limited monthly contingent as part of the BAS Speech
Science Web Services [Kisler et al., 2016].2 The released model is adapted to chal-
lenging acoustic conditions in oral history interviews and other real-world speech
recordings and uses a general-purpose broadcast language model.

2https://clarin.phonetik.uni-muenchen.de/BASWebServices

8

https://doi.org/10.21437/Interspeech.2017-1173
https://ieeexplore.ieee.org/document/8578020
https://ieeexplore.ieee.org/document/8578020
https://www.essv.de/paper.php?id=431
https://ieeexplore.ieee.org/document/9657500
https://ieeexplore.ieee.org/document/9657500
https://aclanthology.org/2022.lrec-1.346
https://aclanthology.org/2022.lrec-1.346
https://clarin.phonetik.uni-muenchen.de/BASWebServices


1.5 Thesis Outline

1.5 Thesis Outline
This thesis is structured as follows:

Chapter 2 presents backgrounds and related works in the field of automatic
speech recognition. In particular, it focuses on methods and state-of-the-art ap-
proaches relevant to the presented research work.

Chapter 3 discusses the automatic transcription of oral history interviews,
reviewing related work on this topic, and analyzes the challenges of oral history
interviews for speech recognition. In addition, human transcription is analyzed,
and preliminary experiments are conducted to identify the components of speech
recognition systems to be improved.

Chapter 4 investigates approaches to improve the robustness of acoustic models
against challenging recording conditions commonly encountered in oral history
interviews.

Chapter 5 explores approaches for adapting acoustic models to the oral history
domain.

Chapter 6 studies multi-stage cross-lingual adaptation of acoustic models to
exploit the vast amount of English ASR corpora to improve speech recognition for
German oral history.

Chapter 7 concludes the thesis and summarizes the results and approaches.
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2 Automatic Speech Recognition

Automatic speech recognition is a research field that aims at processing human
speech signals in order to automatically obtain spoken words in the form of a
written text. Most modern speech recognition systems are statistical approaches
that estimate the probability of word sequences for observed features extracted
from a given discrete-time speech signal. Let ŵ = (ŵ1, ŵ2, ..., ŵN) ∈ W be a
word sequence from a set of all possible (finite) word sequences W and let X
be the observed speech features. Usually, X is an arbitrarily long sequence of
feature vectors, i.e., (xn)T

n=1, extracted from the raw speech signal. The probability
estimated by a speech recognition system for word sequence w subject to a given
feature X is

Pθ(w|X)
where θ is a tuple of all parameters of the speech recognition system.

During training, the aim is to obtain model parameters such that the estimated
probability matches the training data best. For a trained model, the model pa-
rameters are usually kept fixed. Therefore, we usually omit θ for a clearer, simpler
notation when we consider trained models.

The task of obtaining the most probable word sequence ŵ ∈ W given a feature
X using a trained speech recognition system is called decoding. Mathematically,
cf. Yu and Deng [2015, pp. 101–102], this can be written as

ŵ = arg max
w∈W

P (w|X), (2.1)

i.e., finding the word sequence w of all possible word sequences W for which
the probability estimated by the model is highest. Many decades of research
have shown that it is hard to design and train a system that sufficiently estimates
P (w|X) straightforwardly. Instead, to estimate this probability, for many decades,
approaches became state-of-the-art that utilize the well-known Bayes rule and are
based on certain assumptions about the probabilities of speech.

This chapter gives an overview of the different theoretical fundamentals of com-
mon approaches in the speech recognition field. Section 2.1 discusses automatic
speech recognition based on conventional hidden Markov models that dominated
the field for many decades and that are still a component of recent speech recogni-
tion systems. The hybrid combination of hidden Markov models with deep neural
networks is discussed in Section 2.2. In Section 2.3, we discuss the emerging re-
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2.1 Automatic Speech Recognition Using Hidden Markov Models

search field of end-to-end speech recognition that performs the entire recognition
using a single sequence-to-sequence deep neural network. Sequence discriminative
training that incorporates ideas of end-to-end speech recognition for hybrid models
is discussed in Section 2.4.

2.1 Automatic Speech Recognition Using
Hidden Markov Models

In the mid-1970s, researchers began to process continuous speech statistically using
hidden Markov models (HMMs) and applied this approach to automatic speech
recognition (e.g., Baker [1975]). In the early 1980s, hidden Markov models have
established state-of-the-art and were applied for most speech recognition systems.
Hidden Markov models were used for the recognition of isolated words, e.g., by
Levinson et al. [1983], connected words, e.g., by Rabiner and Levinson [1985], and
continuous speech recognition, e.g., by Bahl et al. [1983]. This can be regarded
as the beginning of our current understanding of continuous automatic speech
recognition. For many decades, hidden Markov models enabled the development of
cutting-edge speech recognition systems, like Soltau et al. [2005] as one example for
such works before deep neural networks emerged in automatic speech recognition.

2.1.1 Theory of Hidden Markov Models
The basic mathematical theory behind hidden Markov models was published in a
series of papers by Baum et al. in the late 1960s and early 1970s: [Baum and Petrie,
1966], [Baum and Eagon, 1967], [Baum and Sell, 1968], [Baum et al., 1970] and
[Baum, 1972]—cf. Rabiner [1989]. At its core, a hidden Markov model describes
two associated stochastic processes:

1. a Markov chain where the current state during a sequence is not directly
visible for an observer (i.e., hidden) and

2. a second stochastic process that is observable and whose current outputs
depend on the current state of the (hidden) Markov chain.

In other words, hidden Markov models extend conventional discrete-time Markov
processes with a second, stochastic process that generates an observable sequence

o := (ot)t∈{1,2,...,T }.

from a set of observable events X, i.e., ot ∈ X, as a probabilistic function of the
state. This sequence is called observable in contrast to the underlying (hidden)
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(a) Discrete observation distribution. Two observations
are represented as gray circles. Each state has ex-
actly one probability for each of the observations.
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(b) Continuous observation distribution. Three proba-
bility density functions of observations, each associ-
ated with one state, are represented as rectangles.

Figure 2.1: Schematic representations of general hidden Markov models with three hidden
states and the different types of observation distributions. Boxes and circles
with gray backgrounds represent the observation distributions. Dotted lines
represent the association of states to observation probabilities.

Markov sequence q that is not unambiguously determinable for any given sequence
of observations. Generally, two different cases of observations are considered: dis-
crete (and finite) observation distributions and continuous observation distribution.
In case of discrete observation distribution, the amount of distinguishable possible
observations X = {x1, ..., xM} ⊂ RD is finite, i.e., the probability of observing xm

at state sk is defined as

bm,k := P (ot = xm|qt = sk).

In the case of continuous observation distributions, the probability of observing
event {x} ⊆ RD at state sk is usually modeled using probability density func-
tions bk : RD → R, x 7→ bk(x). Each function bk is associated with one state sk.
A schematic representation of both types of hidden Markov models is given in
Figure 2.1

Hidden Markov models with continuous observation distributions are the type
of models usually used for automatic speech recognition. Hence, we focus on the
theory of such models in the following. A general representation of a probability
density function, cf. Rabiner [1989] and similarly Yu and Deng [2015, p. 28], and

12



2.1 Automatic Speech Recognition Using Hidden Markov Models

Vasquez et al. [2012, p. 27], can be approximated by a finite mixture of form

bk(x) =
M∑

m=1
ck,m · N (x; µk,m, Σk,m)

with Gaussian mean-vector µk,m ∈ RD, covariance-matrix Σk,m ∈ RD×D and
mixture gains ck,m ∈ R that satisfy

∀k ∈ {1, ..., N} :
M∑

m=1
ck,m = 1

so that
∀k ∈ {1, ..., N} :

∫
RD

bk(x)dx = 1

is fulfilled and bk is a well-defined probability density function.

Since the mixture is based on Gaussian distributions N , the approach is called
Gaussian mixture model (GMM). A hidden Markov model using Gaussian mixture
models for observation probabilities is called Gaussian mixture model - hidden
Markov model (GMM-HMM).

In automatic speech recognition, hidden Markov models are applied to model
humans’ speech production process statistically. This can be speaker-dependent,
i.e., a finite set of models that statistically model the speech of one specific speaker,
or speaker-independent, i.e., a finite set of models that model the speech produc-
tion of arbitrary speakers. Depending on the desired application, cf. Vasquez et al.
[2012, p. 23], the hidden Markov chain of a single hidden Markov model can repre-
sent either an entire word, a phone, or context-dependent phones (e.g., biphones or
triphones). The latter take into account that the sound of phones can change de-
pending on the succeeding or preceding phone and therefore use a different hidden
Markov model for each possible combination of context-dependent phones.

Triphones are a suitable and popular approach to reliably model the context-
dependency of phones in large vocabulary continuous speech recognition systems.
However, due to the enormous amount of possible triphone combinations for a
given phone set, many triphones often do not appear in the given training data or
appear too seldom to be learned reliably by a hidden Markov model, cf. Beulen
et al. [1997]. To reduce complexity and the total number of context-dependent
hidden Markov models, in modern systems, often state tying [Beulen et al., 1997]
is performed. This approach clusters similar observation probability distributions
of states across different Markov models, i.e., distributions that model similar
acoustic events. Such states that share a clustered distribution are called tied
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Figure 2.2: Schematic representation of a left-right hidden Markov model with three hid-
den states and continuous observation distributions (3-state Bakis model).
Each rectangle represents a probability density function of observations asso-
ciated with one state.

states. Single states in such systems can be considered subphonetic units, also
called senones, cf. Hwang and Huang [1992].

Considering the temporal causality of speech production, in practice, usually,
left-to-right models or Bakis models [Bakis, 1976] are used that do not allow state-
transitions backward in time, e.g., as shown in Figure 2.2.

2.1.2 Automatic Speech Recognition Based on Hidden
Markov Models

Hidden Markov models are considered generative models. Their popularity in
automatic speech recognition stems from their ability to model acoustic features
of speech [Yu and Deng, 2015, p. 42]. Thus, as generative models, hidden Markov
models cannot estimate P (w|X), i.e., the probability of word sequence w subject
to a given feature sequence X, as specified in the speech recognition decoding
problem formulation (Equation 2.1), in a direct manner. However, using Bayes’
rule, the equation is rewritten as follows

ŵ = arg max
w∈W

P (w|X) = arg max
w∈W

(
P (X|w) · P (w)

P (X)

)

in case P (X) ̸= 0. Since P (X) > 0 is independent from w, the recognized word
sequence ŵ is obtained from

ŵ = arg max
w∈W

(P (X|w) · P (w)), (2.2)
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Speech Input

Acoustic Analysis
(Feature Extraction)

Global Search

arg max
w∈W

(P (X|w) · P (w))

Recognized Word Sequence

Acoustic Model
Pronunciation Lexicon

Language Model

(sn)n∈N

X := (x0, ..., xT )

ŵ := (ŵ0, ŵ1, ..., ŵN)

P (X|w)

P (w)

Figure 2.3: Bayes’ decision rule for stochastic automatic speech recognition, cf. Ney and
Ortmanns [1999].

cf. Jelinek [1976]; Bahl et al. [1983]. In this context, the model used to esti-
mate P (w)—the probability of word sequence w—is called language model (LM).
Probability P (X|w), i.e., observing feature sequence X given word sequence w,
is estimated by a component called acoustic model (AM) along with—in case
of phone-based speech recognition—a phonetic pronunciation lexicon. A popu-
lar schematic representation of the speech recognition decoding process based on
Equation 2.2 (Bayes’ decision rule, cf. Ney and Ortmanns [1999]), is shown in
Figure 2.3.

In large vocabulary continuous speech recognition, usually one 3-state Bakis
HMM models one subword unit—a single phone or context-dependent phone via
tied states. Multiple subword hidden Markov models are concatenated to form word
hidden Markov models. These can model arbitrary, continuous word sequences of
unknown length N ∈ N. An example for a word model, based on concatenated
phone hidden Markov models, is presented in Figure 2.4. These word models
are based on the phonetic transcriptions of the respective word defined in the
pronunciation lexicon.

Word hidden Markov models are then further concatenated, enabling transitions
from the end state of every word to the initial state of every word, cf. Ney and Ort-
manns [1999]—as illustrated in Figure 2.5 for a simple example. Optional pause
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Phone HMM k Phone HMM a: Phone HMM Q Phone HMM i:

Word HMM for KI

Figure 2.4: Illustration of concatenated phone hidden Markov models that model the
pronunciation of the German word KI (abbreviation for künstliche Intelligenz,
German for artificial intelligence). The BasSAMPA phone set is used for
phonetic transcription. Visualizations of hidden Markov model observation
probability distributions have been omitted in this figure for better clarity.

Word HMM 1

Word HMM 2

Word HMM 3

Figure 2.5: Simplified illustration of an HMM acoustic model with a three-word vocabu-
lary, cf. Ney and Ortmanns [1999]. Each blue block represents an entire (left
to right) word hidden Markov model as in Figure 2.4.

models between these word models can model naturally occurring speech pauses
between words. Concatenating hidden Markov models in such a way results in a
huge word sequence hidden Markov model. It approximately models the entire
speech production process for arbitrary word sequences via observation probabil-
ities associated with the sequences of subword hidden Markov states s in a huge
finite network—i.e., probability P (X|w). The set of all GMM-HMMs applied in
such a network is called (GMM-HMM) acoustic model.

From the stochastic point of view, the relation between the acoustic model and
the pronunciation lexicon in the decoding process can be described as follows. In
order to recognize the most probable word sequence according to Bayes’ decision
rule (Equation 2.2), probability P (X|w) is factorized further to products of prob-
abilities that the acoustic model estimates. Applying a hidden Markov acoustic
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model, the probability P (X|w) is equal to the sum of all probabilities generating
observation sequence X := (x0, ..., xT ) of length T ∈ N for all possible subword
state sequences s := (s0, ..., sT ) ∈ S of length T , i.e.,

P (X|w) =
∑
s∈S

P (O = X, q = s|w),

or in short notation
P (X|w) =

∑
s∈S

P (X, s|w).

This equation can be further factorized

P (X, s|w) = P (X|w, s) · P (s|w)

using Kolmogorov’s definition of conditional probability. With a conditional in-
dependence assumption for the acoustic model, cf. Watanabe et al. [2017]; Wang
et al. [2019], we approximate P (X|w, s) ≈ P (X|s). Thus, the (general) Bayes’
decision rule is further factorized as follows

ŵ ≈ arg max
w∈W

(
P (w) ·

∑
s∈S

P (X|s) · P (s|w)
)

(2.3)

cf. Watanabe et al. [2017]; Wang et al. [2019]. For this factorized Bayes’ deci-
sion rule, P (X|s) is estimated using the observation probabilities of the acoustic
model—e.g., the Gaussian mixture models in a GMM-HMM setup. Probability
P (w) is still estimated by the language model, as described above. Probability
P (s|w) describes the probability of subword state sequence s given word sequence
w. It is modeled by the pronunciation model (or lexicon model), cf. Watanabe
et al. [2017]; Wang et al. [2019], that includes the HMM state transition and
initial state-occupation probabilities of the acoustic model, the phonetic pronun-
ciation lexicon entries as well as mappings between the state sequence units (such
as tied states) and the phonetic units used in the dictionary. Optional silence and
pronunciation probabilities [Chen et al., 2015] might also be used in this model to
improve the estimation of P (s|w).

Some works, such as the aforementioned works by Watanabe et al. [2017]; Wang
et al. [2019] refer to the components that estimate P (X|s) as the acoustic model.
However, this definition may be misleading, as it contradicts the above definition
respectively only covers a subset of the above characterization of a GMM-HMM
acoustic model. The definition in the aforementioned works only considers the
observation probabilities a part of the acoustic model but not the transition and
initial state occupation probabilities of the hidden Markov model used in the pro-
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nunciation model. Therefore, we refrain from this definition and adhere to the
term (acoustic) observation probabilities for the components estimating P (X|s).

In applications, calculating the entire sum over all possible state sequences of all
probabilities in Equation 2.3 is not feasible for large-scale vocabulary continuous
speech recognition systems. Instead, often Viterbi approximation, cf. Ney and Ort-
manns [1999], is applied in Bayes’ decision rule. Viterbi approximation substitutes
the sum with the max operator over all possible state sequences probabilities in
the decision rule, i.e.,

ŵ ≈ arg max
w∈W

(
P (w) · max

s∈S
(P (X|s) · P (s|w))

)
. (2.4)

It is noteworthy that this does not mean that the Viterbi approximation and
full-sum probabilities are similar but that the arg max search often leads to sim-
ilar recognition results. The maximization, however, facilitates efficient and fast
implementations for hidden Markov models.

The factorization of Bayes’ decision rule for HMM-based speech recognition
systems allows splitting the system into three different models: the acoustic ob-
servation probabilities, the language model, and the pronunciation model.1 The
decomposition of phone-based speech recognition systems into these three indi-
vidual components has a substantial advantage over alternative approaches. The
language and acoustic model can be trained independently using entirely different
types of data. Annotated speech is required to train the acoustic model—which
is often difficult to obtain. To train a language model, however, only text data is
needed. Such data is usually available in large amounts for different domains—such
as in digitized books, news, websites, and many more. Furthermore, pronuncia-
tions of words can be modeled and adjusted independently from these two models.

Since the acoustic model in such a setup is trained to model phonetic or subpho-
netic units only—independently of the respective words in the training data—an
already trained acoustic model is often also used to recognize many new words
that did not appear in the training data for the acoustic model. The respective
word must only appear in the training data for the language model.

In practice, the decoupling of the acoustic and language model has the great
advantage of adapting systems with little effort to work well in different language
domains. By substituting the language model, speech recognition systems can be
set up for different domains using the same acoustic model. Such domains can be,
for instance, the recognition of speech in news shows, the recognition of command

1An extension of Figure 2.3 which incorporates these changes is shown in Figure B.1 in the
appendix. A simplified, informal schematic structure of the components and their intercon-
nection in a large-vocabulary automatic speech recognition system is presented in Figure B.2.
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words in a home control system, or the recognition of telephone numbers in a call
center.

2.1.3 Features for Automatic Speech Recognition
Mel-Frequency Cepstral Coefficients Features

As presented in the previous section, hidden Markov models have been success-
fully applied to model the human speech production process statistically in many
speech recognition systems. Usually, spectral features, extracted from the pro-
duced speech signal, serve as observable features for hidden Markov models. Fea-
tures based on the short-time Fourier-transformation (ST FT ) have become widely
established for speech processing. Such spectral features allow distinguishing dif-
ferent frequency components and acoustic characteristics of different speech sounds
along the time axis.2

However, for hidden Markov models, the ST FT of a signal is often considered
too complex to be directly used as observable features. Not only is the result of
the ST FT complex-valued—due to Fourier transformation. The frequency dimen-
sion of the frames usually has to be chosen relatively high to uncover underlying
frequency characteristics of the time signal. However, such a high-dimensional
feature space might make it hard for a model to distinguish relevant and irrele-
vant information—such as each harmonic component’s exact amplitude value and
frequency bin. Furthermore, the frequency bins of a DFT frame are statistically
correlated.

Diagonal covariance matrices are usually used to reduce the complexity of train-
ing GMM-HMMs, assuming that the elements of the feature vectors are uncorre-
lated.3 Obviously, an ST FT spectrogram violates this assumption. For these rea-
sons, Mel-frequency cepstral coefficients (MFCCs) have become the quasi-standard
for features in HMM-based speech recognition.

The European Telecommunications Standards Institute (ETSI ) standardized fea-
ture extraction based on the Mel-cepstrum in ETSI ES 201 108 [2003] to ensure
compatibility between terminals and a remote speech recognizer. Even though
most systems use their own implementation of MFCC feature extraction, the fun-
damental principles are mainly the same. The algorithm defined in the afore-
mentioned ETSI standard will be used to present the MFCC feature extraction

2See Figure B.3 in the appendix for an exemplary visualization and [Oppenheim et al., 1999,
pp. 714–717] for further reading.

3It is noteworthy that generally, it is also possible to work with full covariance matrices, and
many works studied approaches to reduce the computational load of working with full co-
variance matrices, e.g., by Bell and King [2009]. However, the potential performance gains
do not seem to justify the drawbacks of such approaches. For most of today’s applications,
diagonal covariance matrices seem to have prevailed.
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in the following. The basic steps required to extract MFCCs from a (sampled)
discrete-time signal are schematically presented in Figure 2.6 in the form of a
block diagram.

(sn)n∈N ST FT | · | Mel
Filter Bank log Filter Bank

Features DCT MFCC
Features

Figure 2.6: Workflow to obtain MFCC features.

After transforming the discrete-time signal using the short-time Fourier-trans-
formation, the phase of the complex-valued matrix is removed by taking the ab-
solute value element-wise. Subsequently, the feature dimension is reduced using
a filter bank with the aim of optimizing them for speech recognition. For this
purpose, human hearing is used as a model. Psychoacoustic studies show that
humans have the highest frequency resolution at lower frequencies—between ap-
proximately 1 and 2 kHz, cf. Oxenham [2018]. At high frequencies, the resolution
drastically decreases. The effect of non-linear frequency resolution of humans is
also reflected in the pitch perceived by humans as a non-linear function of the
frequency. The Mel scale [Stevens et al., 1937], cf. Figure B.4, is used to define the
Mel filter bank, cf. Figure B.5, summarizing frequency intervals considered equally
distant in human perception. The filter masks of this filter bank are applied to
the frequency bins of each |ST FT |-frame to obtain NF -dimensional vectors for
each time step. As the next step, the natural logarithm is applied to the vector
elements. This takes into account humans’ non-linear perception of the loudness,
which can be approximated as a non-linear, logarithmic relationship between the
atmospheric pressure of sound waves and perceived loudness.

Finally, to obtain NC-dimensional MFCCs feature vectors c, the discrete cosine
transformation (DCT ) is applied on the feature vectors of each frame to decorrelate
the correlated features z :=

(
(zn)NF −1

0

)
and further reduce feature dimension, i.e.,

c := DCT (z) :=
NF −1∑

n=0
zn · cos

(
π · k

NF

(
n − 1

2

))NC−1

k=0

,

usually, with NC = 13 for HMM-based systems.
It should be noted that the MFCC workflow defined in the ETSI standard in-

cludes some implementation details that were neglected in the above description to
highlight the essential aspects of MFCC features that most common implementa-
tions share. For instance, the implementation also contains pre-emphasis or offset
compensation designed as finite impulse response (FIR) filters.
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Filter Bank Features

The values obtained right before the DCT step in the MFCC extraction workflow,
as shown in Figure 2.6, are called (Mel) filter bank features or fbank features.
The usage of filter bank features did not play a major role in GMM-HMM-based
speech recognition. These features became more prominent with the emergence of
more recent approaches that do not require uncorrelated features—such as neural
networks that will be discussed in the following section. Many works, like Hinton
et al. [2012], Deng et al. [2013], and Yoshioka et al. [2014], studied these features
as inputs for neural-network-based speech recognition in different setups. Some
results indicate that filter-bank features improve speech recognition performance
compared to standard MFCC features—especially when the feature dimension is
increased, e.g., to NF = 40. However, other researchers, such as Povey et al.
[2015], concluded that high-resolution MFCCs with NF = NC = 40 are equivalent
to equal dimensional filter bank features because such MFCC features are a linear
transform of the respective filter bank features.

Delta and Delta-Delta Features

As they are used for HMM-based speech recognition, Mel-frequency cepstral coef-
ficient features analyze only very short segments of a speech signal. Therefore, the
feature vectors do not contain any information beyond this short time horizon. As
stated by Kumar et al. [2011], among others, delta and delta-delta features have
been widely adopted in automatic speech recognition systems to add dynamic in-
formation of speech to the static cepstral features—at least before the emergence
of deep learning in the speech recognition field. However, the fundamental concept
of delta features is not limited to cepstral features. It can be reasonably applied to
any type of features that are given as a temporal sequence of equidistant feature
vectors—such as short-time spectrograms.

Delta features aim at approximating the first (element-wise) derivative of the
underlying continuous function to the sampled sequence (zn)T

n=0 of feature vectors.
For (zn)T

n=0, the delta feature at time step k ∈ {1, ..., T} can be defined as

∆k

(
(zn)T

n=0

)
:= zk − zk−1 (2.5)

and initialization at k = 0. Respectively to delta features, delta-delta features (or
double-delta features) aim at approximating the second derivative. Thus, delta-
deltas are obtained by calculating the delta of delta-features, i.e, applying Equa-
tion 2.5 to the sequence of delta features:

∆∆k

(
(zn)T

n=0

)
:= ∆k

(
(zn)T

n=0

)
− ∆k−1

(
(zn)T

n=0

)
.
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Figure 2.7: Conventional delta-delta MFCC features with CMVN for simple GMM-HMM
ASR systems.

Figure 2.7 shows how MFCC delta-delta features are ultimately applied for
speech recognition systems. Usually, first cepstral mean and variance normaliza-
tion (CMVN ) [Viikki and Laurila, 1998] (or cepstral mean normalization) is ap-
plied to the MFCC vectors. CMVN aims to provide zero-mean and unit-variance
cepstral features—usually on per-speaker or per-utterance level—to improve the
system’s robustness to channel distortions.

Then the deltas and delta-deltas of the vectors are concatenated with the MFCC
vector to obtain the final features. Nowadays, these types of features are usually
only used for simple GMM-HMM systems, e.g., the first models in bootstrap train-
ing sequentially trained with Delta-Delta-MFCCs and used to generate alignments
to train more advanced models. Much research has been carried out in the 1990s
to study more sophisticated features and feature space transformations that over-
come certain limitations of delta-delta features for large vocabulary GMM-HMM
systems. These feature space transformations will be discussed in the following.

Linear Discriminant Analysis Feature Transformation

Haeb-Umbach and Ney [1992] studied linear discriminant analysis (LDA) for
GMM-HMM-based large vocabulary speech recognition. LDA is a well-known
approach in statistics based on Fisher’s (linear) discriminant analysis [Mika et al.,
1999] that aims at obtaining a linear transformation f of vectors x in the feature
space RN to feature vectors y := f(x) ∈ RM with reduced dimension so that class
separability is maximized [Haeb-Umbach and Ney, 1992]. Typically, for speech
recognition, acoustic states—e.g., subphonetic units such as tied states—are used
as classes to obtain the LDA transformation on spliced (concatenated n ∈ N con-
secutive) MFCC features.

Maximum Likelihood Linear Transformation

Another popular feature space transformation is maximum likelihood linear trans-
formation (MLLT ) [Gopinath, 1998]. In the literature, e.g., by Rath et al. [2013],
MLLT is also known as global semi-tied covariance (STC ) [Gales, 1999]. Unlike
LDA, MLLT does not reduce the feature space dimension. Given the model pa-
rameters, the transformation is estimated to increase the likelihood of the training
data and share Gaussian parameters across classes to improve discrimination ulti-
mately. In practice, MLLT is often applied on top of LDA transformed features.
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2.1.4 Speaker Adaptive Training of GMM-HMM Acoustic
Models

For large vocabulary speech recognition systems, it is usually desired to train
speaker-independent systems. Such systems are designed to be applied on arbi-
trary, unknown speakers that do not occur in the training data. Naturally, the
great variability of different speakers poses a great challenge for the underlying
acoustic models. Speaker adaptive training (SAT) aims to overcome this issue by
reducing the speaker variability between training and test conditions, e.g., as pro-
posed by Anastasakos et al. [1996]. The most common speaker adaptive training
approaches for GMM-HMM-based acoustic models, cf. Yu and Deng [2015, pp.
163 f.], are vocal tract length normalization (VTLN) and feature space maximum
likelihood linear regression (fMLLR) transform.

As the name implies, vocal tract length normalization aims to normalize varia-
tions in the speech signal of different speakers, such as varying formant frequencies
in the spectrum caused by different vocal track lengths. Several implementations
for VTLN have been studied and applied to speech recognition throughout the
years, e.g., by Cohen et al. [1995], Eide and Gish [1996], Claes et al. [1998], Kim
et al. [2004].

Feature space maximum likelihood linear regression is an affine transformation
approach studied by Gales [1998] for speaker (and environmental) adaptation in
GMM-HMM-based speech recognition systems. The approach aims at training an
affine feature transform of form

f(x) := A · x + b

with A ∈ RD×D and b ∈ RD that maximizes the likelihood of adaptation data
given the model parameters.

Usually, fMMLR is applied on top of delta-delta-MFCC or LDA+MLLT trans-
formed features, as described by Rath et al. [2013]. The LDA+MLLT+fMMLR
approach, as depicted in Figure 2.8, aims to combine the advantages of the dif-
ferent presented transformations to obtain well separable, speaker normalized fea-
ture representations with reduced dimension. Other combinations of these and
other transformations, such as VTLN, are also common. Such combined feature
space transformations are more commonly used in more advanced large-vocabulary
speech recognition systems.
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Figure 2.8: Advanced feature space transforms based on MFCCs for speaker adaptive
training of GMM-HMM ASR systems. This figure is based on the baseline
description in [Rath et al., 2013]. For LDA, nine consecutive MFCC feature
vectors (i.e., with a temporal context of ±4) are spliced (concatenated).

2.2 Hybrid Deep Neural Network - Hidden
Markov Models

2.2.1 Neural Networks in HMM-based Speech Recognition
In the early 2010s, the deep learning paradigm found its way into speech recog-
nition. Empowered by the performance of deep neural networks and the new
opportunities that such models offer, automatic speech recognition regained enor-
mous research interest by many academic research groups and companies in the
last decade. Deep neural networks have been applied more and more often in
speech recognition systems.

Until a few years ago, deep neural networks were usually applied to extend the
acoustic modeling in conventional GMM-HMM-based speech recognition. Such
systems are called hybrid deep neural network - hidden Markov models (hybrid
DNN-HMMs or simply DNN-HMMs) [Yu and Deng, 2015, p. 99]. The deep neural
network in such a hybrid system, as shown in Figure 2.9, is used to obtain a better
estimation of the HMM acoustic model observation probabilities P (X|s) used for
the (factorized) Bayes’ decision rule (Equation 2.4). However, the neural network
does not directly estimate P (X|s), since (traditional) neural networks are trained
as discriminative models—usually using cross-entropy or a similar criterion. The
deep neural network in a DNN-HMM setup is usually trained to estimate P (qt =
s|xt), i.e., the probability that the HMM is in state s ∈ S at time step t ∈ N, given
the observed feature vector xt, cf. Yu and Deng [2015, p. 101]. This means that
the deep neural network is applied frame-wise on the entire input feature sequence
X := (xt)T

t=0. Probability P (qt = s|xt) is usually estimated independently of
the probabilities at previous or future time steps. In particular for feed-forward
networks, a fixed window of concatenated input vectors x̃t := (xn)t+t2

n=t−t1 is usually
used. Often a symmetric window with t1 = t2 ∈ {1, 2, 3, 4, 5} is used as input values
for the network. Through the fixed window, the network can consider short time
period of input features and not only the current frame to estimate P (qt = s|x̃t).
Usually, this makes delta features superfluous.

Bayes’ rule has to be applied to obtain observation probabilities from the prob-
abilities estimated by the neural network to utilize the estimation of the neural
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Hidden Markov Model

Deep Neural Network

Observation Probabilities
P (xt|qt = s)

Neural Network Output
P (qt = s|x̃t)

Scaled Likelihood
P (xt|qt = s) ∝ P (qt=s|x̃t)

P (s)

Features x̃t

Figure 2.9: Hybrid deep neural network - hidden Markov model speech recognition ap-
proach. Spectral features are windowed and used as frame-wise input values
for the neural network to estimate HMM state occupation probabilities. These
probabilities are then scaled and used as scaled likelihoods to better approxi-
mate observation probabilities of the hidden Markov model for recognition.
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network in the conventional GMM-HMM setup, i.e.,

P (xt|qt = s) = P (qt = s|xt) · P (xt)
P (s) ,

cf. Yu and Deng [2015, pp. 101 ff.]. Probability P (xt) > 0 is considered indepen-
dent from the word sequence and can be ignored during arg max decoding. Thus,
the observation probability is approximated with the scaled likelihood,

P (xt|qt = s) ∝ P (qt = s|xt)
P (s) ,

cf. Morgan and Bourlard [1995]. The number of frames in the training data labeled
with state s is counted and divided by the overall number of frames in the training
data to estimate probability P (s).

Finally, the HMM acoustic model observation probabilities P (X|s) in a hybrid
DNN-HMM setup are approximated by

P (X|s) =
T∏

t=0
P (xt|x1, ..., xt−1, qt = s) ≈

T∏
t=0

P (xt|qt = s) ∝
T∏

t=0

P (qt = s|xt)
P (s)

cf. Wang et al. [2019]. Overall, the decoding with a hybrid DNN-HMM system
is described utilizing the above estimation of P (X|s) in the factorized Bayes’
decision rule in Equation 2.4 which leads to

ŵ ≈ arg max
w∈W

(
P (w) · max

s∈S

(
P (s|w) ·

T∏
t=0

P (qt = s|xt)
P (s)

))
.

In a hybrid DNN-HMM setup, the hidden Markov model still models temporal
relationships through the transition probabilities in P (s|w) learned during training
of the hidden Markov models. Accordingly, a separate language model still models
the probability of word sequences P (w). Thus, the hybrid approach preserves the
advantages of the GMM-HMM-based approaches described above.

Another advantage of the hybrid approach is that features used as input for the
neural network do not have to be statistically independent or decorrelated—as it
is often required for GMM-HMMs. Thus, it is possible to use the aforementioned
filter bank features, frames of the raw spectrogram, or even entirely other types of
features that might be more representative for speech recognition than MFCCs.
Additional input features are also often incorporated to enable the model to utilize
further knowledge from other models or data. A popular example is the application
of speaker-embeddings that enable the system to adapt to different speakers during
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recognition. A detailed description of speaker embeddings and speaker adaptation
approaches for hybrid models is given later in this section.

Moreover, deep neural networks have a higher potential to learn much better
models of data that lie on or near a non-linear manifold [Hinton et al., 2012].
However, there is the disadvantage that the training of hybrid systems becomes
more complex and time-consuming. For a hybrid system, a complete GMM-HMM
system must be trained first. This system then generates corresponding labels for
the training of the deep neural network.

Hybrid systems combine the strong modeling power of deep neural networks
with temporal modeling and separate acoustic and language models of GMM-
HMM systems. Since the early 2010s, hybrid models outperform GMM-HMMs
on various speech recognition benchmarks, sometimes by a large margin [Hinton
et al., 2012]. A few years after the emergence of hybrid DNN-HMM systems, this
approach almost entirely replaced the conventional GMM-HMM approach in most
works.

However, the application of neural networks for acoustic modeling in speech
recognition was studied long before the emergence of deep learning. For instance,
Bourlard and Morgan [1993] and the survey by Trentin and Gori [2001] describe
many approaches that combine hidden Markov models and artificial neural net-
works acoustic models for continuous speech recognition. Some of these systems
even use recurrent neural networks and time delay neural networks, architectures
rediscovered for acoustic modeling by recent research and applied in speech recog-
nition systems achieving cutting edge results on many different challenging speech
recognition tasks, such as by Peddinti et al. [2015b].

Several aspects limited early works on hybrid systems that used neural networks
for acoustic modeling, cf. Yu and Deng [2015, pp. 99–101]. Shallow networks were
usually used, and deep neural networks were rarely exploited due to computational
limitations. Moreover, the systems often did not utilize context-dependent phones
or states but used monophone GMM-HMMs. In early works, the term CD-DNN-
HMM (context-dependent - deep neural network - hidden Markov models) [Yu
and Deng, 2015, p. 101] was often used to distinguish improved hybrid systems
that utilized both context-dependent HMMs and deep neural networks from the
previous hybrid approaches. Although the previously cited work does not discuss
this aspect, it can be assumed that the increasing availability of annotated speech
data for training has also greatly contributed to the enormous success of CD-DNN-
HMMs in recent years.
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2.2.2 Speaker Adaptive Training of Hybrid DNN-HMM
Acoustic Models

Speaker adaptive training of hybrid DNN-HMM systems aims to improve the sys-
tem’s recognition quality for unknown speakers that do not appear in the training
data—precisely as this is the case with speaker adaptive training of conventional
GMM-HMM speech recognition systems. Feature transform approaches using fM-
LLR transform, which have already been proven beneficial for speaker adaptive
training of GMM-HMM systems, have also been studied and improved for neural
network acoustic models in recent years, e.g., by Rath et al. [2013]. Such advanced
feature space transformations based on fMLLR have been applied—usually as one
of multiple speaker adaptive techniques within the system—in different state-of-
the-art hybrid speech recognition systems, e.g., by Saon et al. [2017].

However, as discussed above, deep neural networks have greater modeling power
and do not have the same constraints to input features as hidden Markov models.
This allows for fundamentally different speaker adaptation approaches for hybrid
acoustic models that have been proposed and studied in many different works in
recent years. Popular examples are approaches that use speaker embeddings—a
vector space representation of speakers’ voices with a relatively low dimension.
Speaker embeddings are popular approaches for speaker recognition and speaker
clustering that allow identifying and verifying speech segments of the same speak-
ers, usually independently from what the speaker said.

The usage of speaker embeddings for speaker adaptive training of hybrid acous-
tic models has been studied in many different ways. For instance, Xue et al. [2014]
proposed and studied three different approaches to use a specific type of speaker
embeddings for fast adaptation of hybrid systems: a non-linear feature normaliza-
tion approach using speaker embeddings, a direct adaptation of the model based
on the speaker embeddings, and a joint speaker adaptive training with speaker
embeddings. Fast adaptation of hybrid acoustic models to different speakers by
performing speaker adaptation through normalization in the feature-space using
the well-known speaker embedding identity vector (i-vector) was studied by Miao
et al. [2015b].

The i-vector speaker embedding was proposed by Dehak et al. [2011] for speaker
verification. It provides a low-dimensional, text-independent vector space repre-
sentation of both the speaker and the channel. A main advantage of the i-vector
embedding approach is that it can be trained in an unsupervised manner, and no
speaker labels are required during training. The prerequisite, however, is that for
each speech segment, it is assumed that exactly one speaker is speaking in the
recording. The i-vector embedding approach is related to the joint-factor analysis
(JFA) [Kenny et al., 2007a,b]. However, in contrast to JFA, which aims to model
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disjoint spaces for the speaker and the channel, the i-vector approach models a
total variability space containing both the speaker and the channel variability.

A relatively simple yet powerful approach for speaker adaptation of hybrid acous-
tic models has been proposed by Saon et al. [2013]. The authors propose to adapt
the acoustic model to the target speaker by supplying the i-vector speaker embed-
ding as input features to the neural network in parallel with the regular acoustic
features. Due to its simplicity and increased speaker robustness of models, this
approach has prevailed for many systems. It is applied either as a speaker adapta-
tion technique in addition to feature-space transformations such as fMLLR, e.g.,
in the aforementioned work by Saon et al. [2017], or as the only speaker adaptation
approach in the system, e.g., by [Xiong et al., 2018], Peddinti et al. [2015a] and
Peddinti et al. [2015b]. The latter two approaches use conventional MFCC features
as inputs that are not subject to any normalization. The authors’ intention for
omitting feature normalization is to allow the network to perform any needed fea-
ture normalization itself based on the information encoded in the supplied speaker
embedding.

Most approaches using speaker embeddings are not limited to a specific type
of embedding. Other speaker embeddings, such as x-vectors, proposed by Snyder
et al. [2018], are assumed to be suitable for speaker adaptation in ASR as well,
cf. Raj et al. [2019]. Moreover, additional embeddings, e.g., for channel charac-
teristics, such as r-vectors, proposed by Khokhlov et al. [2019], that model room
acoustics might also be beneficial to improve adaptation to unseen conditions.

2.3 End-to-End Speech Recognition
In recent years, deep learning systems achieved impressive results in many different
machine learning tasks. Initially, deep neural networks were often used as one
component in a larger processing pipeline, for example, with feature extraction
and other models. Usually, such pipelines rely on expert human knowledge—for
example, to design an appropriate feature extractor or phonetic pronunciation
modeling. In recent years, however, there has been a strong trend towards end-to-
end learning that aims at training a single model that replaces the entire processing
pipeline. Such systems require no or very little human expert knowledge and learn
all the necessary processing steps on their own.

Automatic speech recognition based on DNN-HMMs is one example of a deep
neural network representing one component in a rather complex processing pipeline.
End-to-end speech recognition aims at simplifying this pipeline for training and
application of speech recognition systems by removing the whole hidden Markov
model aspect from the pipeline. It became a field with enormous research interest
since the late 2010s.
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A common definition of end-to-end in the field of speech recognition does not
seem to exist. Two dominant definitions of end-to-end speech recognition can be
found in the literature:

• Some authors, such as Miao et al. [2015a], Watanabe et al. [2017], and Ha-
dian et al. [2018], define end-to-end models as single DNNs that do not
rely on previously trained models—such as HMMs. Thus, these end-to-end
models are trained in one stage, cf. Hadian et al. [2018]. In contrast to
bootstrap training, they do not require forced alignment of training data or
state-tying. These end-to-end models map audio feature sequences, such as
MFCC or FBANK features, to sequences of phonetic units—such as phones,
biphones, and triphones—or grapheme units. Therefore, additional mod-
els based on human knowledge might still be required, e.g., in the form of
phonetic pronunciation lexicons.

• Other authors exhibit a stricter notion of end-to-end in speech recognition
that is more in line with the general understanding of end-to-end in deep
learning. They define end-to-end models as DNNs that map an audio se-
quence directly to a sequence of characters or words. This definition is found,
among others, in the works by Graves and Jaitly [2014], Prabhavalkar et al.
[2017], Zeyer et al. [2018], Wang et al. [2019], and Andrusenko et al. [2020].
Since these models do not use phonetic units, a pronunciation lexicon is not
required, and decoding is highly simplified.

Except for the choice of output, the two definitions coincide. As described later
in this section, end-to-end speech recognition is not a relevant approach for the
presented work. Thus, there is no need to distinguish between these definitions
for the further course of the work.

In conventional, hybrid ASR systems, the neural network is applied frame-wise
on the input sequence. Thus, the neural network’s input and output values al-
ways are of fixed, known dimensions. However, in end-to-end speech recognition,
a sequence-to-sequence mapping is required. Sequences pose a multitude of chal-
lenges for deep neural networks, cf. Sutskever et al. [2014]. One main challenge
in sequence-to-sequence modeling is that the lengths of the input and output se-
quences are different by a substantial margin and a-priori unknown.

2.3.1 End-to-End ASR Approaches
In end-to-end speech recognition, the input sequence is a sequence of audio features
such as MFCCs or the raw audio signal. The desired output is a sequence of
recognition results, such as letters, entire words, or sub-word units. The expected
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output sequence is usually much shorter than the sequence of input features. End-
to-end speech recognition can be divided into different categories based on the
approach utilized to overcome the challenge of sequence-to-sequence modeling:

• Connectionist temporal classification (CTC ) was proposed by Graves et al.
[2006] as a training method for sequence labeling of unsegmented data with
recurrent neural networks. CTC transforms the neural network outputs to
conditional probability distributions over label sequences.

• RNN-transducers were introduced by Graves [2012] to resolve the conditional
independence assumptions of CTC. The RNN-transducer model extends the
CTC approach by defining a distribution over output sequences of all lengths
and by jointly modeling both input- and output-sequence dependencies. The
RNN-transducer architecture utilizes an additional subnetwork that recur-
rently models output labels.

• Attention-based models represent the third main direction of sequence mod-
eling for end-to-end speech recognition. These models are encoder-decoder
sequence models, cf. Sutskever et al. [2014], that utilize the well-known at-
tention-mechanism for automatic speech recognition. Several variants to the
attention mechanism have been proposed in recent years to improve various
aspects for diverse tasks. The first popular attention mechanisms have been
proposed by Bahdanau et al. [2015] and Luong et al. [2015]. A prominent
attention model variant used in many current deep learning applications is
the transformer proposed by Vaswani et al. [2017]. Different works stud-
ied attention-based models for speech recognition, such as Bahdanau et al.
[2016], and the prominent listen, attend, and spell model proposed by Chan
et al. [2016].

Different works aim at combining attention models with CTC or RNN-transducer
models to take advantage of both approaches in one system. A combination of
attention with CTC is proposed by Watanabe et al. [2017]. Combinations of at-
tention with RNN-transducers (transformer attention-based encoder-decoder) are
referenced in the comparison work on end-to-end systems by Li et al. [2020].

2.3.2 End-to-End LF-MMI
Another approach proposed for end-to-end speech recognition is the end-to-end
variant of the well-known lattice-free maximum mutual information (LF-MMI )
approach. LF-MMI, in general, is an extension proposed by Povey et al. [2016] to
the hybrid DNN-HMM approach. LF-MMI aims to utilize the advantages of end-
to-end speech recognition research for hybrid models. Due to great performance
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on many different speech recognition benchmarks, it quickly became state of the
art in speech recognition. Therefore, it is discussed in detail in Section 2.4.3.

The end-to-end implementation of LF-MMI was proposed by Hadian et al.
[2018]. However, it depends on the definition of end-to-end whether this approach
is indeed end-to-end speech recognition. End-to-end LF-MMI is not a single neu-
ral network model, as the aforementioned approaches are, but it utilizes hidden
Markov models to model the temporal sequences. However, these hidden Markov
models are not trained in a prior stage, as with hybrid models, but the entire
system is trained in one step. Also, no state tying is performed in end-to-end
LF-MMI.

The end-to-end variant is very similar to the original LF-MMI approach but does
not achieve as promising speech recognition results. For the sake of completeness,
this approach is listed in this section on end-to-end speech recognition. However,
due to the above reasons, it is not considered a relevant approach for the present
work.

2.3.3 Relevance of End-to-End Speech Recognition for the
Present Work

End-to-end speech recognition approaches greatly simplify the overall speech recog-
nition problem and allow the development of innovative, promising systems. How-
ever, despite all advantages that end-to-end speech recognition promises, in the
years 2017–2020, there are major drawbacks compared to conventional hybrid sys-
tems. Many works show that end-to-end systems’ performance is worse compared
to hybrid systems, and only some works show comparable or slightly better per-
formance of end-to-end systems, cf. the overview given by Wang et al. [2019]. This
was the case for most works, especially when the present work started in early
2017—but still prevails towards the end of the present work. Even though the
performance gap is constantly shrinking, end-to-end only slowly surpass conven-
tional systems.

Different works suggest that the performance gap could highly depend on the
amount of training data. For instance, Lüscher et al. [2019] performed experiments
on the widely used Librispeech corpus [Panayotov et al., 2015] to compare end-to-
end and hybrid systems. The authors proposed a hybrid and an end-to-end model
that both achieved the best result on Librispeech published in the literature to the
current time for the respective category.

The authors showed that the margin between the end-to-end and hybrid model
was significantly larger when a reduced 100-hours subset from the total 960-hour
training data was used. Furthermore, the authors observed that the gap between
the conventional hybrid and the end-to-end system increases from 15 % to 40 %
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when evaluating the model on the other test set portion of Librispeech that con-
tains more challenging speech instead of the clean set. This could indicate low
robustness of end-to-end models or susceptibility to deviations between training
and test data. Similarly, Andrusenko et al. [2020] state that end-to-end speech
recognition systems face problems in noisy, far-field, and low-resourced conditions.

As discussed in Chapter 3, the German oral history interviews that are the
primary focus of this work pose all and more than the previously mentioned chal-
lenges: low-resourced training data, challenging speech, noisy recording conditions,
and reverberation. The German oral history data are so challenging that the base-
line off-the-shelf speech recognition system showed word error rates above 50 %
during the start of the present work. Therefore, after the literature review, the
decision was not to include end-to-end systems in the research work and focus
on hybrid models. The previously cited works on end-to-end models published in
the course of the present work indicate that these challenges of end-to-end model-
ing remain, and thereby a posteriori justify the decision made in 2017. However,
with the ever-increasing accuracy of end-to-end models in the early 2020s and
the greater simplicity and flexibility, this decision may need to be reconsidered in
future works.

2.4 Sequence Discriminative Training of Neural
Networks

Concurrent with research on end-to-end speech recognition systems, research on
hybrid models also continued and yielded promising new approaches. Numerous
works proposed and studied methods to further improve neural network train-
ing for hybrid systems. One notable direction is sequence discriminative training,
studied, among others, by Kingsbury [2009] and Wang and Sim [2011] for hybrid
systems. Similar to end-to-end training, these studies aim at optimizing the neural
network with sequence-level objectives instead of frame-wise cross-entropy. How-
ever, in contrast to end-to-end systems, sequence discriminative trained hybrid
systems still rely on temporal sequence modeling with hidden Markov models and
bootstrapped training—usually with context-dependent phones.

2.4.1 Sequence Discriminative Training Criteria
Sequence discriminative training is well-known from conventional GMM-HMM-
based speech recognition systems, cf. Vertanen [2005], and has been proven to
significantly increase recognition accuracy in many scenarios. Different criteria
are used in sequence discriminative training. The most common approaches can
be categorized as maximum mutual information or minimum Bayes risk, cf. Veselý
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et al. [2013] and Yu and Deng [2015, pp. 137 ff.]. A summary of these criteria is
given in the following.

Maximum Mutual Information

Maximum mutual information (MMI) training proposed by Bahl et al. [1986] aims
at maximizing the mutual information between an acoustic observation sequence
and the corresponding word sequence. For a training set with NU ∈ N samples,
with Xu := (xu,k)Tu

k=1 as the sequence of observed features and su as the sequence
of states, both corresponding to training utterance u, the MMI criterion is defined
as:

JMMI :=
NU∑
u=1

log

 P (Xu|su, θ)κP (wu)∑
ŵ∈W

P (Xu|sŵ, θ)κP (ŵ)

, (2.6)

where κ ∈ R is an acoustic model scaling factor and P (w) is the probability of a
word sequence, cf. Veselý et al. [2013].

The numerator in Equation 2.6 is the likelihood of the sequence of correct states
for the training utterance to create the observed sequence of features. The denom-
inator is the sum of likelihoods for all possible sequences of states to produce the
observed feature sequence. Optimizing the system with the MMI criterion max-
imizes the numerator and, at the same time, minimizes the denominator. Thus,
for a given sequence of features, the MMI criterion attempts to make the correct
word sequence more probable and all incorrect word sequences less probable, cf.
Vertanen [2005]. A modified variant of MMI called boosted MMI was proposed by
Povey et al. [2008] to improve recognition results by boosting the likelihood for
state sequences in the denominator with higher phone errors.

Minimum Bayes Risk / Minimum Phone Error

Minimum Bayes risk (MBR) criteria [Kaiser et al., 2000, 2002] aim at minimizing
the risk of the wrong classification on the training data. MBR is a family of criteria
with variants for different granularity of labels that have been studied for hidden
Markov models, cf. Yu and Deng [2015, pp. 140 ff.]. MBR criteria are defined by
a loss function of the following type:

JMBR :=
NU∑
u=1


∑

w∈W
P (Xu|sw, θ)κP (w)A(w, wu)∑
ŵ∈W

P (Xu|sŵ, θ)κP (ŵ)

 (2.7)

where A(w, wu) is referred to as raw accuracy and depends on the label to be
optimized—e.g., words, phones, or states. An overview of commonly used defini-
tions of A(w, wu) for different objectives is studied by Povey and Kingsbury [2007]
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for GMM-HMM systems. State-level minimum Bayes risk (sMBR) became popu-
lar for cutting-edge HMM-based acoustic models where the definition of A(w, wu)
is the total number of correct states in the label sequence.

Since the denominator of MBR and MMI are equal, both criteria minimize wrong
classifications. However, the numerator of MBR in Equation 2.7, sums different
likelihoods and weights them with the raw accuracy A(w, wu) depending on their
influence on the expected resulting classification accuracy. In simple cases, for
sMBR, the raw accuracy can be defined as the sum of correct state labels.

The well-known criterion minimum phone error (MPE) was proposed by Povey
and Woodland [2002] simultaneously to MBR. This criterion is a smoothed ap-
proximation for the phone error rate of the model. Since it uses the same general
Equation 2.7 but applies it to phones, it can be considered a member of the MBR
family, cf. Yu and Deng [2015, pp. 140 ff.]. MPE uses a raw phone accuracy
for A(w, wu), i.e., the number of correct phones, to estimate and minimize the
resulting phone error of the system.

2.4.2 Sequence Discriminative Training of Neural Network
Acoustic Models

Recent works on hybrid DNN-HMM systems studied applying the same sequence
objectives from hidden Markov model systems to acoustic model neural network
training. For example, Veselý et al. [2013] studied and compared sequence discrim-
inative training with MMI, MPE, and sMBR criteria to train a feedforward deep
neural network for a hybrid system. The sequence discriminative trained mod-
els all outperformed the cross-entropy trained baseline. These models achieved
state-of-the-art performance at that time on the 300-hour Switchboard conversa-
tional telephone speech task [Godfrey et al., 1992]. Two years later, Voigtlaender
et al. [2015] studied the application of sequence discriminative training with the
MMI criterion for bidirectional LSTM-RNNs. The authors state that bidirectional
LSTMs utilize the whole sequence to incorporate more contextual information than
feed-forward neural networks. With their experiments, Voigtlaender et al. showed
that sequence-discriminative training gives substantial improvements over a cross-
entropy trained LSTM baseline.

Traditionally, sequence discriminative training of neural networks utilizes the
same lattice-based approaches that have been developed for hidden Markov model
training, cf. Kingsbury [2009]. A cross-entropy system is first trained to generate
the word lattices for sequence discriminative training with a weak language model,
cf. Povey et al. [2016]. These lattices are then used to approximate all possible
word sequences used in sequence discriminative objective functions. Then, the
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cross-entropy trained model is used as initialization to train the neural network
acoustic model using the sequence discriminative criterion.

2.4.3 Purely Sequence-Trained Neural Networks Acoustic
Models Using Lattice-Free MMI

One of the publications with the biggest impact on sequence discriminative training
of hybrid acoustic models in recent years is the work by Povey et al. [2016]. In
their work, Povey et al. successfully apply concepts from CTC training to sequence
discriminative neural network training with MMI since both criteria generally aim
at optimizing the conditional likelihood of the correct transcript.

Povey et al. propose a neural network acoustic model training with MMI without
initialization of the model with a cross-entropy system—as it is traditionally done
for sequence discriminative training. The authors propose a lattice-free implemen-
tation for the numerator and denominator likelihoods from the MMI criterion to
train the system directly on GPUs. Instead of storing all possible label sequences
in a huge lattice for the input feature sequence of each training utterance—where
each path through the lattice represents one label sequence and its corresponding
likelihood—the lattice-free implementation represents the sequences as a graph.
It aims at making the graph as small as possible so that it fits in the GPU. This
means that the graph for the denominator is the same for all utterances. Since
GPU-based computations benefit from synchronized memory access, the sum of
the denominator can be calculated efficiently in the GPU for each training utter-
ance.

To reduce the size of the graphs, lattice-free MMI (LF-MMI ) utilizes a phone-
level language model instead of a word-level model for the MMI criterion. More-
over, to reduce space and time complexity during training—and also improve ef-
ficiency in decoding—LF-MMI models use a 3-fold reduced (subsampled) frame
rate and accordingly simplified HMM topology with constant, evenly distributed
transition probabilities.

Purely sequence-trained systems tend to overfit and show poor generalization to
unseen data, cf. Vertanen [2005]. LF-MMI training utilizes different regularization
techniques to overcome this limitation. These are L2-norm output regularization,
a cross-entropy regularization—realized as multi-task learning of LF-MMI and
cross-entropy with two output layers—and leaky hidden Markov model transition
probabilities. More implementation details are different in LF-MMI from tradi-
tional MMI, such as fixed-length chunks for training. These are described in detail
in the original work [Povey et al., 2016] for further reading. In some literature,
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LF-MMI systems are sometimes referred to as chain models due to the naming of
LF-MMI in the Kaldi implementation.4

Povey et al. showed that LF-MMI outperforms cross-entropy and sMBR trained
hybrid systems for many model architectures and various data sets. Numerous
subsequent works utilized LF-MMI to achieve cutting-edge results on different
challenges at their respective time. To name but a few examples in the following
that have been published during the course of the present work:

• The best-performing systems of the 2018 5th CHiME Speech Separation and
Recognition Challenge (CHiME-5) [Barker et al., 2018], e.g., [Du et al., 2018],
[Kanda et al., 2018], utilize LF-MMI.

• Furthermore, all ASRU 2019 Mandarin-English Code-Switching Speech Recog-
nition Challenge participants used LF-MMI for the hybrid ASR system track,
cf. Shi et al. [2020].

• The two speech transcription systems of the MGB-5 Recognition and Dialect
Identification of Dialectal Arabic Speech Challenge [Ali et al., 2019] outper-
form the baseline—that used LF-MMI itself—also used LF-MMI training in
some way, cf. Ahmed et al. [2019], [Khurana et al., 2019].

These different challenges present extremely difficult scenarios for automatic
speech recognition systems in our current time. The widespread application of
LF-MMI demonstrates its capabilities in these challenging use cases.

2.5 Summary
Our thorough presentation of the major pioneering works in automatic speech
recognition in this chapter indicates that automatic speech recognition is a field
with enormous research efforts in various subfields. Besides the fundamental as-
pects of speech recognition, in our provided overview, we focused on pioneering
modeling approaches that have prevailed until now and are applied in cutting-edge
systems. In particular, we focused on acoustic modeling techniques since these are
the main research focus of the present work. Our choice of focus means that other
significant work, such as advances in language modeling, has gone unmentioned.
However, this does not mean that these are less significant for speech recognition
per se but do not correspond to the focus of the present work.

In this chapter, we first explained the theory of hidden Markov models that
have been the core component of powerful speech recognition systems for many

4An overview of Kaldi and other automatic speech recognition toolkits can be found in the
appendix in Section A.1.
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decades. We presented how the general speech recognition decoding problem can
be reformulated using Bayes’ decision rule. Three different models—the acoustic
model, the phonetic pronunciation lexicon, and the language model—can be used
independently to address different aspects of the problem formulation.

Building on the presentation of hidden Markov model speech recognition sys-
tems, we have described the application of deep neural networks in hybrid models
that combine hidden Markov models and neural networks for acoustic modeling.
Over the past decade, these hybrid models have vastly improved acoustic modeling
for automatic speech recognition. We presented commonly used feature extraction
methods, feature space transformations, and speaker adaptive training approaches
for conventional hidden Markov models and hybrid systems.

With our description of end-to-end automatic speech recognition systems, we
credit this emerging and highly promising research strand that has been gaining
enormous research interest in recent years. We presented the three most common
fundamental end-to-end speech recognition approaches and how they significantly
simplify automatic speech recognition by removing the hidden Markov models
from the processing pipeline. We discussed why end-to-end approaches were not
considered to be studied for the oral history challenge in the presented research
work.

Furthermore, in this chapter, we presented research efforts in sequence discrim-
inative training of neural network acoustic models. To some extent, this research
shows some parallels to end-to-end training since it attempts to perform sequence-
based optimizations—but on hybrid models that utilize hidden Markov models for
temporal modeling instead of sequence-to-sequence neural networks. The recent
summit of this research strand is LF-MMI model training that enables hybrid
DNN-HMM systems to achieve cutting-edge results for various speech recognition
challenges and use cases.

Despite all advantages of deep neural networks in automatic speech recogni-
tion, challenges remain open that are discussed in the following main chapters of
the present work. Usually, deep neural networks require lots of training data to
achieve robust generalization and fully unfold their modeling power in real-world
applications. This is particularly the case for challenging automatic speech recog-
nition tasks. Usually, large amounts of annotated speech are required. Such data
often is not available for the desired use case. A major question to be answered in
the following chapters is how deep neural networks can be exploited in real-world
applications when only little training data is available for a concrete use case.
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In the humanities, oral history refers to conducting and analyzing interviews with
contemporary witnesses to historical events. For oral history researchers, transcrip-
tion is essential to find interviews of interest for the respective research question
in large archives and to find and examine relevant passages within very long inter-
views. Currently, transcribing, labeling, and annotating these speech recordings is
often performed entirely manually.

Speech recognition systems offer a promising opportunity to automatically pro-
cess oral history archives to reduce the resources needed to transcribe these inter-
views significantly. However, the past has shown that applying off-the-shelf speech
recognition technology on oral history interviews usually results in poor recogni-
tion performance. Compared to other speech recordings, oral history interviews
pose several challenges for speech recognition systems. Often the quality of the
audio recording is low due to different distortions occurring simultaneously, e.g.,
background noises, poor recording equipment, room reverberation, and a large
distance between the speaker and the microphone. Furthermore, the interviewed
persons usually are elderly persons speaking very spontaneously. To overcome
these limitations and make speech recognition applicable to oral history inter-
views, the Fraunhofer IAIS has worked on adapting the automatic transcription
system Audio Mining to oral history interviews in a research project since 2015.
This chapter presents and discusses the automatic transcription of oral history in-
terviews. We discuss the challenges that these interviews pose for existing systems
and conduct preliminary experiments to identify the aspects of systems that need
improvement.

This chapter is structured as follows. We first introduce the research project KA3

that funded major parts of the presented research work, the oral history use case,
and archives considered in the project in Section 3.2. Furthermore, we provide a
systematic review of related works investigating automatic speech recognition for
oral history interviews for different languages in Section 3.3. With this review, we
expose the existing research gap in this field and give an overview of the challenges
of oral history interviews for speech recognition in general and particularly for the
data archive we study. In Section 3.4, we present a representative German oral
history test set developed and proposed during the present research work, which is
used to investigate the performance of proposed systems and approaches. In this
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context, we give an overview of the other training and test data used in this work.
As a foundation for investigating different approaches in the following chapters, we
perform a preliminary investigation of the influence of different language models on
the oral history ASR task in Section 3.5. The chapter concludes in Section 3.6 with
an investigation of the estimated human word error rate for German oral history
interviews. We show that word-accurate transcriptions of oral history interviews
are challenging even for humans. The estimated human word error rate can be
understood as a lower bound of the expected performance of speech recognition
systems on such interviews. In Section 3.7, we summarize the chapter’s findings
and contributions.

3.1 Thesis Author Contribution
Sections of this chapter are covered in the publications:

Michael Gref, Joachim Köhler, and Almut Leh. Improved transcription
and indexing of oral history interviews for digital humanities research.
In 11th International Conference on Language Resources and Evalua-
tion (LREC), pages 3124–3131. European Language Resources Association
(ELRA), 2018a. URL https://aclanthology.org/L18-1493

Michael Gref, Nike Matthiesen, Christoph Schmidt, Sven Behnke, and Joachim
Köhler. Human and automatic speech recognition performance on german
oral history interviews. arXiv:2201.06841 [eess.AS], 2022b. URL https:
//arxiv.org/abs/2201.06841

All presented approaches, experiments, findings, results, analyses, conclusions,
figures, and texts are contributions of the thesis author. The oral history data sets
described in Section 3.4.6 and Section 3.4.10 were provided by co-authoring project
partners in coordination with the thesis author. Respective author contributions
are given in Appendix C.

3.2 The Oral History Use Case
3.2.1 The KA3 Project
Major parts of the present research work were carried out as a part of the project
KA3 - Kölner Zentrum für Analyse und Archivierung audiovisueller Daten (Cologne
Center for Analysis and Archiving of Audiovisual Data) funded by the German
Federal Ministry of Education and Research between 2015 and 2020. The overall
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goal of the KA3 project was to establish a digital center to make audiovisual data
sustainably usable for researchers from the humanities and cultural sciences. In
addition to archiving, a key goal of the project was to develop, adapt, and apply
AI-based methods for automatic indexing and searching of documents as well as
video and audio recordings.

In the project’s scope, cf. Leh et al. [2018], speech data collections from two
different research fields have been selected as use cases to study: The oral history
and the interaction scenario. The interaction scenario represents the application
of speech processing technologies in the field of linguistics. Here, mainly human
interaction processes between two persons are analyzed. The studied objects are
speech recordings in which two persons converse naturally, and backchannels of
the person currently listing to the speaker frequently occur—such as uhm, okay,
and uh-huh.

The research of this thesis began in 2017 in the KA3 project. It focused on de-
veloping automatic speech recognition training methods to make this technology
reasonably usable for oral history interviews. For the research work, close cooper-
ation has been established between the Fraunhofer IAIS and the archive Deutsches
Gedächtnis (German Memory) in the Institute for History and Biography, Univer-
sity of Hagen in Germany.

Due to different requirements of both the oral history and the interaction use
cases, and partly dissimilar challenges in both scenarios, the interaction scenario
was only considered in passing in this research work. A major challenge in the in-
teraction scenario was the lack of suitable test data for evaluation at the beginning
of the research work. When these were available in later stages, we also examined
subsequent experiments on interaction test data. However, automatic transcrip-
tion of data from the interaction use case utilizing speech recognition had only a
secondary interest for the linguistics researchers since backchannel and interaction
patterns between the speakers are central to their investigation. For the presented
research, we use this and several other German ASR evaluation sets from different
domains as a control group to examine the real-world performance of the proposed
system for unseen data and to verify that improvements on oral history data do not
negatively impact the overall recognition performance on other real-world data.

3.2.2 Oral History Interviews and Archives as Sources for
the Humanities

Historical research based on interviews with witnesses to historical events and the
interest in biographical processes and subjective personal information have a long
tradition in the social sciences and humanities. As described by the historian
Dr. Almut Leh, head of the archive Deutsches Gedächtnis, in our joint publica-

41



3 Automatic Transcription of Oral History Interviews

tion [Gref et al., 2018a], biographical research emerged in almost all areas of the
humanities since the early 1980s: sociology and pedagogy, ethnography and eth-
nology, historical and literary studies as well as psychoanalysis and psychology.
Research conducting and analyzing interviews with contemporary witnesses has
become known as oral history in the historical sciences. In Germany, this research
was mainly focused on National Socialism and the Second World War. But in the
meantime, it has also come to include many other topics and historical periods.
The past forty years have seen a multitude of witnesses to a wide range of his-
torical events interviewed by researchers. Today it is hard to imagine presenting
historical information in exhibitions, documentations, and movies without using
witness accounts to the relevant events. This method in which most of the inter-
views in question were conducted is characterized by the interviewer encouraging
the interviewee to freely narrate their life story rather than structuring the inter-
view around questions. In terms of biographical research, the outcome is qualified
as a narrative life story interview lasting very often at least three or four hours.

Such an interview represents a highly individual testimony. The interviewee has
presented large parts of their life story and worldview that are often unguarded
and sometimes contradictory. Due to the open character of the narration and the
life-story dimension, such an interview is valuable for more than a single analysis,
cf. [Köhler et al., 2019; Leh et al., 2019]. It can be explored for different top-
ics, even more so since many witnesses have died in the meantime, leaving only
their recorded accounts. For the same reason analyzing and archiving oral history
interviews is valuable and challenging.

Today archives, museums, websites, and documentation centers preserve and
provide oral history interviews for historical research, social sciences, and other hu-
manities. Since the beginnings of oral history, many university and non-university
projects have been initiated, in which interviews with contemporary witnesses were
collected and evaluated. In Germany, for instance, since 2006, the Center for Digi-
tal Systems (CeDiS) of Free University of Berlin, [Pagenstecher, 2019a,b], provides
access to several major oral history archives focusing on the Second World War
and the period of National Socialism in Germany. These are the Visual History
Archive of the USC Shoah Foundation, the Fortunoff Video Archive of the Yale
University, the Forced Labor 1939–1945 interview archive (introduced by Leh and
Tausendfreund [2017]), the British-Jewish collection Refugee Voices, the interview
archive Memories of the Occupation in Greece, and the aforementioned archive
Deutsches Gedächtnis of University of Hagen.

Regarding the importance of transcription, Pagenstecher states that indexation
and full-text search make the long recordings in archives accessible via CeDiS.
However, this requires a huge effort in manual transcriptions. Although automatic
speech recognition systems have made significant progress in recent years, the
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transcription quality of such systems on oral history interviews is usually low.
This limits the usability of automatically generated transcriptions for research—
especially considering the high standard expectations of the oral history research
community.

The Stiftung Haus der Geschichte der Bundesrepublik Deutschland (HdG; House
of the History of the Federal Republic of Germany Foundation) is another impor-
tant institution in the field of German oral history. With the Zeitzeugenportal1,
the foundation hosts an internet platform accessible to the general public that
contains a large collection of oral history interviews on several topics of German
history in the 20th and 21st century. On the Zeitzeugenportal, more than 8,000
clips from around 1,000 interviews can already be found. The large database offers
interesting historical content and allows the viewer to empathize with what they
have experienced through emotionally charged stories. This online service gives
users the chance to hear about people’s stories at any time.

3.2.3 The Oral History Archive "Deutsches Gedächtnis"

Leh [2018] states that the archive Deutsches Gedächtnis (German Memory) was
founded in 1993 and provides about 3000 oral history interviews conducted from
the late 1970s to this day in more than 100 projects using various recording tech-
nologies and interview settings.

The average length of the interviews is approximately 3.5 hours. As described
above, the interview usually is not structured by questions. Instead, it is open for
the course of memories coming into the interviewee’s mind when telling their entire
life story from birth and childhood into the present. The interviewees present
in the archive were born between 1895 and 1980, cf. [Gref et al., 2018a]. The
original analog recordings of the 2,000 audio and 500 video interviews have been
digitized. Although retrieval and analysis are based on transcription, only half of
the interviews had been transcribed at the start of the presented research work
in 2017. At that time, only ten percent of the transcripts were time aligned so
that the transcript could be used for subtitling or for jumping to the position of a
particular word in the audio or video recording. All interviews are equipped with
archival, technical, and biographical metadata. Due to the interviewees’ privacy,
not all of these interviews are available for technology research. The data used in
this research is described in detail in Section 3.4.

1https://www.zeitzeugen-portal.de
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3.3 Systematic Review of Challenges Oral
History Interviews Pose for ASR

Automatic transcription systems, such as the Fraunhofer IAIS Audio Mining sys-
tem2, offer great advantages in analyzing and archiving interviews for oral history
archives. Speaker-diarization, time-aligned transcription, and indexing with key-
words are essential for retrieving interviews in large archives and sections within
long interviews fast and reliably. Before the advent of automatic transcription sys-
tems, all of these steps had been performed manually. The huge effort in time and
human resources required to do this severely limits the utilization of oral history
interviews for digital humanities research.

The Audio Mining system allows historians to process vast amounts of oral
history recordings and improve their research based on these interviews. This
is achieved by transcribing the recordings automatically and providing additional
speech analysis results in a convenient interface to structure the content. Regarding
archiving and retrieval, the Audio Mining system allows full-text search with direct
access to the audiovisual media file.

Automatic transcription systems such as Audio Mining facilitate new oral history
research approaches in quantity and quality. Comparative studies and quantitative
analysis become feasible by covering more data without an enormous manual effort.
Furthermore, speech technologies allow analyzing verbal and non-verbal aspects of
communication more deeply, thus opening new dimensions for qualitative research,
cf. [Köhler et al., 2019; Leh et al., 2019].

Since the early days of oral history, oral historians have insisted on the oral na-
ture of their sources, cf. [Gref et al., 2018a]. Following this demand, the interview
recording is the primary source and should be the main subject of research. In
consequence, the transcript is only a necessary additive for the analysis. However,
in current practice, the transcript is often the only source for interpretation and
analysis, replacing the audio completely. Subtitled audiovisual recordings over-
come this discrepancy. Thus, they fulfill the essential demand to analyze not only
the transcript but the entire oral source. Automatic transcription systems, such
as Audio Mining, allow taking full advantage of the untapped potential of oral
history leading back to its original roots, cf. [Köhler et al., 2019; Leh et al., 2019].

However, all these advantages are only given if a sufficiently good transcription
quality can be achieved. Attempts to use transcription systems for oral history
are not new. For two decades, attempts have been made to use speech recognition
for this purpose. Until today, there seems to be no satisfactory solution. This

2An overview of this system can be found in the appendix in Section A.2. The models trained
and improved in the presented research work were integrated into the Audio Mining system
for real-world application.

44



3.3 Systematic Review of Challenges Oral History Interviews Pose for ASR

is due to the extraordinary challenges that oral history interviews pose to speech
recognition systems.

This section reviews related works that investigated and improved speech recog-
nition for automatic transcription of oral history interviews. Based on these related
works, we present a non-statistical, systematic review of the challenges that oral
history interviews pose for speech recognition systems—and put them into the
context of the German data examined in this work, highlighting the research gap
in this field.

3.3.1 Related Work in the Field of ASR for Oral History
The social relevance of preserving the experienced memory of the gradually dwin-
dling generation of contemporary witnesses of the Second World War for future
generations is probably quite undisputed. Automatic speech recognition can play
a significant role in making the work of historical researchers significantly eas-
ier and in making large, previously untapped archives of interviews available for
further research. However, the research interest of computer science for the oral
history ASR use case seems to be quite limited so far. This is shown by the com-
paratively low number of publications covering this topic and the relatively low
citation count of published papers—especially compared to the enormous number
of publications for other ASR challenges in the last decade. In the following, we
provide an overview of selected research work that aims at studying and improving
automatic speech recognition for oral history interviews in different languages.

The application of automatic speech recognition technology to transcribe and
index oral history interviews has started with the MALACH (multilingual access
to large audioarchives) project [Psutka et al., 2002], where the interviews of the
Survivors of the Shoah Visual History Foundation (VHF) were processed with
state-of-the-art speech recognition in 2002. The activity’s main challenge was the
variety and quality of the recordings and the variety of the languages.

Early works on training ASR systems for English data of MALACH by Ram-
abhadran et al. [2003] achieved a word error rate (cf. Section 3.4.13) of 43.8 %
with HMM systems using fMLLR speaker adaptive training and the combination
of training data from MALACH and the Switchboard corpus. Siohan et al. [2004]
investigated possible speech recognition error sources for this data. The authors
analyzed the segmental signal-to-noise ratio (SNR) on an English 65 hour subset,
the syllable rate on a 200-hour subset, and the age distribution of the speakers.
For their ASR system, the authors found the syllable rate and SNR to be the most
dominant factor on the word error rate. The average SNR on the used subset is
23 dB with a long-tailed distribution towards lower SNRs and short-tailed towards
higher SNRs. Thus, in our interpretation of the reported results, it can be consid-
ered relatively clean or slightly noisy for most of the data, with some exceptions

45



3 Automatic Transcription of Oral History Interviews

containing strong distortions. The authors report that noise compensation in the
log-spectral domain on the test data results in only a slight improvement of 1.1 %
absolute.

Psutka et al. [2005] continued research on the MALACH corpus, developing
speech recognition systems for Czech, Russian, and Slovak oral history interviews.
The authors state that accented and spontaneous speech characterize these in-
terviews. Particularly for Russian, various regional pronunciation variants were
a challenge. The age of the speakers also affected the quality and fluency of the
speech. Using 84–100 hours of training data for each language, the proposed
GMM-HMM systems achieved 34.5–45.8 % word error rates. Byrne et al. [2004]
also investigated speech recognition for Czech and English MALACH interviews.
Using 65–84 hours of annotated interviews, the authors achieved a word error rate
near 40 % for both languages. The authors list age-related changes in the way of
speaking, highly variable speaking rates, and heavily accented speech as challenges
for machine and human transcribers. Mihajlik et al. [2007] investigated Hungarian
oral history interviews of the MALACH corpus and achieved a 37.5–41.1 % word
error rate using unsupervised speaker adaptation on GMM-HMM systems.

Oard [2012] described how speech recognition technology can be used for oral his-
tory research and summarized their research efforts for recordings from MALACH.
Oard concludes that in 2012 fully automatic transcription on the challenging con-
tent of the MALACH could not be achieved yet and is not yet even on the horizon.

Hessen et al. [2013] describe the use of speech recognition to transcribe Dutch
oral history archives. The authors state the word error rate is above 40 % for Dutch
oral history interviews at the time of publishing. Automatic speech recognition
with such an error rate does not produce results that meet the requirements of
automated subtitling or transcription of recorded interviews—but could be used
for indexing and searching in large archives. Hessen et al. further present three
reasons for the poor recognition performance on their oral history data:

1. Poor recording quality of interviews due to unsuitable conditions during
recording. This might occur, for instance, since the interviewers often have
to improvise when recording the interview with the eyewitness.

2. The interviewed persons usually do not speak fluently nor grammatically
correct.3

3. The interviewees have dialects or are non-native speakers that have an ac-
cented way of speaking.

3This is often a problem of spontaneous speech that we observe in automatic speech recognition
and it is not limited to oral history interviews—but may occur more intensely there due to
the open character of the interview.
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Salesky et al. [2016] studied keyword ASR for English oral history data. The
authors worked with oral history data collected by StoryCorps, an American non-
profit organization that provides volunteer participants the opportunity to record,
share and preserve their life stories. The speech recognition results are used, among
others, to assess and compare a human search capability on oral history data. The
authors perform experiments with 100 hours of in-domain training data and with
out-of-domain training data from the Wall Street Journal (WSJ) corpus [Paul and
Baker, 1992] and Fisher corpus [Cieri et al., 2004]. For evaluation, the authors
use a 50-hour in-domain evaluation set. A GMM-HMM acoustic model approach
trained with HTK was used for the experiments.

Salesky et al. achieved a 38.5 % word error rate on the 50-hour evaluation set
with in-domain training data. Experiments with only out-of-domain training data
for the acoustic and language model yield worse word error rates: 68.1 % with
WSJ and 49.5 % with Fisher. The authors also performed experiments on different
combinations with in-domain data for acoustic model training and out-of-domain
language model training—and vice versa. However, the best word error rate of
38.5 % was achieved with in-domain training data only. The authors conclude
that reasonable speech recognition accuracy for indexing and information retrieval
can be achieved by exploiting out-of-domain training data in case of a lack of in-
domain training data. However, even the word error rate achieved by the best
system is still too high to replace human transcription.

Zajic et al. [2018] studied speech recognition with Czech MALACH interviews.
The authors trained a hybrid DNN-HMM acoustic model using the Kaldi ASR
toolkit with 84 hours of Czech MALACH recordings. A network with five hidden
layers and sMBR sequence-discriminate training was applied. For evaluation, Zajic
et al. used ten interviews with overall 60,000 running words. Using a language
model that combines texts from MALACH with additional text resources, the
authors achieved a word error rate of 42.0 % on their test data.

In an oracle experiment, Zajic et al. used the transcripts of the test data for
language model training and achieved a word error rate of 19.5 %. The authors
state that this oracle experiment shows the current performance upper bound of
the speech recognition system for the author’s data. On the one hand, the author’s
investigation demonstrates that even in such an oracle scenario and using back-
then state-of-the-art speech recognition, systems still have a quite high word error
rate on oral history data. On the other hand, in our view, the results of such
an oracle experiment, in which test data are used for training a language model,
should be interpreted with caution and should not be used for comparisons between
systems.

Regarding the sources of errors and challenges of oral history interviews for
speech recognition systems, Zajic et al. state, often in line with the aforementioned
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works, that it is challenging to design an ASR system for oral history interviews
that is accurate enough due to the nature of the interviews. The interviewees
are usually elderly people, their spontaneous speech is frequently accented, and
they are often emotional due to the nature of their experiences. Also, the speech
quality is relatively low with many disfluencies and non-speech events such as
crying and laughing. The regular use of colloquial words also negatively impacts
speech recognition.

Towards the end of the presented research work, Picheny et al. [2019] proposed
parts of data from the MALACH project as a new speech recognition challenge for
English oral history. The authors are in line with the statement that the challenges
of such interviews are still open problems for modern speech recognition systems.
The reference results by Picheny et al. are produced by training hybrid DNN-
HMM systems on 176 hours of manually annotated oral history interviews. The
best system proposed is a hybrid LSTM-acoustic model with feature splicing and
sequence-discriminative sMBR training achieving a 25.9 % word error rate without
an LSTM-based language model and 21.7 % with an LSTM-LM.

At the beginning of this section, we described the limited interest of computer
science in improving automatic speech transcription of oral history interviews.
Moreover, comparing published works is difficult since most authors work with
the data relevant to their individual use case. This is, at least in part, because
no standardized, publicly available oral history data set with predefined training
and test split was common—at least until the proposed data set of Picheny et al.
[2019]. Unfortunately, however, even in 2021, the citation count of the proposed
data set does not indicate an increase in research interest.

Another reason for the limited research interest could be the multitude of dif-
ferent challenges for ASR that often co-occur in oral history interviews. The
challenges thus often cannot be clearly defined, making systematic analysis and
improvement for an entire data set difficult. Many commonly used public ASR
data sets and challenges focus only on specific challenges. Such notable ASR chal-
lenges until 2017 are CHiME-3 [Barker et al., 2015] and CHiME-4 [Vincent et al.,
2017], which have investigated ASR in challenging noisy environments. However,
this challenge comprises data that mainly was simulated and covered controlled
recording conditions. Even for the real data portion of the challenge, read speech
with the limited vocabulary of the WSJ corpus was used, which substantially limits
the transfer to the oral history task.

In recent years, complex real-world challenges have been gaining interest, such as
the dinner party scenario of the CHiME-5 challenge [Barker et al., 2018]. With the
ever-increasing power of speech recognition systems, there is hope that someday
these systems will also yield automatic transcription of oral history interviews with
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sufficient quality. At present, however, improving the recognition quality of oral
history interviews is still an open research field with numerous unsolved problems.

In conclusion, various research works have studied speech recognition for oral
history interviews over the past two decades. Most authors agree that oral history
interviews are still a major challenge for ASR systems and that the recognition
performance of the systems is not sufficient to be used for subtitling or replacing
human transcription. Although the authors studied different data, languages, and
speech recognition approaches over the years, this is consensus. Due to poor word
recognition accuracy, most applications are limited to knowledge retrieval and
indexing. The reasons for this poor performance are quite diverse—but seem to
be similar across different data sets and languages studied.

A statistical meta-analysis of these challenges presented in the related works
would be a great asset to the research on speech recognition for oral history. How-
ever, the aforementioned works in this research area had to use a different data set
for their experiments. Moreover, the transcription errors were mainly evaluated
qualitatively, not quantitatively. Thus, the results are not statistically comparable
for a meta-analysis with the available body of studies. Instead, in the following, we
summarize and categorize the different challenges in a structured, non-statistical
way and put them in the context of the German oral history data studied in the
presented work.

3.3.2 Challenges of Oral History Interviews for ASR
Almost all research works referenced in Section 3.3.1 report diverse, often quite
similar, challenges that oral history interviews pose for transcription systems. This
is true even though these works studied different data sets in different languages.
Thus, there appear to be all-encompassing, general challenges of oral history in-
terviews for ASR that most data sets share. In the following, we aim to provide a
structured overview of these challenges and put them in the context of the German
data studied in the presented research work.

A brief overview of the challenges and differences between oral history and broad-
cast can be found in Table 3.1. We choose the categories acoustics, speech, language
style, and topics since the influence of the challenges on the speech recognition in
each category can be assigned almost exclusively to either the acoustic or the lan-
guage model. In the further course of the work, this allows us to investigate the
respective influence of the component for the interviews and select relevant aspects
for improvement.

The major challenge we face with the German oral history use case is that we
have almost no annotated and temporally aligned data available that we can di-
rectly use for training an acoustic model. Most of the referenced works use between
50 to 200 hours of annotated, in-domain oral history interviews to improve speech
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Table 3.1: Overview of the differences between broadcast and oral history recordings that
influence the accuracy of speech recognition systems. Acoustic conditions and
speech in recordings are mainly modeled by the acoustic model of an ASR
system, while the language model represents the language style and the topics.

Acoustic Model Language Model

Acoustics Speech Language
Style Topics

O
ra

lH
is

to
ry wide range of

recording
qualities, often

noise and room-
reverberation

high speech
rate variation,
mispronuncia-
tions, accented

speech or
dialects

ungrammatical
constructions,

colloquial
language,

hesitations and
repetitions

from everyday
life to historical

topics

B
ro

ad
ca

st professional,
high-quality
recordings

slowly
speaking, clear
pronunciation,

Standard
German

well-formulated
phrases

mainly politics
and news

recognition performance. For the German oral history use case, such amounts of
data are currently not available. As described in Section A.2.3, the speech recog-
nition models for the Fraunhofer IAIS Audio Mining system are specialized for
and trained on broadcast data. To overcome the lack of suitable training data, we
study the adaptation of data sets and models to improve speech recognition perfor-
mance in the presented research. Therefore, we highlight the differences between
this broadcast data used for training and oral history interviews. In the following,
we further give a more detailed explanation for each of the four categories from
Table 3.1.

Acoustics

Acoustics is a large scientific field with numerous subdisciplines. At its core, acous-
tics deals with the study of sound waves, their propagation, interference, and per-
ception. As a subfield of acoustics, electroacoustics further deals with the recording
of sound waves, cf. Kleiner [2013, pp. 5 ff.].

Several related works that studied speech recognition for oral history interviews
report poor recording quality of oral history interviews as a challenge for speech
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recognition systems. This applies both to early and current works. The researchers
mention background noises as well as unsuitable recording conditions in this con-
text.

For the German oral history data studied in the presented research work, the
interviews were often recorded in the living rooms of the contemporary witnesses
using common recording equipment. From a speech recognition point of view,
this can be regarded as a problematic recording situation. Here we observe two
problems regarding the recording quality:

1. Reviewing interviews from our German oral history collection leads us to
the hypothesis that reverberation in the recording room is one of the main
acoustic challenges for speech recognition systems in this domain. This seems
to be due to an often large distance between the speaker and the recording
microphone.

Humans compensate room reverberation of small and medium-sized rooms
quite well due to the precedence effect of binaural hearing. Sound waves
reflected in the room arriving at the listener within 2 to 50 ms after the first
wavefront are perceived by humans as a single auditory event and not as
reverberation or echo, cf. Avan et al. [2015]—even if the subsequent, reflected
wavefronts are louder. Asymmetric hearing loss is expected to impact this
echo suppression negatively, and affected persons may experience difficulties
in the presence of reverberation.

Since our data is mainly single-channel (mono) recorded, we suspect that
room reverberation has a great, if not greater, impact on recognition quality
than the noise. However, reverberation is not explicitly identified as a chal-
lenge in the reviewed literature. Therefore, it is an open question whether
reverberation is genuinely one of the main challenges of oral history inter-
views for speech recognition. We discuss and experimentally investigate this
hypothesis for our interviews in Section 4.4.

2. The recording equipment changed during the years of recordings and resulted
in a wide range of different sound qualities. As reported in Section 3.2.3,
some recordings were conducted in the late 1970s. Some of these older in-
terviews have a recording quality that can hardly be compared with today’s
devices. The wide range of different recording qualities probably also has a
big impact on recognition accuracy. In a study in Section 5.5, we investigate
the influence of this recording quality by comparing the primarily studied,
older interviews with more recently recorded interviews with better recording
qualities.
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Some oral history recordings in the archive have such a poor recording quality
that the recorded speech is hardly understandable even for humans. However,
we exclude these recordings from the investigations.

In the hybrid speech recognition approach, the acoustic model is the component
that is susceptible to poor audio signal quality. As described in Section A.2.3,
in the broadcast recordings used for acoustic model training, hardly any room
reverberation is to be expected. Thus, we have a substantial mismatch between
training data and application—and a lack of annotated speech for training from
the target domain. In Chapter 4, we present our research work to minimize this
mismatch by adapting the broadcast training data using noise and reverberation
data augmentation. We give a detailed overview of the used training data and
other studied corpora in Section 3.4.

Speech

In addition to acoustics, the speech of the interviewed persons also greatly influ-
ences the acoustic model of the speech recognition system. Often, the interviewed
eyewitnesses have no professional background in giving speeches and spontaneously
narrate their life stories. Therefore, spontaneous speech in oral history interviews
is a challenge highlighted—directly or indirectly—in various aforementioned works.

Spontaneous speech poses various challenges for speech recognition systems, cf.
Ward [1989]; Dufour et al. [2014]. In particular, spontaneous speech may result
in pauses filled with speaker noises and mispronounced words. It is common to
assume that if the person is speaking very fast, wrong or indistinct pronunciations
may occur more frequently and pose a challenge for speech recognition systems.
Among other acoustic features, Dufour et al. [2014] studied the speech rate and
the speech rate variations (in terms of the standard deviation of phone duration)
as an attribute of spontaneous speech. The authors found a correlation between
spontaneity and both speech rate attributes. We study the speech tempo for
the German oral history interviews in comparison to German speech from other
domains in Sections 3.4.11 and 3.4.12.

Depending on the origin of the interviewees, dialects or accented speech can be
an additional challenge for an acoustic model—and the pronunciation lexicon as
a sub-component—trained on the standard variation of the language only. Since
eyewitnesses are often elderly persons, some works mention the age of the inter-
viewees as a potential challenge for speech recognition systems. Here both age-
and health-related changes in the way of speaking could lead to the indistinct pro-
nunciation of words that pose additional challenges for the acoustic model. These
challenges depend on the interviewees and are not expected to appear to the same
extent in every data set.
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In contrast, broadcast recordings usually contain planned (or prepared) speech.
The persons are often professional speakers who focus on clear and well under-
standable pronunciation—since the broadcasters intend the speech to be well un-
derstood by the audience. In Chapter 5, we aim at overcoming this mismatch of
broadcast training data and oral history interviews by applying a transfer learning
approach in acoustic model training. In Chapter 6, we further propose and study
cross-lingual acoustic model adaptation to further overcome the lack of training
data in the target domain and language.

Language Style

Spontaneous speech does not only have a negative influence on the speech but
also negatively influences the language style or register, cf. Ward [1989]; Dufour
et al. [2014]. It can lead to ungrammatical sentence constructions, such as word or
partial word repetitions, sentence restarts, or interjections. If the language model
is not designed to handle such challenges, it may degrade recognition performance.

Furthermore, colloquial language and colloquial words the interviewees use can
negatively impact speech recognition if the language model can only model them
inadequately. In the case of Audio Mining, where the language model is trained
on news text and articles—thus, mainly containing well-formulated phrases—we
expected this to be a major challenge. Therefore, we use intrinsic evaluation
metrics to study the influence of broadcast language models on oral history speech
recognition in Section 3.5.

Topics

A wide range of topics is expected in oral history interviews since interviewees
are often encouraged to narrate their entire life story or various life experiences.
Depending on the archive in question, there may well be a focus on topics—
such as the Second World War or the postwar period. However, even within this
topic focus, a wide variety of subjects is expected due to different life experiences
individuals face in everyday life. This wide range of topics can pose a challenge
for language models.

For broadcast recordings, there is also a wide range of different topics. How-
ever, a large focus on politics and the daily news is to be expected. Thus, the
frequently used topics and phrases differ greatly from eyewitnesses’ life accounts
in oral history interviews.
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3.4 Corpora for Automatic Speech Recognition
Oral history is the primary use case to be examined in this research. Therefore,
a representative data set is necessary for evaluation, which will be presented in
the further course of this section. In ASR research, it is common to focus on
optimizing the error rate on a single data set, beating the previous benchmark.
However, the proposed models in the presented research work will be applied in
productive, real-world Audio Mining systems, and high robustness of the models
must be assured. The call for robustness in this work is reinforced by the fact that
oral history interviews have a higher range of different challenges than many other
common speech recognition applications—as discussed in Section 3.3.2. Therefore,
we consider an evaluation solely on a data set from the oral history domain insuf-
ficient to make a feasible statement about its applicability on real-world data. To
overcome these limitations and ensure the models’ high robustness even in situa-
tions for which the model has not been trained, we will report results on multiple
different test sets from diverse domains. These sets serve as a control group for the
trained model. Through this approach, we expect to better estimate the perfor-
mance of the proposed models for unseen, real-world applications in oral history
archives—and maybe beyond.

Evaluating a speech recognition system on multiple data sets from different do-
mains is not common in ASR research—but is consistent with some recent work in
the literature. For instance, Likhomanenko et al. [2021] advocate rethinking eval-
uation in ASR and examining systems on several evaluation sets from different
benchmarks to estimate performance for real-world data and detect systems that
suffer from domain overfitting. Szymański et al. [2020] also raise related criticism.
The researchers express their skepticism towards very low word error rates on sin-
gle, well-known ASR benchmarks published in recent research. These results fuel
overly optimistic expectations of speech recognition systems that are not fulfilled
for real-life situations. Szymański et al. argue that, contrary to popular belief,
current speech recognition systems cannot satisfactorily transcribe spontaneous
human conversations.

In the following, we present the different ASR corpora we use in the presented
research work. Some of the data sets were available early on, while other data sets
were developed or made available in the course of the years. As a contribution, we
present the German oral history evaluation set developed as part of the presented
research work and proposed in [Gref et al., 2018a] to investigate this use case.
Additionally, we analyze different properties of the several data sets in more detail
to better contextualize the oral history use case studies and the discussed challenges
of the previous section. We end the section reporting state-of-the-art results from
the literature on the data sets that were recent at the beginning of the presented
research work.
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Table 3.2: Overview of the several ASR data sets used throughout the presented research
work with fundamental information. Data sets from the broadcast domain are
presented in the two top parts: a training set and different evaluation sets,
respectively. In the lower part, individual test sets from other domains are
presented.

Data Set Length
[hrs:min]

Num. of
Segments

Num. of
Words

Unique
Words

GerTV1000h (Training Set) 991:53 773,631 9,406,119 243,313
DiSCo Planned Clean 0:55 1,364 9,184 2,939
DiSCo Spontaneous Clean 1:55 2,861 20,740 4,019
DiSCo Planned Mix 1:27 2,200 13,698 4,083
DiSCo Spontaneous Mix 1:06 1,650 12,071 2,764
German Broadcast 2016 1:01 227 10,143 2,796
Challenging Broadcast 1:45 593 17,354 4,179
Oral History 3:31 2,392 27,708 4,582
Interaction (Linguistics) 0:48 2,630 10,015 1,392
Spoken QALD-7 0:15 212 1,467 624

3.4.1 Overview

An overview of the different corpora is given in Table 3.2. The top two parts of
the table present data sets from the broadcast domain—a large-scale broadcast
training set and several broadcast evaluation sets, respectively. Since broadcast
is the core application domain of the IAIS Audio Mining system, various German
in-house broadcast data sets with different attributes were introduced throughout
the years. The lower part of the table presents three individual test sets from
other domains: oral history, interaction, and question-answering systems. Some
data sets were annotated in-house with the ELAN annotation tool for audio and
video recordings4 [Brugman and Russel, 2004]. Other data sets were annotated
by clients or project partners themselves or commercial annotation vendors. In
the following, we give a brief description of each data set in the order listed in
Table 3.2.

4Max Planck Institute for Psycholinguistics, The Language Archive, Nijmegen, The Nether-
lands, https://archive.mpi.nl/tla/elan
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3.4.2 The GerTV1000h Training Set

Since 2014, the Fraunhofer IAIS has used the in-house, 1000 hour large-scale Ger-
man broadcast corpus GerTV1000h [Stadtschnitzer et al., 2014] to train acous-
tic models for the Audio Mining system. We observe state-of-the-art speech
recognition performance of such models for broadcast data on a regular basis,
cf. Stadtschnitzer [2018]. At the beginning of the present research, GerTV1000h
was probably one of the largest transcribed German data sets for automatic speech
recognition.

Since the recordings are from the broadcast domain, they are usually recorded
and post-processed by professional sound engineers using professional equipment.
The recordings generally have no or only slight background noise, barely percep-
tible reverberation, and the volumes are well adjusted.

As an ASR training data set, GerTV1000h is annotated somewhat differently
than the evaluation corpora. In addition to the verbatim transcription, it also
contains distinct symbols for speaker noises, hesitations, and unintelligible words,
cf. Stadtschnitzer [2018, p. 45–46]. These symbols are mapped to distinct phone
models during acoustic model training. This aims to separate such sounds and
noises from the speech—and ultimately improve word recognition.

3.4.3 Difficult Speech Corpus (DiSCo)

The Difficult Speech Corpus (DiSCo) [Baum et al., 2010] is an evaluation corpus
for the German broadcast domain. It has been split into four evaluation subsets:
planned and spontaneous speech, each in clean and mixed acoustic conditions.
Each of these evaluation subsets contains roughly between 1 and 2 hours of anno-
tated speech. Although the subsets are labeled spontaneous or have mixed acoustic
conditions, the distortions are generally weaker in the broadcast domain than in
oral history or other domains.

The DiSCo subsets, in particular the clean subsets, were the main evaluation
sets used by Stadtschnitzer [2018] for the long-term development of the German
Broadcast Audio Mining system between 2012 and 2018. Due to this fact, this
evaluation set is one of the first evaluation sets available for the presented research
work and was used in all experiments from the early beginning. Initially, results
were often reported and published separately for all four subsets. In the course of
the work, when more and more representative and meaningful data sets became
available, the significance of the results on DiSCo for the research questions de-
creased. Thus, in later publications, only the mean value of the four subsets was
often reported.
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3.4.4 German Broadcast 2016
German Broadcast 2016 is another in-house evaluation set for the German broad-
cast domain. As the name implies, it was introduced in 2016. The data set can be
thought of as a blend of the four scenarios from the DiSCo evaluation subsets as
it is usually found in actual broadcasting programs. The 20 different recordings in
the data set include both studio recordings of newscasters in excellent recording
quality and without background noise, as well as outdoor interviews with passers-
by in the presence of street noises. There are also occasional voice-overs of German
speakers over foreign speakers’ voices—a particular challenge for speech recognition
systems since two different voices are simultaneously present. German Broadcast
2016 has about the same size as DiSCo planned clean but substantially fewer seg-
ments. This indicates that the segments are usually much longer, as discussed in
the analysis in Section 3.4.11.

3.4.5 Challenging Broadcast Evaluation
The Challenging Broadcast evaluation set was available in late 2018 and is similar
to the most challenging DiSCo subset: Spontaneous Mix. The data comprises 1.75
hours of German broadcasts in total with 16 different recordings—eight from radio
and eight from TV broadcasts. The composition of the data sets is quite diverse.
It contains quite conventional broadcast recordings with planned speech, similar
to DiSCo or German Broadcast 2016. However, it also includes several highly
challenging recordings characterized by a lot of spontaneous speech in challenging
acoustic conditions, including overlapping and sometimes even dialectal speech.

3.4.6 Proposed German Oral History ASR Test Set
In [Gref et al., 2018a], we proposed a German Oral History ASR test set to measure
the performance of the developed automatic speech recognition systems for oral
history interviews. This test set is a subset of the Deutsches Gedächtnis archive
(cf. Section 3.3.1), representing the archive’s wide range of interviews with respect
to recording technology, interview methodology, dialects, and pronunciation. The
recording quality and the pronunciation had to be understandable for humans
as a precondition to be used as data for the test set. The selection includes early
interviews as well as recently conducted ones and represents the interview methods
of different academic disciplines. The recordings used for the test set took place
between 1980 and 2012. With respect to gender and age, the selection aims at
representing the entire collection.

Within these criteria, the test set was randomly selected by the project partners
from the Deutsches Gedächtnis archive in the KA3 project. Overall, the test set
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contains interviews from 35 different speakers with an overall length of about 3.5
hours, with more than 27,000 spoken words and a vocabulary larger than 4,500.
This makes the oral history test set one of the most comprehensive ASR test sets
at Fraunhofer IAIS.

The values described here and in the further course refer to the latest version of
the oral history test set used unchanged for large parts of the presented research
work. In some of our initial experiments, we used a non-segmented version of
the test set with an above-average segment length of a few minutes. We found
in later investigations that this segment length is challenging for LF-MMI models
and that the performance obtained with this segmentation is not representative of
our real-world applications in Audio Mining. The experiment on the influence of
the segment length is presented in Section 4.3.2 in the next chapter.

3.4.7 Interaction (Linguistics)
The Interaction test set represents the linguistic use case of the KA3 project where
human interaction between persons is of interest. Thus, the Interaction set contains
recordings of people informally talking to each other about different topics. Gen-
erally, this set is characterized by very fast, partly overlapping, highly colloquial
spontaneous speech, speaker noises such as laughter, and unclear pronunciation.
From the perspective of ASR, the recordings took place in challenging acoustic
conditions with a far distance of the speakers from the microphone. The Interac-
tion test set was completed in late 2018 and used for further research from this
time on. Despite its comparatively small size with only 48 minutes, it is striking
that the set contains a similar number of segments as the much larger oral history
test set (3:31 hours) or DiSCo Spontaneous Clean (1:55 hours). This indicates
that the average segment length is probably much smaller than the other data set.

Furthermore, the Interaction test set has more running words than data sets of
similar sizes, such as DiSCo Planned Clean. Although this is not an exact metric,
as will be shown later, this observation indicates the subjective characterization of
the above-average speed of speech of the persons in the recordings. The multitude
of these challenges makes this corpus probably one of our most challenging test
sets. The general properties of the data set are further explored in Section 3.4.11.

3.4.8 Spoken QALD-7
The Spoken QALD-7 corpus contains in-house recorded questions for a question
answering system based on prompts from [Usbeck et al., 2017]. Each prompt
is a question that targets the property of one particular entity—a well-known
person or object. Entities tend to be poorly modeled in most language models for
continuous speech recognition since they rarely occur in continuous texts compared
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to function and everyday words. Therefore, the main challenge of this test set for
speech recognition is posed by the presence of the entities in each prompt. This
also leads to a comparatively large vocabulary compared to the running words
observed in Table 3.2.

Several speakers recorded the data in 2018 using a web interface and their re-
spective recording setup—a headset or built-in laptop microphone, for instance.
Thus, the recording quality in the data set is quite heterogeneous. One segment
usually comprises exactly one question prompt. Overall, 210 different prompts are
present in the 212 recordings.

With a total length of only 15 minutes and just under 4100 running words,
Spoken QALD-7 is the smallest test set in the collection. Since it only contains
read speech, it is only of minor significance for investigations regarding spontaneous
speech. However, it is a valuable addition to the analysis due to the heterogeneous
recording conditions, the different domains, and the rich vocabulary in relation to
the number of running words.

3.4.9 Raw, Transcribed Oral History Interviews for Forced
Alignment Experiments

In Chapter 5, we use automatic transcript alignment of transcribed but not time-
aligned oral history interviews to overcome the lack of German oral history training
data. Randomly selected oral history interviews of contemporary witnesses pro-
vided by the archive Deutsches Gedächtnis serve as data for these experiments.
Since the recordings are not segmented nor time-aligned and often not transcribed
verbatim, they cannot be directly used for speech recognition—and thus are not
listed in Table 3.2.

The primary criterion in selecting the interviews was that the interviewees did
not appear in the oral history test data. The interviews were conducted in 1982–
2015 using varying recording equipment in different recording conditions. The
recording quality is quite similar to the oral history test set. However, it was not
ensured in advance that the recordings are understandable to humans—which it
was for the test set. Thus, the recording quality differs from barely intelligible to
good quality with only slight distortions. The latter are primarily low-energy noises
from cassette recording machines or light reverberation due to a large distance to
the recording microphone in a medium-sized room. Some speakers have a dialect
or accent, but most speak High German.

Different historians throughout many years transcribed these interviews using
varying transcription styles and formats. It cannot be guaranteed, nor was it
assured in advance that the entire transcription of the interview is present for
alignment or whether it is correct. The final data set comprises 150 interviews.
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Figure 3.1: Age distribution in the HdG interview data set. No age information was
available for one of the 164 videos.

These were not all provided and processed at once but gradually in four tranches
in 2018–2019.

3.4.10 The HdG Oral History Data Set

An additional oral history data set became available in the final phase of the
present research in 2021. This data set was created as part of the research project
Multi-Modal Mining of German Oral History Interviews for the Indexing of Au-
diovisual Cultural Heritage, in cooperation with the Haus der Geschichte (HdG)
foundation. The data set is a representative collection of the HdG Zeitzeugenpor-
tal, cf. Section 3.2.2. With the corpus, the project aims not only to investigate
automatic speech recognition. In particular, it is used to study and develop more
complex search and indexing technologies beyond ASR, such as multi-modal recog-
nition of perceived emotions and sentiment [Gref et al., 2022a].

We selected 10 hours of German oral history interviews from the HdG Zeitzeu-
genportal for our experiments. The HdG data set comprises 164 different interview
videos of 147 distinct interviewees. On average, the interviews in our data set have
a length of 3.6 minutes. The selected interviews were recorded between 2010 and
2020. Thus, the selection is representative of the more recent videos on the portal.
It includes 66 interviews with professional speakers, who pursue a representative
profession, and 98 interviews with non-professional speakers. The data set is not
published and is only used in-house due to the General Data Protection Regulation
and the personal rights of the interviewees.
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In addition, we aimed to represent different emotions in the selection of videos
and create a heterogeneous data set in terms of age and gender. The age distribu-
tion of interviewees in the data set is shown in Figure 3.1. We have a strong focus
on interviewees between the age of 50 to 89 years as these are the most frequent
interviews in the archive. Nevertheless, we have deliberately included videos of
younger and older interviewees. Throughout the entire archive, male interviewees
make up most of the data. However, a representative selection would substantially
underrepresent female interviewees. Therefore, we have included additional female
speakers in the HdG data set. Overall, the HdG data set contains videos with 104
male and 60 female interviewees.

The HdG portal’s interviews are somewhat different from the interviews in the
(KA3) Oral History test set we utilize in the entire presented research work as the
primary object of study, cf. Section 3.4.6. While the archive Deutsches Gedächtnis,
who provided the KA3 interviews, works with full-length interviews with an average
length of 3.5 hours, the HdG Zeitzeugenportal shows thematic clips of interviews
with a length of 3 to 5 minutes. The interviews in the KA3 data set were recorded
between 1980 and 2012 and represent the archive’s wide range of interviews. Since
the interviews in our HdG data set are recorded in more recent times, often with
more recent or professional equipment, the HdG data set overall have better audio
recording quality than the KA3 data. In other aspects, such as language style, age
of the interviewees, dialects, and topics, the HdG and KA3 data are quite similar.

We apply the HdG data set in two experiments in 2021–2022. In Section 3.6,
the data set is the primary study object used to estimate a human word error rate
for the transcription of oral history interviews. In this experiment, the reference
transcription for later ASR evaluation is generated by three different persons.
These transcripts are not merged, resulting in three different transcriptions for the
entire data set. More information on the data set transcription is presented as the
experiment results in the respective section.

After the annotation and transcription, the HdG data set is split into speaker-
independent training, development, and test subset for model training and evalu-
ation. An overview of these sets is given in Table 3.3. Overall, 358 segments with
roughly 0.5 hours could not be annotated and were removed from the data set.
These were, for example, segments containing intros, fade-ins, or pauses.

The transcribed data set is then used in Section 5.5 for comparative acoustic
model adaptation experiments to assess the influence of the acoustic recording
conditions in the oral history domain. Furthermore, the evaluation and comparison
of the two different oral history data sets help to obtain a reliable estimate of the
recognition performance of our proposed models for real-world applications. The
difference in performance between the two data sets may provide insights into
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Table 3.3: Overview of HdG oral history data sets after annotation and split into speaker-
independent subsets. The primary (KA3) Oral History test data set from
Section 3.4.6 is included for comparison. The length is reported as [hrs:min].

Set Videos Segments Length

HdG Training 104 1,863 6:21 h
HdG Development 27 430 1:26 h
HdG Test 33 471 1:44 h
KA3 Test 35 2,392 3:31 h

the impact of audio quality and video age of oral history interviews for speech
recognition.

3.4.11 Statistical Analysis of the ASR Data Sets
The previous section has already foreshadowed different statistical properties of
the described data sets, such as the average segment length, that can be inferred
from the raw data. These properties can impact speech recognition performance,
and a comparison of the properties between the data sets can help to understand
these effects better. Thus, for a more precise interpretation of the data, three
values have been derived for each data set from the raw data and are summarized
in Table 3.4: the average segment length, the average number of running words
per segment, and the words per second—as a rough, first approximation of the
speed of speech or speech rate.

The segment length varies greatly for the different data sets. The only exceptions
are the DiSCo subsets, which have relatively similarly distributed segment lengths.
As suspected in advance, the Interaction test set has the shortest segments with
just 1.1 seconds on average. German Broadcast 2016 has the longest segments with
an average of just under 16 seconds. Most data sets have a standard deviation
below 3.5 seconds in segment length, indicating a fairly homogeneous segmenta-
tion. However, exceptions to this are German Broadcast 2016 and Challenging
Broadcast, which have a fairly high standard deviation, thus, inhomogeneous seg-
mentation.

In general, segments which are too long can pose problems for HMM-based
speech recognition systems since the number of active states during decoding is
limited. Very long segments increase the size of the decoding lattice, which can
complicate decoding. However, up to a segment length of approximately 30 seconds
or slightly higher, we have not observed a noteworthy negative impact on the
recognition performance. The distribution of segment lengths indicates that a

62



3.4 Corpora for Automatic Speech Recognition

Table 3.4: Statistics properties for the several ASR data sets used throughout the pre-
sented research work. Reported values are the arithmetic mean ± the standard
deviation calculated across all segments of the data set. The segment length is
reported in seconds.

Data Set Segment
Length [s]

Words Per
Segment

Words Per
Second

GerTV1000h (Training Set) 4.6 ± 2.0 12.2 ± 6.1 2.7 ± 0.8
DiSCo Planned Clean 2.4 ± 1.5 6.7 ± 4.9 2.7 ± 0.8
DiSCo Planned Mix 2.4 ± 1.3 6.2 ± 4.0 2.6 ± 0.8
DiSCo Spontaneous Clean 2.4 ± 1.6 7.2 ± 5.5 2.9 ± 0.9
DiSCo Spontaneous Mix 2.4 ± 1.4 7.3 ± 5.4 2.9 ± 1.1
German Broadcast 2016 16.1 ± 12.6 44.7 ± 34.7 2.9 ± 0.6
Challenging Broadcast 10.6 ± 17.0 29.3 ± 44.9 3.0 ± 1.2
Oral History 5.3 ± 3.5 11.6 ± 10.0 2.1 ± 0.8
Interaction (Linguistics) 1.1 ± 0.8 3.8 ± 2.9 3.6 ± 1.4
Spoken QALD-7 4.3 ± 1.3 6.9 ± 2.1 1.7 ± 0.4

large proportion of segments are substantially below this value. Only for segment
lengths of a few minutes we observe that the recognition can be negatively affected.
This can vary depending on the type of acoustic model, as we have investigated
in Section 4.3.2 for LF-MMI and cross-entropy trained models.

Segments that are too short are not a problem per se. However, it is evident
that a strong correlation between the segment length and the number of words per
segment exists for speech segments. Thus, short segments usually only contain
a few words. Since the speech recognition system processes segment by segment
and does not take into account the context of neighboring segments, very short
segments can pose challenges to the language model appropriately estimating word
sequence probabilities—and ultimately decrease speech recognition accuracy. Ac-
cording to Table 3.4, the DiSCo subsets have the shortest segments and the least
number of words among the broadcast sets, with an average of 6–7 words and a
standard deviation of 4–5 words per segment. However, the Interaction set has
just under four words and a standard deviation of just under three words. For such
short segments in the Interaction test set, a 5-gram language model, therefore, has
hardly any chance of unfolding the full potential of its modeling capability.

In Section 3.3.2, we elaborated on the challenges of oral history interviews for
speech recognition systems and that spontaneous speech is one of the suspected
challenges. Dufour et al. [2014]’s work has shown that spontaneity of speech cor-
relates with both the speech rate and the variation in speech rate. The words per
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second are used in Table 3.4 as a first rough approximation of the speech rate to
evaluate spontaneity for our corpora. As expected, we observe a slight increase in
the average words per second as well as the standard deviation for the Spontaneous
DiSCo subsets compared to the planned ones. Another increase is observed for
Challenging Broadcast, where spontaneous speech recordings are more prevalent.
The Interaction test set has the highest average words per second and the highest
standard deviation, which indicates a very high rate of speech and variation.

It is somewhat surprising that the words per second for the oral history test set
are lower than for the broadcast test sets. The standard deviation is also within
the range of planned broadcast speech. This leads us to the hypothesis that a high
speech tempo or speech tempo variance common for spontaneous speech is not
predominant for our interview collection—contrary to what is implied in the related
works for other oral history corpora. However, a definitive conclusion cannot
be given at this point since the approximation of the speech rate via counting
words per time unit is subject to some apparent limitations. To overcome these
limitations and estimate the speed of speech more precisely, in the following, we
investigate the estimation of the speech rate via the phone rate for our data sets.

3.4.12 Phone Rate Estimation of the ASR Data Sets
Estimating the speech tempo with words per second is easy to implement and re-
quires little computational effort since it is just a simple statistical evaluation of
the given ASR annotation. However, the approach is highly dependent on seg-
mentation and transcription. The estimated speech rate will erroneously decrease
if more speech pauses are included at the segment’s beginning or end. Longer
pauses between words also decrease the estimated speech rate since the overall
segment length is increased. Ideally, these pauses would need to be removed by
alternative segmentation. Particularly in German, word compounds are an issue
as well. Words that consist of several compound nouns can be very long—but are
weighted the same as very short words in the words-per-second approach.

To better estimate the speech rate and rule out these issues, we use a phone
rate estimation based on an alignment of the reference transcription with GMM-
HMM models. This approach is more complex because trained acoustic models are
required. We use GMM-HMM LDA+MLLT+fMLLR acoustic models trained as
part of the Kaldi DNN-HMM bootstrap training in the later Chapter 4. Usually,
these models are used to align the reference transcript of the training data for the
neural network training in the last step of the bootstrap. We apply these models
on the test sets to obtain the duration for each spoken phone, cf. [Dufour et al.,
2014]. For a given segment, the phone rate is calculated by dividing the number
of non-silent phones spoken in the segment by the overall total spoken duration of
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these non-silent phones. With N as the number of non-silent phones, this is

Phone Rate := N
N∑

n=1
Duration of non-silent phone n

,

which is equal to the reciprocate of the arithmetic mean of the duration of all
non-silent phones in the segment (average phone duration). As discussed above,
we consider only non-silent phones to avoid the phone rate being subject to the
chosen segmentation, making the speech rate of the differently segmented data
sets comparable.

The estimated phone rates for all German data sets used in the presented re-
search work are presented in Table 3.5 in comparison to the words per second from
the last section. We report the results using three different GMM-HMM systems
from the later Chapter, cf. Section 4.4.5. Overall, the phone rate and the words-
per-second approaches for estimating the speech tempo show similar trends. This
indicates that the words-per-second approach is quite sufficient for preliminarily
and qualitatively estimating the average differences of speech tempos between our
test sets with simple statistical calculation. However, it is also evident that the
different annotations of the test sets certainly influence the relationship between
phone rate and words per segment.

The phone rates are different for each model but consistent for the individual test
sets. The spontaneous broadcast test sets have a higher phone rate and standard
deviation than the planned ones. Challenging Broadcast still is the test set with the
highest mean speaking rate and speaking rate variance among the broadcast test
sets. The highest overall speaking rate and variance has Interaction—as previously
suspected based on the words per second. The Oral History and Spoken QALD-7
sets have an overall low speaking rate—both in terms of the words per second and
the phone rate. The phone rate is lower than even the planned broadcast sets. This
indicates a fairly leisurely speaking rate, as estimated with the words-per-second
approach.

The differences in the phone rates of the three models have two primary rea-
sons that are both rooted in how the models are trained. First and foremost, the
three models show slightly different behavior when determining the start and end
times of phones. A sample-based, subjective evaluation revealed that the Clean
model is more precise in separating non-silent from silent phones, such as speech
pauses, speaker noises, and fillers. Thus, the duration of non-silent phones by the
Clean model is shorter, resulting in a higher phone rate. The two 3-fold models,
as described later in Section 4.4, were trained using speech with additive noises
and room reverberation. As discussed later in Section 4.4.1, room reverberation
leads to a smearing of speech along time and a slower decay of signals, making
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Table 3.5: Phone rate estimation using different GMM-HMM LDA+MLLT+fMLLR mod-
els for phone alignment. The phone rate is reported as the arithmetic mean ±
standard deviation per data set in phones per second. Segments or words that
the respective model could not align, for instance, due to wrong labeling or
pronunciations, were omitted for the estimation. The words per second from
Table 3.4 are reported for comparison.

Phone Rates

Data Set Words Per
Second Clean 3-fold v1 3-fold v2

GerTV1000h 2.7 ± 0.8 14.5 ± 2.4 14.5 ± 2.4 14.1 ± 2.5
DiSCo Planned Clean 2.7 ± 0.8 13.8 ± 2.7 13.8 ± 2.7 13.3 ± 2.7
DiSCo Planned Mix 2.6 ± 0.8 13.8 ± 2.5 13.7 ± 2.5 13.3 ± 2.5
DiSCo Spontaneous Clean 2.9 ± 0.9 14.4 ± 3.4 14.4 ± 3.4 13.9 ± 3.3
DiSCo Spontaneous Mix 2.9 ± 1.1 15.0 ± 4.0 14.7 ± 3.9 14.6 ± 3.9
German Broadcast 2016 2.9 ± 0.6 14.9 ± 2.0 14.9 ± 2.0 14.6 ± 2.1
Challenging Broadcast 3.0 ± 1.2 15.4 ± 4.1 15.4 ± 4.2 14.9 ± 3.9
Oral History 2.1 ± 0.8 13.1 ± 3.3 12.8 ± 3.2 12.7 ± 3.1
Interaction (Linguistics) 3.6 ± 1.4 17.6 ± 6.6 15.7 ± 5.7 17.1 ± 6.3
Spoken QALD-7 1.7 ± 0.4 13.2 ± 2.1 13.2 ± 2.0 12.7 ± 2.1

differentiation of speech and non-speech parts more difficult and also ambiguous.
Since the 3-fold models have been bootstrap-trained primary with such reverber-
ated data, it is evident why these models are considering more parts of the signal
to be speech. This results in greater phone durations and, thus, ultimately lower
phone rates.

The second but less substantial reason for the difference in the phone rates is that
the different models cannot align all segments and omit certain segments, which
are ignored for the average phone rate calculation of each test set. The reasons for
the failed alignments are manifold, such as incorrect reference transcription, wrong
entries in the pronunciation lexicon for certain words, and challenging acoustics
conditions. Figure 3.2 presents the share of segments that the different models
could not align. Obviously, for the challenging data sets, more segments cannot be
aligned. The 3-fold models are more robust than the Clean model and can align
more segments, particularly of the data sets with challenging acoustics, such as
Challenging Broadcast, Oral History, and Interaction. The absolute numbers of
aligned segments are documented in Table B.1 in the Appendix.
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Figure 3.2: Percentage of segments that could not be aligned by the HMM acoustic model
for phone rate estimation. The 3-fold GMM-HMM models are trained more
robustly than the Clean model, cf. Section 4.4. They thus can align more
data, particularly in challenging acoustic conditions.

Overall, the phone-rate experiments confirm the hypothesis stated in the previ-
ous section based on the words per second. A high speech tempo or speech tempo
variance that is usually common for spontaneous speech is not predominant for our
oral history interview. The values are roughly in the range of planned broadcast
speech. Thus, special consideration of the speech rate for our experiments, e.g.,
with customized speech perturbation techniques, is therefore not necessary. The
other discussed challenges, such as acoustic recording conditions, require greater
consideration. However, our results do not imply that spontaneous speech is not a
challenge in oral history interviews per se. Moreover, spontaneous speech manifests
itself differently in the interviews, e.g., through longer speech pauses, hesitations,
rephrasing, and ungrammatical sentence constructions.

3.4.13 Baseline Model and State-of-the-Art Results at the
Beginning of the Presented Research Work

The Fraunhofer IAIS Audio Mining System has been further developed over the
years by several researchers investigating and improving different aspects of speech
recognition or speech signal analysis. Before and during the beginning of this re-
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search work, this was mainly the aforementioned work by Stadtschnitzer [2018],
who studied robust speech recognition for German and dialectal broadcast programs.
Furthermore, at that time, Fraunhofer researchers studied end-to-end speech recog-
nition for German broadcast using CTC-RNNs (cf. Section 2.3) with the Eesen
toolkit [Miao et al., 2015a]. The models available at the beginning of the pre-
sented research work serve as a baseline for the proposed approaches.

Evaluation Measure: The Word Error Rate and Its Limitations

In speech recognition, ASR systems’ performance is usually measured in terms of
the word error rate (WER). The word error rate is derived from the Levenshtein
distance (or edit distance), cf. Levenshtein [1965], using words instead of charac-
ters. In particular, for ASR, the edit distance is the minimum number of word
edit operations (word insertions I, word deletions D, and word substitutions S)
required to transform the reference word sequence to the hypothesis—the word
sequence generated by the ASR system in question. The word error rate is the
quotient of the edit distance and the total number of words in the reference N :

WER = I + D + S

N
. (3.1)

Obviously, the edit distance and, ultimately, the word error rate are highly de-
pendent on the reference transcription. Since this reference is usually created by
humans, it may be subject to some limitations. It is not only necessary to take into
account that humans can make mistakes when transcribing. Unlike some annota-
tions in other machine learning domains, the transcription of spontaneous speech
has a high degree of inherent ambiguity, cf. Stolcke and Droppo [2017]. In our
work, we observe that different (correct) spellings of words in German can lead to
ambiguity, such as noun compounds that are sometimes written as compounded,
hyphenated, or separated words. Also, in spontaneous speech, humans often tend
to transcribe what they understand and not necessarily what was actually said. It
seems that speech errors are often unconsciously overheard and corrected. Speech
recognition systems are usually more precise in this respect and transcribe mis-
pronounced words, repeated words, and slips of the tongue precisely as they were
uttered.

It depends on the further usage of the transcript, whether such a verbatim, pho-
netically exact transcription or more human-like, corrected transcription is to be
considered correct. This also applies, for example, to the transcription of hesita-
tions. For linguistics and specific historical research questions, a verbatim tran-
scription as exact as possible of what was actually said is relevant. A human-like,
corrected transcription is more desirable for other applications, e.g., for subtitling
videos or further processing by NLP systems. We are currently striving for pho-
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netically exact transcription for our current task, including hesitations, as such
transcriptions help researchers to investigate not only what was said but how it
was said. Correction of the transcript is performed in subsequent post-processing
steps, which we do not consider part of the ASR.

These issues are reflected, among others, when comparing the differences be-
tween human transcribers on the same speech data. Human transcription was
studied, for instance, by Xiong et al. [2017a] and Saon et al. [2017] for the En-
glish Switchboard corpus [Godfrey et al., 1992] to determine a human word error
rate and also to uncover correlations between transcription errors by humans and
ASR systems on this data. Inspired by these works, we conduct experiments in
Section 3.6 to estimate the human word error rate on oral interviews to address
this issue for the oral history transcription task.

Another issue with the word error rate is that it only considers the total number
of errors—but does not weigh different errors. A substitution is counted equally,
regardless of a word was recognized entirely wrong, or only one letter in the rec-
ognized word is different. For our evaluation, we consider upper and lower case
spelling. Thus, casing errors by the ASR are counted as common substitutions in
the word error rate. However, since the word error rate is by far the most common
metric in ASR research, and no other metric has yet become widely accepted for
evaluation, we also use it to evaluate our experiments.

Baseline Results

As described in Section 3.4, the primary evaluation sets available at the beginning
of the presented research work were the two clean subsets of the DiSCo corpus:
DiSCo planned clean and DiSCo spontaneous clean. Furthermore, in 2016 the
German Broadcast 2016 evaluation set was introduced. The word error rates
on these test sets of different acoustic models proposed until the start of this
research are summarized in Table 3.6. The results of the DNN-HMM and pDNN-
HMM (p-norm DNN-HMM) models have been published by Stadtschnitzer [2018,
p. 64]. The results on CTC-RNNs experiments have been published by Schmidt
et al. [2016]. All these models were trained on the entire GerTV1000h corpus.
For evaluation, a default language model was used that is presented in detail in
Section 3.5.

The DNN-HMM system from Table 3.6 was used as the recent acoustic model
in the Fraunhofer IAIS Audio Mining system at the beginning of the presented
research work. It achieves a 15.5 % word error rate on clean planned broadcast
speech and 19.7 % on clean spontaneous broadcast speech. Using the more ad-
vanced acoustic model approaches improves recognition performance on these data
by up to 3–4 percentage points. A further improvement is achieved by decreasing
the pruning threshold of the speech model.
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Table 3.6: Word error rates of acoustic modeling approaches at the Fraunhofer IAIS pub-
lished in the literature. All models are trained on the entire GerTV1000h
corpus. The DNN-HMM model marked with ∗ is the acoustic model that was
used in the Audio Mining system at the beginning of the presented research
work.

Acoustic
Model

Pruning
Threshold

DiSCo
Clean
Plan.

DiSCo
Clean
Spont.

German
Broadcast

2016

DNN-HMM∗ 1e-7 15.5 % 19.7 % 19.8 %
pDNN-HMM 1e-7 13.3 % 16.5 % 17.2 %
CTC-RNN 1e-7 12.8 % 15.4 % 15.2 %
CTC-RNN 1e-8 11.9 % 14.5 % 14.4 %

Unfortunately, an evaluation of the oral history test set on the CTC-RNN and
the pDNN-HMM models was not possible. These were the subject of ongoing work
by other researchers, and the oral history test set was not finalized at that time.
Instead, we then evaluated the oral history set on the most recent model in Audio
Mining at that time. This baseline system yields a 55 % word error rate on the
oral history test set. We use this error rate and the results on the broadcast sets
as a baseline for comparison of the first experiments.

Since the other acoustic models in Table 3.6 achieve improved recognition accu-
racy for broadcast data, it is reasonable to assume that they would also perform
better on oral history than the baseline system. However, as the experiments
in Chapter 4 show, with LF-MMI models—especially with the proposed data
augmentation—we achieve the results that consistently and substantially outper-
form the benchmarks from Table 3.6—even when only one-eighth of the training
data is used.

3.5 Preliminary Investigation of the Influence of
Language Models

In Section 2.1.2 of the fundamentals chapter, we presented how speech recognition
systems based on hidden Markov models can be decomposed into three indepen-
dent models: the acoustic model, the language model, and the phonetic pronuncia-
tion lexicon. Later on, in the systematic review in Section 3.3.2, we structured the
different challenges of oral history interviews by grouping them into four categories
of challenges and stated whether the acoustic or language model models the cate-
gory. Based on these conclusions, we have already elaborated that improving the
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acoustic model is essential in the presented research for improving speech recogni-
tion on oral history interviews. In the following, we will additionally examine the
influence of the language model in advance using intrinsic evaluation metrics to
assess to what extent an improvement of this model is necessary. Based on these
results, we conclude by arguing why the two broadcast language models we apply
for the acoustic model experiments in this work can be reasonably applied for
speech recognition of German oral history interviews—although generally being
out-of-domain for this task.

3.5.1 Overview
We use an established language model trained for the conventional broadcast use
case of the Fraunhofer Audio Mining for all experiments in the present research
work. This model has already been used in the previous work by Stadtschnitzer
[2018] for the long-term development of the German broadcast Audio Mining sys-
tem. This language model has been trained using the IRSTLM language model
toolkit [Federico et al., 2008]—as all language models in this work have been.

In contrast to the model used by Stadtschnitzer, we apply a pruning threshold
of 1e-8 due to the improved results with this setup in Table 3.6. We refer to this
model as the default language model or default LM in this work. Between 2018
and 2019, the default language model was being replaced in Audio Mining by a
more recent model trained on significantly more text data—as can be derived from
Table 3.7. For research, this large language model was first introduced in [Gref
et al., 2020], cf. Chapter 6, and was used for additional, independent decodings in
addition to the default language model. We perform these independent decodings
to ensure the acoustic model’s improvements using our proposed approaches are
consistent and do not depend on a certain language model. The performance of
both language models in terms of the word error rate is evaluated in Section 4.4.5
with multiple acoustic models.

The phonetic pronunciations of the decoding language model vocabulary and
the acoustic model training vocabulary are obtained using the same grapheme-
to-phoneme pronunciation model. This model is trained with the Sequitur G2P
toolkit [Bisani and Ney, 2008] using the German pronunciation dictionary Phonolex5

from the Bavarian Archive for Speech Signals (BAS), cf. Schiel [1998].
In the first acoustic model experiments of the presented work, the language

model weight (LMWT ) (cf. Equation A.1) was individually obtained for each
model by decoding on a broadcast development set and fixed for that model. This
development set is a subset of the GerTV1000h corpus, cf. Stadtschnitzer [2018,
pp. 45 ff.]. However, since the set stems from the broadcast domain, this approach

5https://www.phonetik.uni-muenchen.de/forschung/Bas/BasPHONOLEXeng.html
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Table 3.7: Overview of the two primary language models used throughout the presented
research work. If not stated otherwise, Default LM is used as the decoding
language model for the experiments. Large LM was published in the last
phase of the presented research work and used for additional decoding in these
experiments.

Default LM Large LM

Domain Broadcast/News Broadcast/News
N-Gram 5-gram 5-gram
Pruning Threshold 1e-8 1e-8
Vocabulary size 506,858 2,047,124
Running words in training data 76 million 1.6 billion
Sentences in training data 5.2 million 8.9 million

was considered not representative in later experiments. Therefore, we then moved
on to apply the same predefined language model weight for all models in all exper-
iments and did not further optimize this decoding parameter. All other decoding
parameters are also kept equal for all experiments.

3.5.2 Perplexity

The perplexity is an intrinsic evaluation metric, cf. Jurafsky and Martin [2009,
p. 95], for evaluation of the quality of language models independent from its
application—such as in speech recognition. The perplexity PP(w) of a language
model on given word sequence w = (w1, ..., wn) can be defined, cf. Jurafsky and
Martin [2009, pp. 95–97], as the inverse probability of the word sequence, normal-
ized by the number of words:

PP(w) := n

√
1

P (w) = n

√
1

P (w1, ..., wn) .

For N-gram language models, as they are commonly used in speech recognition, the
overall probability of a word sequence is the product of all conditional probabilities
of the recent word k given the history of the previous N − 1 words, cf. Jurafsky
and Martin [2009, p. 86–88]. Thus, for a bi-gram language model (N = 2), the
perplexity is

PP(w) = n

√√√√√ 1
n∏

k=1
P (wk|wk−1)

. (3.2)
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Table 3.8: Perplexity of the two different language models used throughout the presented
research on several evaluation sets.

Data Set Default LM Large LM

DiSCo Planned Clean 715.13 690.75
DiSCo Planned Mix 847.76 728.54
DiSCo Spontaneous Clean 494.24 576.27
DiSCo Spontaneous Mix 575.20 628.23
German Broadcast 2016 639.68 524.23
Challenging Broadcast 1152.90 946.13
Oral History 769.56 767.27
Interaction (Linguistics) 1480.74 1748.00
Spoken QALD-7 1626.62 1097.35

To better assess the perplexity of a given language model, a zero-gram language
model with the same vocabulary can be considered for comparison. Zero-grams
represent the most simple case of n-grams (with no prior knowledge) and have a
uniformly distributed probability for all words:

P0-gram(wk) = 1
V

with V as the vocabulary size of the lexicon. Applied to Equation 3.2, it becomes
evident that the perplexity of a zero-gram language model is equal to the vocab-
ulary size V . Thus, the perplexity of a given language model indicates how much
better it models the test set than a simple zero-gram.

In speech recognition, the perplexity of a language model on a given data set is
often used to estimate the quality of a language model in advance. This is based
on the assumption that a low perplexity of language models is correlated with a
lower word error rate of a speech recognition system using the respective language
model. This correlation has been theoretically and experimentally studied and
confirmed, among others, by Klakow and Peters [2002].

We investigate the usability of the two broadcast language models for the oral
history use case in terms of perplexity. We compare the perplexity of the language
models on broadcast data with that on other domains in Table 3.8. For both
the default and the large language model, the perplexity on oral history is in a
similar value range as the different broadcast sets. The perplexity of the models
on oral history is slightly higher than for the DiSCo sets but much lower than
for Challenging Broadcast. While the perplexity on the test sets of the other
domains—namely interaction and question answering—is the highest overall in
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Table 3.9: Out of vocabulary rates of the two different language models used throughout
the presented research on several evaluation sets.

Running OOV Rate Unique OOV Rate

Language Model: Default Large Default Large

DiSCo Planned Clean 0.75 % 0.30 % 2.25 % 0.95 %
DiSCo Planned Mix 1.20 % 0.46 % 3.58 % 1.30 %
DiSCo Spontaneous Clean 0.44 % 0.21 % 2.22 % 1.07 %
DiSCo Spontaneous Mix 0.70 % 0.22 % 2.61 % 0.87 %
German Broadcast 2016 1.39 % 0.45 % 3.58 % 1.43 %
Challenging Broadcast 2.27 % 0.82 % 6.94 % 2.68 %
Oral History 1.72 % 0.96 % 8.43 % 4.63 %
Interaction (Linguistics) 1.46 % 0.72 % 6.18 % 3.31 %
Spoken QALD-7 1.57 % 0.68 % 3.69 % 1.61 %

the table, this is not true for oral history. Thus, we conclude that the broadcast
language models do not pose a significant disadvantage for speech recognition on
oral history compared to broadcast.

3.5.3 Out-of-Vocabulary Rates
The out-of-vocabulary rate (OOV rate) is another measure that can be used for the
prior assessment of the quality of language models—in particular, the vocabulary
of a language model. The OOV rate is the ratio of words in a test set that do
not appear in the pronunciation lexicon to all words in the test set. Words that
do not appear in the lexicon and ultimately cannot be recognized by conventional
speech recognition systems. Thus, high OOV rates can indicate poor performance
of a language model on a test set in advance.

Two variants of OOV rate are common, cf. Stadtschnitzer [2018]: the running
OOV rate where the total number of occurrences of each (running) word is counted,
and the unique OOV rate (or vocabulary OOV rate) where each different word
is counted only once. The running OOV rate is of particular relevance for the
overall performance of a language model in ASR on a given test set since it can
be interpreted as a lower bound for the word error rate for word-based systems.

The running OOV rates of the default language model range from 0.4 % to 2.3 %
on the different test sets, as shown in Table 3.9. The rate is the lowest for the
DiSCo sets and the highest on Challenging Broadcast. The running OOV rates on
the test sets from the other domains all fall in this range of values of the broadcast
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data—and are only slightly higher than on German Broadcast 2016. This indicates
that out-of-vocabulary is not a major issue of the default language models for these
domains.

In general, the OOV rates of the large broadcast language model are consistently
lower than of the default model. The running OOV rate of the large model is below
one percent on every data set and often even below 0.5 %. Compared to the default
language model, the relation of the OOV rates on oral history and the broadcast
test sets shifts with the large model. The large model has the highest, however,
overall fairly low running OOV rate on oral history with 0.96 %.

For both language models, the unique OOV rate on oral history is, by far, the
highest overall. However, this is not reflected in the running OOV rate, suggesting
that there are many words in the vocabulary of oral history that do not appear in
the vocabulary of the language models and only seldom appear in the running text
of the oral history set. This is not surprising considering the very diverse, often
historical, subjects of the interviews. Since these words occur rarely, they do not
pose an issue for evaluating the acoustic model via the word error rate using the
broadcast language models. For the final application in productive applications
such as Audio Mining, however, it may be useful or even necessary to apply an
oral-history-specific language model to enable the recognition of these words.

It should be noted that the appearance of a word in the vocabulary of the
language model alone is not sufficient for it to be recognized by a speech recognition
system. It must also appear sufficiently often in the text data used for training data
the N-grams—which is ultimately reflected in the perplexity of the language model.
Therefore, both measures should always be considered jointly. Furthermore, the
phonetic pronunciation in the lexicon must correspond to the actual pronunciation
of the speakers to be recognized by the ASR system.

3.5.4 Conclusion

Overall, both the perplexity and the OOV rate evaluation on oral history achieve
similar or slightly higher values than the sets from the broadcast control group.
This is true for both broadcast language models in question and indicates that
the broadcast models can be reasonably applied for speech recognition of German
oral history interviews. Thus, the language model does not require prioritized
improvement in the presented research work. However, this does not mean that
further improvement of recognition accuracy would not be possible and valuable
with a domain-specific language model for oral history. Thus, we focus on the
acoustic model for further research since we conclude from the previous analyses
that this is the essential component to be improved.
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3.6 Human Word Error Rate Estimation for
Oral History Interviews

We have highlighted the limitations of the word error rate as an evaluation metric
for speech recognition in Section 3.4.13. In the following section, we present our
approach to computing a human word error rate for German oral history. This
study aims to put the recognition performance of automatic systems in perspective
to human transcriptions and to uncover challenges in oral interview transcription.
We present the pipeline for our study, the results, and conclude with a discussion
of transcription errors.

3.6.1 Related Work
To the best of our knowledge, no work estimated a human word error rate for oral
history interviews so far—particularly for German Oral History data. However,
such a measure has been estimated for individual data sets. Lippmann [1997] per-
formed one of the early works comparing transcripts of speech recognition systems
with human word error rates. The authors estimate the human word error rate for
different domains using common English corpora, such as the WSJ for read-speech
and Switchboard for conversational speech. The authors report a human error rate
of about 1 % for the Wallstreet Journal Corpus (WSJ) [Paul and Baker, 1992] and
4 % for Switchboard [Godfrey et al., 1992].

With the enormously increased recognition performance of ASR in the last
decade, Xiong et al. [2017a] and Saon et al. [2017] reconsidered the human word
error rate on the English Switchboard corpus. The reported human error rate of
these works was in the range of 5.1—5.9 %. While proposed as an error rate for this
particular corpus, this human word error rate was sometimes misconstrued as a
general human word error rate in the general public. A detailed overview of Xiong
et al.’s and Saon et al.’s approaches for human word error rate estimation is given
in the following, where we present and compare our approach for the estimation.

3.6.2 Annotation Approach and Experimental Setup
In the following experiment, we estimate a human word error rate on transcribing
German oral history interviews, inspired by the experiments of Xiong et al. [2017a]
and Saon et al. [2017]. Strictly speaking, this human error rate is the difference of
transcriptions between two transcribers. One transcriber is taken as the reference
and the other as the hypothesis. These results aim to expose the challenges even
humans face transcribing oral history interviews and put the achieved error rates
of speech recognition systems in this domain into perspective.
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Xiong et al. [2017a] used a two-staged transcription pipeline by a large com-
mercial vendor to transcribe the English Switchboard data for their experiments.
In the first stage, one professional transcriber annotates the pre-segmented speech
from scratch. A second transcriber corrects the first transcriber’s transcription in
the second stage. Using this approach, the authors report a 5.9 % human error on
the English Switchboard data.

Later on, Saon et al. [2017] replicated the experiment on the same data as the
authors consider the values reported by Xiong et al. to be too high. The authors
also used a two-staged pipeline by a large commercial vendor, where three different
transcribers transcribed the speech segments from scratch independently from each
other. Then, in the second stage, a fourth transcriber performed a quality check
and corrected the annotations of the first stage. Saon et al. report a human word
error rate in the range of 5.1–5.6 % on English Switchboard.

We could not apply such a professional commercial pipeline with the project’s
budget. Instead, we aim at approximating the two-stage procedure by replacing
the first stage with our Audio Mining speech recognition system and letting humans
correct the raw ASR transcript. For this system, the adapted oral history acoustic
model from Section 5.3 was applied. For the language model, broadcast data was
combined with manual oral history transcripts in roughly equal proportions.

We use the ASR result to chunk the interviews into short segments at the longest
speech pauses until we obtain segments of 30 seconds or less. We obtain 3,122
segments for the 10 hours of data by this approach. Thus, the average segment
length for our data is 11.5 seconds. In the second stage, three human transcribers
were independently provided with the same raw ASR transcript and were asked
to correct it.

Our experiment was performed near the end of the presented research work
in 2021-2022 in a joint project with the Haus der Geschichte (HdG) foundation.
For our experiment, 10 hours of German oral history interviews from the Zeitzeu-
genportal of the Haus der Geschichte foundation were used (cf. Section 3.4.10).
The HdG portal’s interviews are somewhat different from the Deutsches Gedächt-
nis data, primarily studied in the presented research work. The interviews are
recorded with more professional equipment, thus having better audio quality. In
most other aspects, however, the data is very similar, so we assume that the con-
clusions of the experiments can also be applied to the other data.

The transcription was performed by three employees at the Haus der Geschichte,
who have an academic background in history—but are not professional tran-
scribers. The transcribers did not only correct the ASR transcription but also
annotated the perceived emotions and sentiment for each segment. We use these
annotations to further study the influence of emotions and sentiments in oral his-
tory.
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Table 3.10: Overview of the human word error rates in percent between two different
transcribers (Tr.): A, B, and C. Three different types of experiments were
performed to investigate different reasons for the resulting error rates.

Hypothesis

Setup Reference Tr. A Tr. B Tr. C

Case-sensitive WER
Hesitations counted

as word errors

Tr. A - 7.77 9.51
1) Tr. B 7.79 - 8.83

Tr. C 9.54 8.83 -

Case-sensitive WER
Hesitations ignored

Tr. A - 7.41 9.00
2) Tr. B 7.45 - 8.58

Tr. C 9.06 8.58 -

Case-insensitive WER
Hesitations ignored

Tr. A - 6.54 8.43
3) Tr. B 6.58 - 7.74

Tr. C 8.48 7.75 -

3.6.3 Results

The results of comparing the different human transcriptions are summarized in
Table 3.10. We compared three different setups, one after the other, to investigate
different causes for the error rates.

We begin with Setup 1 in the top third of Table 3.10 that we usually also consider
when evaluating speech recognition systems: The word error rate is calculated case-
sensitively, i.e., different casings of the same words are counted as substitutions in
the word error rate. Furthermore, transcribers were asked to transcribe hesitation
sounds with a predefined spelling. Our ASR system usually transcribes these
hesitation sounds if they can be heard clearly enough. The highest difference is
between transcriber A and C, with a 9.5 % word error rate with this setup. The
lowest is between transcriber A and B, with a 7.8 % word error rate.

For a more detailed analysis, we first consider the combination with the lowest
error rate in this setup: Transcriber A as the reference and Transcriber B as the
hypothesis. Transcriber A has overall 78,428 transcribed words that are used as
the reference. Comparing Transcriber B to A, Transcriber B has 6093 errors—1106
insertions, 1328 deletions, and 3659 substitutions. An overview of the top five er-
rors for each category is given in Table 3.11. The most common differences (errors
in terms of the WER) are insertions of the hesitation sounds äh (German variant
of the hesitation er or uh), Äh, and hm, by Transcriber B. It seems Transcriber B
was paying more attention to hesitation sounds than Transcriber A. However, it is
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Table 3.11: Top five errors for each error type between Transcriber A and B for a case-
sensitive human word error rate estimation on German oral history data where
hesitation sounds are annotated and counted as word errors.

Error
Type

Transcriber A
(Reference)

Transcriber B
(Hypothesis)

Error
Count

Deletion und - 71
Deletion ja - 63
Deletion ich - 47
Deletion dann - 37
Deletion in - 37
Insertion - äh 118
Insertion - hm 50
Insertion - Äh 38
Insertion - und 35
Insertion - die 25
Substitution habe hab 61
Substitution sie Sie 61
Substitution dass das 43
Substitution ich Ich 39
Substitution und Und 39

noteworthy that both transcribers have the same annotation of hesitation sounds
way more often than not. Both transcribed the most common hesitation sound äh
at the same position in 675 cases. In 159 cases the annotation of äh differed and
led to an error.

The next common error type comparing Transcriber A and B is deletions of
short words—und (and) and ja (yes)—that Transcriber A has annotated quite
often, but Transcriber B has not. The next most common errors are substitutions
of the same words in slightly different spellings: e.g., formal habe vs. informal hab
(have), and casing errors. These observations lead us to two questions that will be
investigated with two further setups: what is the influence of hesitation sounds on
the error rate? And what is the influence of the casing?

To answer the first question, we remove the hesitation sounds from the transcript
of all transcribers and compare the transcripts again. The resulting error rates are
depicted as Setup 2 in the middle part of Table 3.10. Overall, without hesitation
sounds, the word error rate decreases by 0.3–0.5 percentage points. Since the
sounds were removed from both the reference and hypothesis, the overall influence
on the human error rate is quite limited.
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Table 3.12: Word error count comparison between Transcriber A (ref) and Transcriber B
(hyp) for the three different human error rate investigation setups.

Setup WER Errors Num. Ref Ins. Del. Sub.

1) 7.77 % 6093 78,428 1106 1328 3659
2) 7.41 % 5733 77,383 835 1288 3610
3) 6.54 % 5059 77,383 835 1288 2936

Comparing Transcriber A with B again, the total number of errors decreases
by 360 errors by removing hesitation sounds, as reported in Table 3.12. The
largest share of this is accounted for by decreasing insertions, which may already
be assumed in advance. However, at the same time, the total number of words in
the reference decrease even more by more than 1000 words.

Lastly, we consider the second question formulated earlier and examine the
influence of casing errors. For this purpose, we compare the transcriptions with
removed hesitations and, again, without taking the casing into account. The
results are depicted as Setup 3 in the bottom third of Table 3.10. Ignoring the
casing for evaluation reduces the word error rate by a further 0.5 to just under 1.0
percentage points. As shown in Table 3.12, ignoring the casing naturally reduces
only the number of substitutions.

As shown in Table 3.13, after removing the hesitation transcriptions and lower-
casing all words, the top five inserted words by Transcriber B are now also mostly
short words with only one syllable—words that can be easily overheard in spon-
taneous speech, especially when there are word repetitions or ungrammatical sen-
tences due to rephrasing. However, the top five errors per category account for
just under 11 % of all word errors with this setup. Therefore, a large share of the
errors is distributed among many individual errors that are not as systematic as
these.

Finally, we take the arithmetic mean of the six different transcriber pairs for each
setup to report a human word error rate for each of the three different analysis
scenarios we studied. These values are given in Table 3.14, in addition to the
standard deviation.

For the evaluation we perform in our research—case-sensitive word error rate
evaluation and annotating hesitations—the corresponding human word error rate
on oral history interviews is 8.7 %. There are two primary reasons why we evaluate
our ASR with Setup 1. For the indexing of the content and adequate readability,
the casing of words in the German language is crucial and should be correctly
transcribed by systems. In our ASR system, the casing is part of the language
model and pronunciation lexicon since we achieve better overall recognition results
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Table 3.13: Top five errors for each error type between Transcriber A and B for a case-
insensitive human word error rate estimation with ignored hesitations on Ger-
man oral history data.

Error
Type

Transcriber A
(Reference)

Transcriber B
(Hypothesis)

Error
Count

deletion und - 73
deletion ja - 64
deletion ich - 47
deletion dann - 39
deletion in - 38
insertion - und 35
insertion - die 26
insertion - da 24
insertion - ich 22
insertion - dann 20
substitution habe hab 62
substitution dass das 43
substitution das dass 35
substitution dann da 18
substitution das es 18

than with a downstream inverse-text-normalization component. Additionally, as
described in Section 3.4.13, transcribed hesitations are crucial in specific research
questions for oral history. They help historians and other researchers assess not
only what but how something was said in an interview. Therefore, we also evaluate
these hesitations in our ASR evaluation.

3.6.4 Discussion and Limitations
Compared to the 4.0—5.9 % human word error reported for English Switchboard,
the human error rates on German oral history data we obtained are significantly
higher. This is particularly because of the characteristics of oral history interviews,
which were pointed out and discussed in Section 3.3.2.

At the same time, we must admit that the experiment is subject to some limi-
tations. The calculated error rate depends on the transcribers, their motivation,
and the applied procedure. On the one hand, presumably, it would be possible
to reduce the differences between the transcribers by several correction iterations.
On the other hand, we find it remarkable that all transcribers had the same raw
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Table 3.14: Average human word error rates on 10 hours of manually transcribed German
oral history interviews. The average human word error rate is given as the
arithmetic mean ± the standard deviation of the six different comparisons in
each setup.

Variant of Analysis Avg. Human WER

Case-sensitive WER, including hesitations 8.71 % ± 0.79 %
Case-sensitive WER, excluding hesitations 8.35 % ± 0.74 %
Case-insensitive WER, excluding hesitations 7.59 % ± 0.86 %

ASR transcript as a basis—and yet such comparatively large differences in the
annotations can be found. It can be assumed that applying an annotation from
scratch would result in an even higher error rate.

Another advantage that humans have over the ASR system is the context. The
transcribers were aware of the content discussed in the interviews and could listen
to previous and subsequent segments at will. Our ASR system does not have
this advantage and transcribes segment by segment independently. For a fair
comparison, the ASR system would need to account for surrounding segments—
which is currently not supported for standard n-gram language models.

If the human transcribers had listened and annotated each segment in a random
order, this would naturally result in a higher human word error rate. Finally, the
transcribers were provided not only with the audio but also with the video stream.
It is well-known that visual feedback, e.g., seeing the lip movement, can improve
speech understanding. This can be another advantage for human transcription.
Nevertheless, based on the annotator’s feedback, transcribing only audio segments
(especially if in random order) would have resulted in significantly reduced moti-
vation, which in turn would have spuriously affected transcription quality.

Lastly, it should be emphasized that the HdG oral history interviews used for
this experiment have a fairly high audio quality and are quite easy to understand.
This is not true to the same extent for many other oral history interview archives
in different languages. The interviews in the default oral history test set from
the archive Deutsches Gedächtnis, which we examine in most experiments in the
presented research, have much more challenging acoustic conditions. For these
interviews, a significantly higher human error rate can be assumed. We also observe
this effect with ASR systems, which, despite robust training, often struggle with
interviews with poor audio quality, as discussed in Section 5.5.
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3.6.5 Conclusions
In this experiment, we investigated the accuracy of human transcription of German
oral history data by comparing corrected versions of raw ASR transcription of
three different persons. We estimate a word error rate of 8.7 % for recent oral
history interviews with relatively clean acoustic conditions. We discussed the
different types of possible human transcription errors of oral history interviews.
This error rate is intended to serve us as a rough benchmark for estimating human
transcription accuracy and is by no means to be taken as an absolute benchmark of
human performance. We have discussed the limitations of our approach and argued
that different approaches to estimating the human error rate can lead to different
results—as has been the case, for example, with several works on the human error
rate estimation on the Switchboard corpus in the past. We suspect our human
error rate for oral history is more likely to be on the low end and may increase
when transcribing from scratch or using a random order of segments. However,
we think that our error rate estimate can serve as a reference when assessing ASR
systems on oral history—and what realistic word error rates of ASR systems can
be expected in the future.

3.7 Summary and Contributions
3.7.1 Summary
This chapter presents the oral history speech recognition use case that we study
in the presented research work. In this chapter, we conducted preliminary exper-
iments and investigations to assess the influence of the different components of
speech recognition systems and different corpora used for the research questions.

First, we introduced the research project KA3, in which large parts of the re-
search work were carried out, and the project partner archive Deutsches Gedächt-
nis. The archive provided the oral history interviews to be studied for this research.
We also motivated the work by pointing out the value of transcripts and automatic
transcription systems, such as the Fraunhofer IAIS Audio Mining system, for oral
history research. Performing a systematic (non-statistical meta) review of related
works, we exposed the research gap in this field. We summarized and categorized
the several challenges found by other researchers in their attempt to transcribe
oral history interviews with ASR.

For our research, we introduced the different ASR corpora used in the experi-
ments in the following chapters. In particular, we have presented and proposed
the German Oral History test set, which was developed as part of this work to
investigate the research questions. At the same time, we explained why we as-
sume that it is not sufficient to investigate proposed systems that shall be applied
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in real-world applications only on one benchmark—as it is usually done in ASR
research. To assess the usability of a real-world application, an evaluation using
several different data sets from different domains is mandatory. This coincides with
recent works in ASR research, which also criticize standard ASR evaluation when
it comes to real-world applications. To compare the similarities and differences of
the corpora from diverse domains, we performed an initial statistical analysis of
different attributes. We further studied the speech tempo of oral history interviews
compared to other domains in terms of the phone rate. Although indicated in the
literature, we found that a high speaking rate or speaking rate variance does not
apply to our studied oral history interviews.

In another investigation, we studied the influence of language models trained on
large news-text corpora for the automatic transcription of oral history interviews.
Using intrinsic evaluation measures, such as perplexity and OOV rates, we demon-
strated that, in particular for oral history, these language models are likely to be
sufficiently well suited for application in speech recognition systems. This is quite
surprising for two reasons. First, the news text used for training can be assumed
to be quite out-of-domain for oral history. Second, the presumed performance
with broadcast language models is significantly worse for other domains studied
in our investigation, such as interaction or question-answering. These experiments
confirm the approach in the following chapters to prioritize the acoustic model as
the component to be improved in the speech recognition of German oral history
interviews.

The chapter concludes with an experiment designed to demonstrate that tran-
scribing German oral history interviews is challenging—even for humans. Using
different comparisons of three transcribers, we present an 8.7 % estimated human
word error rate on a ten-hour German oral history data set with clean acoustic
recording conditions.

3.7.2 List of Contributions
List of scientific contributions in this chapter:

• A human word error rate on German oral history interviews in clean acoustic
conditions was experimentally estimated.

• A systematic (non-statistical meta) review of related works on the several
challenges of oral history interviews for automatic speech recognition was
provided.

• A representative German oral history data set for ASR was created and
proposed to evaluate speech recognition systems on oral history interviews.
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• Several preliminary studies were conducted for ASR speech corpora and test
sets from several domains. The insights inferred help to better assess and
evaluate the proposed methods in the following chapters in terms of impact
on different domains and domain overfitting. In particular:

– Statistical analysis of the test sets was performed, exposing similarities
and differences in the various speech domains.

– The speech rate for the different test sets was estimated using a GMM-
HMM-based phone rate estimation.

– A preliminary analysis of two broadcast language models for oral history
ASR and the other domains was performed using intrinsic evaluation
metrics.
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Interviews

In the previous chapter, we have found that although the baseline Audio Mining
system of 2016/2017 delivers adequate results for broadcast data, the transcripts
obtained for oral history interviews tend to be of poor quality. We discussed sev-
eral challenges of oral history interviews for speech recognition systems, identifying
the audio signal quality as one of the main challenges. Oral history interviews are
usually recorded in the living rooms of the contemporary witnesses using com-
monly available recording equipment. This equipment changed over the years and
resulted in a wide range of recording qualities. In particular, recent interviews
often have a very decent recording quality. Other interview recordings suffer from
intense background noises, reverberation, and additional unspecific distortions.
Other significant challenges posed by oral history interviews are the colloquial lan-
guage used in spontaneous speech, hesitations, age- and health-related changes in
speaking, and domain-specific words used in the interviews that usually do not
occur in everyday speech.

In this chapter, we focus on the acoustic distortions of oral history interviews
by improving the robustness of acoustic models. As discussed in the previous
chapter, avoiding domain overfitting is essential for the real-world application of
speech recognition systems. This is particularly important for our task since the
oral history interviews in our collection have a vast range of conditions. We have to
expect further unseen conditions in interviews for future applications. Therefore,
we evaluate and study all models, in this and all following experiments, on several
test sets from different domains to obtain a reliable estimate of the real-world
performance for seen and unseen conditions.

In this chapter, we proceed in several subsequent steps to obtain robust models.
In Section 4.2, we first give an overview of the basic techniques for robust speech
recognition for recent DNN-HMM acoustic models. Three sequential studies follow
that all comprise several experiments.

The first study in Section 4.3 investigates and compares different acoustic mod-
els proposed in the current literature. In the second study in Section 4.4, we build
upon the first study’s results and explore multi-condition training to improve the
acoustic robustness and narrow the domain mismatch between the training domain
and out-of-domain data. We propose the combination of noise and reverberation
data augmentation as a suitable approach to improve overall performance and
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substantially improve speech recognition performance for oral history interviews.
In the third study in Section 4.5, we additionally study speech enhancement to
improve the acoustic robustness of oral history interviews. We compare differ-
ent speech enhancement approaches for noise reduction and dereverberation for
the oral history use case and compare them to the multi-condition approach. In
Section 4.6, we summarize the chapter’s findings and contributions.

4.1 Thesis Author Contribution
Parts of this chapter are covered in the publications:

Michael Gref, Joachim Köhler, and Almut Leh. Improved transcription
and indexing of oral history interviews for digital humanities research.
In 11th International Conference on Language Resources and Evalua-
tion (LREC), pages 3124–3131. European Language Resources Association
(ELRA), 2018a. URL https://aclanthology.org/L18-1493

Michael Gref, Christoph Schmidt, and Joachim Köhler. Improving robust
speech recognition for German oral history interviews using multi-condition
training. In 13th ITG Conference on Speech Communication, pages 256–260.
VDE / IEEE, 2018b. URL https://ieeexplore.ieee.org/document/8578034

All presented approaches, experiments, findings, results, analyses, conclusions,
figures, and texts are contributions of the thesis author.

In the present chapter, we summarize and extend the experiments in [Gref et al.,
2018a] on CE-LSTM models trained on 128 hours of speech and put them into per-
spective to the experiments of [Gref et al., 2018b] on LF-MMI–TDNN-LSTM mod-
els trained on 1000 hours of speech, presented in Section 4.3 and Section 4.4. In
the presented research work, we also performed additional experiments and analy-
ses on the models trained in the aforementioned papers, combining and extending
the findings, inferring further insights, and putting the results into perspective to
our experiments in the following chapters.

4.2 Overview of Robust ASR Approaches
The oral history interviews examined in this work were recorded in the past, of-
ten many years or even decades ago. Evidently, the recording conditions cannot
be changed in retrospect. At that time, digital processing of this data was often
not even conceivable, so the main focus was on making the recordings intelligible
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to humans. However, these recording conditions determine not only the result-
ing recording quality but also the selection of the algorithms to be considered
for robust speech recognition. For most oral history recordings in question, only
one microphone was used so that multi-channel signal processing approaches, like
acoustic beam-forming or multi-stream ASR, cf. Li et al. [2016, pp. 239 ff.], are
not feasible. Thus, we only consider single-channel recording approaches for our
further work.

A wide variety of approaches for single-channel robust speech recognition have
been studied in the past. An overview of these approaches, with the main focus
on noise-robustness, is given by Li et al. [2014]. Many of these approaches are
particularly used for GMM-HMM systems. Some of these approaches—such as
CMN/CMVN, feature space transformations, and speaker adaptive training (cf.
Section 2.1.3)—are applied by default in the bootstrap training for the experiments
in this work. The bootstrapping is described in Section 4.3.1.

Several categorizations of robust ASR based on different attributes of the ap-
proaches can be found in the literature. A common categorization is feature-
domain vs. model-domain approaches, cf. Li et al. [2014]. The feature-domain
approaches either try to utilize features that are inherently robust to the distor-
tions or domain, or to transform the features at inference time to match the feature
distribution from the training domain without any changes of the model’s parame-
ters. Thus, feature-domain approaches can be subdivided into speech enhancement
and robust feature approaches, cf. Josifovski [2002, pp. 8–31]. The model-domain
approaches, on the other hand, modify the model’s parameter to obtain a model
that is robust to the distortions.

In the days of GMM-HMM speech recognition systems, a wide range of methods
were combined to achieve robustness. However, in the era of hybrid ASR systems,
more straightforward methods that mainly rely on the powerful modeling capa-
bility of deep neural networks seem to prevail. Speech enhancement approaches
are often applied to improve the speech signal quality in advance—e.g., by re-
ducing noises and compensating channel distortions—aiming to obtain a speech
signal with only slight distortions that match the training conditions. For the
model-domain side, multi-condition (or multi-style) training is commonly applied.
It aims at training the acoustic model on a wide range of conditions so that the
model learns to generalize and rely primarily on robust speech features in given
signals, cf. [Lippmann et al., 1987].

Multi-condition training and speech enhancement for robust ASR using hybrid
systems was studied, among others, by Tang et al. [2018]. The authors compared
different approaches in terms of a domain adaptation problem for distant speech
recognition using a hybrid TDNN acoustic model. For their experiments, the au-
thors found that multi-condition training achieves the best results among the four
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studied approaches using the AMI corpus [Carletta et al., 2006]. This observa-
tion is also consistent with the results of one of our preliminary works [Hirsch and
Gref, 2017] on the Aurora4 challenge [Parihar and Picone, 2002]. We also compared
speech enhancement—both using the magnitude and phase STFT spectrum—and
multi-condition training for a feed-forward hybrid ASR system using the Aurora4
corpus. We found that multi-condition training yields the best results among the
studied approaches.

It is noteworthy that the aforementioned works studied comparatively restricted
scenarios of acoustic distortions—e.g., distant speech only, artificially added noise
with predefined signal-to-noise ratio only—and the type and nature of the distor-
tion are known in advance. However, we face previously unknown combinations
of different acoustic distortions in the oral history interviews. For many inter-
views, it can be assumed that noise and room reverberation occur simultaneously.
The noise may have occurred in the room itself where the recording took place.
However, the noise may also be due to the recording device itself—such as noises
from cassette recorders commonly used a few decades ago. The noise or other
distortions could also be unintentionally added years after the recording—such as
deterioration of the magnetic tapes due to age, artifacts from multiple conversions,
or digitization. Therefore, an open research question is which approaches can be
generalized to these complex real-world problems and which are suitable for the
problems at hand. The following studies on different approaches for the German
oral history use case in this chapter aim to contribute to this research question.

4.3 Study: Comparison of Selected Hybrid
Acoustic Models

Automatic speech recognition is a highly active research field. New model archi-
tectures and training approaches are proposed regularly. Although many of these
models and approaches are promising to show good performance for the task at
hand, it is not feasible to evaluate different robust speech recognition approaches
with a multitude of models. This is due to the computational effort and time re-
quired to train hybrid neural network acoustic models with millions of parameters
on close to 1000 hours of annotated speech. Thus, in the literature, as in many
previously mentioned related works, one fixed model configuration is often chosen
for the experiments.

At the same time, for a real-world application, it is necessary to determine
which models generalize well for real-world data and which models suffer from
domain overfitting. In this section, we want to experimentally determine which
model we can expect to produce the best results for our real-world use case. We
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compare selected acoustic models with different amounts of training data to make
a statement about how well the models are able to generalize. In addition, we
investigate the influence of segment lengths on different types of models since we
observed differences in recognition performance in initial experiments. We will use
the most promising model for subsequent experiments in the presented research
work.

4.3.1 Experimental Setup
In the following, we describe the experimental setup we use for the model evalua-
tion. We conducted our experiments with the Kaldi ASR toolkit [Povey et al., 2011]
because it was the most promising ASR toolkit in research in 2017. Researchers de-
veloped new approaches and integrated them quickly into the open-source toolkit
due to its increasing popularity, cf. Section A.1 in the appendix.

DNN-HMM Acoustic Models

The selection of models for our experiments is based on promising models from the
literature that performed well on large-vocabulary continuous speech recognition
tasks in 2015–2017. Primarily, results on the English Switchboard task Godfrey
et al. [1992] were considered since it was one of the predominantly studied speech
recognition challenges at the beginning of the presented work. In the following,
we describe the different acoustic models we study.

• Cross-Entropy (CE) trained hybrid acoustic models as described in Sec-
tion 2.2:

– CE–LSTM is a cross-entropy-trained model with a common, unidi-
rectional LSTM neural network architecture with three stacked LSTM
layers, cf. Sak et al. [2014]. The nnet3 implementation for neural net-
works in Kaldi we apply for this, and the other models, uses LSTM
layers with forget gates [Gers et al., 2000], peephole connections [Gers
and Schmidhuber, 2000], and projection layers [Sak et al., 2014]. The
LSTM layers have a cell dimension of 1024 and a projection dimension
of 256.

– CE–BLSTM is a cross-entropy-trained model similar to CE–LSTM
but with bidirectional instead of unidirectional LSTM layers, cf. Chen
and Huo [2016]; Zhang et al. [2016]; Zeyer et al. [2016]. The bidirectional
LSTM layers have the same cell dimension as the unidirectional ones.
However, the projection dimension is reduced to 128 to compensate
for the increased computational load required for bidirectional back-
propagation through time.
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• LF-MMI trained models use the sequence discriminative training of neural
network acoustic models based on the LF-MMI implementation [Povey et al.,
2016], as described in Section 2.4.3. Due to the reduced frame rate, LF-
MMI models are significantly faster to train than conventional cross-entropy
models. Thus, LF-MMI makes it feasible to experiment with larger model
architectures than cross-entropy-trained models.
We use a TDNN-LSTM architecture combining time delay neural network
(TDNN) with LSTM layers, cf. Cheng et al. [2017]; Peddinti et al. [2018].
Our studied TDNN-LSTM models have ten hidden layers in an architecture
proposed and investigated by Cheng et al. [2017]. The models combine seven
1024-dimensional TDNN layers, using TDNN-subsampling [Peddinti et al.,
2015b], and three 1024-dimensional LSTM layers stacked in the order given
in Figure 4.1. The projection dimension of the LSTM layers is 256.
Overall we compared two training routines for LF-MMI–TDNN-LSTM:

– LF-MMI–TDNN-LSTM (standard): A standard training configu-
ration used in Kaldi for the English Switchboard ASR challenge.

– LF-MMI–TDNN-LSTM (per-frame-dropout): This setup extends
the standard LF-MMI training configuration with the application of
per-frame-dropout for LSTM layers, as proposed by Cheng et al. [2017].
The dropout schedule is illustrated in Figure 4.2. This training routine
uses the (default) LSTM layer implementation LSTMp instead of FastL-
STMp to apply the per-frame dropout on the LSTM layers. Further-
more, the factor for cross-entropy regularization is increased to 0.025
from 0.01.

All acoustic models in our experiments use the same 300-dimensional input at
each time-step consisting of five consecutive 40-dimensional MFCC features and
a 100-dimensional i-vector [Dehak et al., 2011] estimated in an online fashion for
speaker adaptation.

The total number of parameters of the models slightly varies for each train-
ing configuration and data since the number of output nodes is always equal to
the number of tied states obtained in the last HMM-training stage of bootstrap
training. A maximum of 11,500 states (or leaves in the phonetic decision tree) is
configured in the training routines we use for conventional, cross-entropy training.
In practice, the number is usually smaller. In our experiments, it is usually between
9000 and 9500 states. For LF-MMI training, the number of states is generally fur-
ther reduced, cf. Povey et al. [2016]. A maximum of 7000 states is configured in
the training routines we use. In practice, the number is usually between 5000 and
6500 states.
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LF-MMI Output Layer
5 Delay, no Softmax

Input Features
{-2,-1,0,1,2} × 40 Dim MFCC

Input i-Vector
{0} × 100 Dim

TDNN 1
1024 Dim, ReLU Activation

TDNN 2 {-1,0,1}
1024 Dim, ReLU Activation

TDNN 3 {-1,0,1}
1024 Dim, ReLU Activation

LSTM 1
1024 Dim, 256 Projection

TDNN 4 {-3,0,3}
1024 Dim, ReLU Activation

TDNN 5 {-3,0,3}
1024 Dim, ReLU Activation

LSTM 2
1024 Dim, 256 Projection

TDNN 6 {-3,0,3}
1024 Dim, ReLU Activation

TDNN 7 {-3,0,3}
1024 Dim, ReLU Activation

LSTM 3
1024 Dim, 256 Projection

Cross Entropy Regularization

Figure 4.1: Neural network architecture of the LF-MMI trained LSTM-TDNN neural net-
work.
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Figure 4.2: Per-frame dropout schedule for the LF-MMI acoustic model training. The
schedule follows the general recommendation by Cheng et al. [2017].
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Table 4.1: Comparison of the number of parameters of the studied models. We only report
an approximate number of parameters for the total number of parameters since
the exact number is subject to the number of tied states from the HMM-
bootstrap training used as output nodes.

Model Total
Parameters

Hidden
Parameters

CE–LSTM 15 Million 10,164,736
CE–BLSTM 8 Million 5,707,520
LF-MMI–TDNN-LSTM 39 Million 33,367,552

Since the total number of parameters of the models are subject to this variable
number of tied states, the total number of parameters is only of limited use for
comparison. Complicating matters, a particular property of LF-MMI training is
cross-entropy regularization, implemented and trained as an additional, second
output layer during training, as described in Section 2.4.3. This layer additionally
increases the total number of training parameters for LF-MMI even though it is
not used during decoding.

However, additionally to the total number of parameters, the number of parame-
ters of the hidden layers can be used to compare the model. These values are given
in Table 4.1. As to be expected, the BLSTM model is the smallest one. This is
due to the reduced projection dimension, as described before. The TDNN-LSTM
model is significantly larger than the other models.

We explicitly point out that the choice of models for the experimental setup is
unsuitable for stating which network architecture or training approach is generally
better for ASR. We compare differently sized neural networks, respectively, with
the two different training approaches. However, this is explicitly not the objective
of this study and has been extensively investigated in other works, e.g., by Povey
et al. [2016]. LF-MMI allows the training of large models with LSTM layers on
large-scale ASR corpora in a reasonable amount of time—which is not the case to
the same extent for cross-entropy models. We take advantage of this to find the
most promising acoustic model variant for further experiments.

Bootstrap Training

The cross-entropy and LF-MMI training rely on GMM-HMM models from boot-
strap training for time alignment and state-tying. Since the GerTV1000h corpus
does not contain any phonetic alignments, we perform flat-start bootstrap HMM-
training with Kaldi. We start with a simple model to obtain initial alignments
that are subsequently improved by more complex HMM models.
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Table 4.2: Configuration of GMM-HMM model training in bootstrap for DNN-HMM
acoustic model training in the Kaldi model comparison experiments. The
models are trained subsequently from top to bottom. Each model is used
to time-align the training data for the next training stage.

Model Training Data Features Tied States

Monophone 11,000 shortest utt. ∆∆ + CMN 252
Triphone 1 38,000 rand. utt. ∆∆ + CMN < 3,200
Triphone 2 38,000 rand. utt. ∆∆ + CMN < 4,000
Triphone 3 entire data LDA+MLLT < 6,000
Triphone 4 entire data LDA+MLLT+FMLLR < 11,500

The bootstrapping configuration for the present experiments is shown in Ta-
ble 4.2. First, we train a simple monophone GMM-HMM on the shortest utterances
of the training data to facilitate initial alignment. We use 13-dimensional MFCCs
with delta-delta features and cepstral mean normalization, cf. Section 2.1.3, for
this and the subsequent two models. As presented in Table 4.2, four triphone
GMM-HMM models are trained after the monophone model on increasing train-
ing data. Each model is used to generate the alignments for the training of the
subsequent model.

This bootstrap training configuration is kept almost equal for all following ex-
periments in the presented research work, except for the amount of training data.
For the present experiment, the amount of training data is kept fixed and relatively
small to keep experiments with different amounts of training data in the DNN-
HMM training stage comparable. In later experiments, where we use the entire
training data, we increase the training data for the bootstrap models. The influ-
ence of increased training data in bootstrap training on the final acoustic model
is studied in Section 4.4.4.

Training Data

At the beginning of the presented research work, we do not have representative
training data available for the German Oral History task at hand. Therefore, we
are interested in how well the studied models generalize with different amounts of
training data. Consequently, we conduct two experiments for the different models:
one training using the entire GerTV1000h training data set, cf. Section 3.4.2, and
one using about one-eighth of the training data. For this subset, we use precisely
100,000 randomly chosen utterances from the GerTV1000h corpus, resulting in a
training subset of 128-hour length.
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Table 4.3: Comparison of the two differently segmented versions of the German Oral His-
tory test set. The fine-segmented version is the default version used for all main
experiments in the presented research work. The coarsely segmented data set
is a preliminary version used primarily for initial experiments.

Fine-Segmented Coarsely Segmented

Length [hour] 3.52 3.53
Num. of Segments 2,392 102
Segment Length [s] 5.3 ± 3.5 124.5 ± 46.5
Words per Segment 11.6 ± 10.0 265.2 ± 91.2
Words per Second 2.1 ± 0.8 2.2 ± 0.5

To increase training data size and variance, we apply a method used in many
recent Kaldi training routines by default: speed perturbation investigated by Ko
et al. [2015]. The proposed approach by Ko et al. is to increase the data three-fold
by creating two additional versions of each signal using the constant speed factors
0.9 and 1.1. We use this approach for all of our current and following experiments.

Evaluation Data

The evaluation of all models is performed on several evaluation sets from three
domains to assure a reasonable estimate of the performance for real-world appli-
cations and to avoid selecting models that suffer from domain overfitting, cf. the
discussion in Section 3.4. The evaluation sets used for these experiments are:

• the four DiSCo evaluation subsets, and the German Broadcast 2016 set for
the German broadcast domain, cf. Section 3.4.3 and 3.4.4,

• the proposed German Oral History test set, cf. Section 3.4.6,

• the Interaction test set for the linguistics domain, cf. Section 3.4.7,

The results on German Broadcast 2016 and the Interaction test set were con-
ducted after publication of [Gref et al., 2018a] and [Gref et al., 2018b] since these
evaluation sets were not available early on—as described before.

To further study the influence of the segmentation length of the evaluation data
on the different models, we compare results on two differently segmented versions
of the German Oral History test set, as shown in Table 4.3. The coarsely segmented
version of the test set has an average segment length of more than two minutes,
making it nearly 25 times coarser-segmented than the fine-segmented version.

As described in Section 3.5, we use our default 500.000 words broadcast decoding
language model for our experiments. We use a fixed subset of the GerTV1000h
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4 Acoustic Robustness for Oral History Interviews

corpus as a development set to adjust the language model weight to a fixed value
during decoding for all test sets in each acoustic model experiment.

4.3.2 Results and Discussion

In the following, we present and discuss the results of the Kaldi acoustic model
comparison experiments. We first report the results on the 128 hours training
subset. Next, we analyze how the different models generalize when trained with
1000 hours of training data.

Acoustic Models Comparison with 128 Hour Training Data

The word error rates of the studied models on the several test sets are summarized
in Table 4.4. The LF-MMI–TDNN-LSTM model using the training routine with
per-frame dropout achieves the best results on all evaluation sets, except for In-
teraction. On the Interaction test set, this model achieves the second-best result
after the CE-LSTM. Without per-frame dropout, the LF-MMI model performs
significantly worse on all domains. The LF-MMI without per-frame dropout is
often even worse than the CE-LSTM model, which is much simpler in terms of the
neural network architecture and the training routine. In the following experiment
with 1000 hours of data, we evaluate whether this is a general issue or a result of
the reduced amount of training data.

The best LF-MMI and the CE-LSTM model both achieve a word error rate of
44 % on the German Oral History test set. Thus, both models beat the previous
Audio Mining baseline by eleven percentage points while using just one-eighth
of the training data, cf. Section 3.4.13. For the broadcast domain, the LF-MMI
model even outperforms the literature results of the CTC-RNN model reported in
Table 3.6—again, using just one-eighth of the training data. Therefore, we can as-
sume a good generalization ability of these two models—although the accuracy on
the challenging, non-broadcast domains still leaves a lot of room for improvement.

The bidirectional LSTM model performs worse than the other models on most
test sets. Moreover, the results are significantly worse than the unidirectional
LSTM. This observation is not entirely consistent with the results of the previously
cited literature on bidirectional LSTM in ASR, which report generally improved
performance. In our experiments, this is probably due to the halved projection
dimension of the LSTM layers that we had to choose to keep the training possible
in a reasonable amount of time. Thus, the results of LSTM and BLSTM are not
entirely comparable. Because of the poor performance and the slow training, we
do not consider the BLSTM in the subsequent experiments.
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Table 4.4: Word error rates in percent achieved by the studied acoustic models trained
on the 128-hour subset of the GerTV1000h corpus. DiSCo Average is the
arithmetic mean of the results on the four DiSCo subsets.

Cross-Entropy LF-MMI
TDNN-LSTM

Test Set LSTM BLSTM Standard Dropout

GerTV Dev Set 16.6 17.2 17.0 15.5
DiSCo Average 17.2 18.2 17.9 15.8

Planned Clean 12.1 12.8 11.6 10.6
Planned Mix 16.7 17.6 17.4 15.1
Spontaneous Clean 13.9 14.6 13.8 12.4
Spontaneous Mix 26.0 27.6 28.9 25.0

German Broadcast 2016 15.1 14.9 14.6 13.9
Oral History 44.1 46.7 49.6 44.0
Interaction 78.6 82.0 83.0 79.7

Acoustic Models Comparison with 1000 Hour Training Data

The results for the models with 1000 hours of training data are shown in direct
comparison to the results on 128 hours of training data in Table 4.5. Relatively,
the standard LF-MMI–TDNN-LSTM model (without dropout) benefits most from
the increased amount of training data, obtaining the highest relative and absolute
decrease of the word error rates. The model outperforms the CE-LSTM model
on most test sets when trained on 1000 hours of training data. However, the LF-
MMI model with per-frame dropout still achieves the best results on all test sets.
Thus, per-frame dropout helps to improve generalization when a smaller amount
of training data is used—but it also generally improves performance when larger
amounts of data are used.

Overall, the best LF-MMI model shows significant improvement for all domains
and data sets by training on 1000 hours of broadcast speech. The model achieves
a 13 % word error rate on average on the DiSCo subsets. For the easiest DiSCo
subset planned clean the model achieves a word error rate below 10 %. For the most
challenging DiSCo subset spontaneous mix it achieves a word error rate of 20 %.
The remaining DiSCo subsets and broadcast test sets range from 11 % to 14 %
word error rate. For oral history, a word error rate of just over 34 % is achieved,
improving by ten percentage points—solely by adding more training data from
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Table 4.5: Word error rates in percent achieved by the studied acoustic models increasing
the training data from 128 hours to (7→) 1000 hours. For each test set, two
word error rates are reported: the previous results of the models trained on
a 128-hour subset from Table 4.4 on the left side of the arrow ( 7→) and those
trained on the entire GerTV1000h corpus on the respective right side.

LF-MMI

Test Set CE-LSTM Standard Dropout

GerTV Dev Set 16.6 7→ 15.2 17.0 7→ 14.5 15.5 7→ 14.0
DiSCo Average 17.2 7→ 14.7 17.9 7→ 13.4 15.8 7→ 13.0

Planned Clean 12.1 7→ 10.6 11.6 7→ 09.2 10.6 7→ 09.2
Planned Mix 16.7 7→ 13.7 17.4 7→ 12.9 15.1 7→ 12.0
Spontaneous Clean 13.9 7→ 12.1 13.8 7→ 10.8 12.4 7→ 10.8
Spontaneous Mix 26.0 7→ 22.3 28.9 7→ 20.8 25.0 7→ 20.1

German Broadcast 2016 15.1 7→ 13.1 14.6 7→ 12.5 13.9 7→ 12.2
Oral History 44.1 7→ 36.6 49.6 7→ 36.6 44.0 7→ 34.3
Interaction 78.6 7→ 71.1 83.0 7→ 69.2 79.7 7→ 67.6

the broadcast domain. The improvement on Interaction is also significant, but
performance on this data remains unsatisfactory.

Influence of Segmentation

To investigate the influence of segmentation on the different models, we evaluate
the previously trained models with 128 and 1000 hours of training data with the
coarsely segmented version of the German Oral History test set. We compare these
results with the standard, fine-segmented version of the test set in Table 4.6. It
is striking that the coarser segmentation only slightly degrades the cross-entropy
trained models. This is especially true for the 128 hours trained CE-LSTM. The
influence of the segmentation tends to become stronger for the 1000-hours-trained
model.

The sequence-discriminative-trained LF-MMI–TDNN-LSTM models suffer sig-
nificantly stronger from the long segments of the coarsely segmented test set than
the cross-entropy models. Ultimately, the cross-entropy models achieve better
results than the LF-MMI models on this version of the test set. The LF-MMI
model trained with per-frame dropout is more affected by the long segments than
the standard-trained LF-MMI model. In this case, per-frame dropout seems to
be more harmful than beneficial. The effect is strongest for the LF-MMI model
with dropout trained on 1000 hours, which previously achieved the best results on
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Table 4.6: Comparison of coarse and fine segmented speech on the speech recognition
performance using the oral history test set.

Word Error Rate [ %]

Segmentation: Coarse Fine ∆

128 h CE-LSTM 45.3 44.1 1.2
128 h CE-BLST 48.2 46.7 1.5
128 h LF-MMI–TDNN-LSTM 53.4 49.6 3.8
128 h + dropout 50.2 44.0 6.2

1000 h CE-LSTM 39.2 36.6 2.6
1000 h LF-MMI–TDNN-LSTM 43.3 36.6 6.7
1000 h + dropout 44.5 34.2 10.3

the fine-segmented Oral History test sets. The recognition performance decreases
with longer segments by more than ten percentage points in absolute and by 30 %
relative, respectively.

However, this limitation of the LF-MMI model with dropout is only of little
detriment for application in a real-world system. For the application in systems
such as Audio Mining, we have to apply an utterance segmentation that limits
the segment length to a few seconds. The transcript can be concatenated after
speech recognition to the desired segment length. The utterance segmentation can
be realized by detecting speech pauses or spectral changes in the speech signal—
similar to what is already realized for the speaker-change-aware segmentation in
Audio Mining, cf. Section A.2.

However, for evaluation in Kaldi, where no automatic segmentation is performed,
this peculiarity of LF-MMI Models should be taken into account, and suitable
segment lengths should be chosen in advance to match the subsequent application.
In the first publication of the present work, [Gref et al., 2018a], we used the
coarsely segmented version of the Oral History test set for evaluation. Thus, the
results there indicate that the CE-LSTM model is the model to be chosen for the
oral history use case. In [Gref et al., 2018b], and all subsequent publications, we
performed the analyses with the fine-segmented version that better reflects results
in real-world applications.

4.3.3 Summary and Conclusion
The experiments presented in this study evaluated and compared different hybrid
DNN-HMM acoustic models: a cross-entropy-trained LSTM and BLSTM hybrid
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model and an LF-MMI–TDNN-LSTM model. The LF-MMI model was trained
with and without per-frame-dropout. We trained all models with a 128 hours
subset and the 1000 hours of German Broadcast training data to study how well the
models generalize with different amounts of training data. We evaluated all models
on a multitude of test sets from three different domains to get an appropriate
estimate of real-world application performance and avoid the selection of models
that suffer from domain overfitting. We have focused in particular on the German
Oral History test set proposed in the presented research work.

In conclusion, the results indicate that the standard LF-MMI–TDNN-LSTM
model does not generalize well when trained on only 128 hours of training data.
A simple CE-LSTM with three layers achieves similarly good or better general-
ization and results on the different domains with the limited training data. The
standard LF-MMI requires 1000 hours of annotated speech for training for good
generalization. However, per-frame dropout helps elevate this problem when a
smaller amount of training data is used—but it also generally improves perfor-
mance when larger amounts of data are used. The LF-MMI–TDNN-LSTM model
with per-frame dropout outperforms all other models in the 128 hours and 1000
hours training data scenario.

Furthermore, we studied the influence of the segmentation length of test data
on the different models. We observed that very long segments degrade recogni-
tion performance for all models. However, the effect is relativity small for the
cross-entropy models and stronger for the LF-MMI models. The LF-MMI model
with per-frame dropout suffers the most from long segments, and the recognition
performance deteriorates by up to 30 % relative. However, this is not critical for
Audio Mining applications as long as utterance segmentation is used.

The LF-MMI model with per-frame dropout achieves a recognition performance
of 34.2 % word error rate for oral history. The model also achieves the best recog-
nition performance on all test sets from the other domains, beating previous lit-
erature benchmarks and indicating a decent real-world performance. Therefore,
we use this model for all following experiments in the presented research work.
For the subsequent experiments, we retrain this model with improved bootstrap
training that further sightly improves the accuracy.

4.4 Study: Multi-Condition Training via Data
Augmentation

After selecting a suitable acoustic model for the German oral history task, this
section focuses on improving the acoustic robustness. In the systematic review
of related works on challenges of oral history interviews for speech recognition in
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Section 3.3.2, we discussed a multitude of distortions and challenges. We cate-
gorized the challenges into four categories and found acoustics to be one of the
main challenges reported in the literature and our studied interviews. Addition-
ally, we formulated the hypothesis that reverberation is one of the main acoustic
challenges of our oral history interview collection. Thus, in this section, we dis-
cuss the influence of the acoustics of oral history interview recordings, especially
of reverberation, on speech recognition in detail.

As described in Section 4.2, multi-condition training seems to be the most
promising approach in the literature for single-channel recordings. Our study does
not have appropriate in-domain training data to perform multi-condition training
with real-world data and conditions. Our training data from the broadcast domain
only covers certain conditions. Thus, there is a mismatch between our training
data and the studied interviews. To overcome this limitation, we propose a combi-
nation of noise and reverberation data augmentation for multi-condition training
to tackle this problem for German oral history interviews.

4.4.1 Recording Conditions of Oral History Interviews
Figure 4.3 visualizes the recording conditions of a typical oral history interview.
Usually, a recording device is placed on a table in a small or medium-sized room,
like a living room or kitchen. The interviewee is located at some distance to the
recording microphone causing speech waves to be reflected on the walls and other
surfaces in the room.

Reflections arriving at the microphone within 50 ms after the first wavefront
are perceived as a single auditory event, cf. Avan et al. [2015]. These are called
early reflections in contrast to late reflections that arrive after 50 to 80 ms. Early
reflections cause coloration of the recorded sound that is perceived as a change of
the timbre and is usually suppressed by binaural hearing, cf. Tsilfidis et al. [2013,
pp. 359–364]. Thus, this effect becomes particularly evident in single-microphone
recordings, such as in our interviews.

Idealized, the reflections in a room from a sound source (e.g., a speaker) to the
receiver (e.g., a microphone or another person’s ear) can be assumed to be a linear,
time-invariant system. Mathematically, a complete description of this system is
given by a room impulse response (RIR), cf. Tsilfidis et al. [2013, pp. 359]. The
reverberation of a given speech signal can be modeled as a convolution of the
speech signal s with the room impulse response h.

In some interviews, a noise source is also present in the recording. These noises
can come from the street through a window, a noise source inside the room, or
electronic devices. In Figure 4.3, this is symbolized by a loudspeaker. Depending
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Figure 4.3: Strongly simplified visualization of the influence of room characteristics and
microphone position on the recording by multiple, direct reflections of the
speech sound waves during an interview. The loudspeaker symbolizes a noise
source present during the recording, positioned at a location in the room
different from the person speaking.

on the position in the room, the noise is also affected by the room reverberation.
Since the position is often different from the interviewee, the effect of the room on
the noise signal is modeled by another room impulse response h̃.

As described in Section 2.1.3, for GMM-HMM-based and hybrid acoustic models,
usually MFCCs or related features are used. These features are based on the short-
time Fourier-transformation spectrogram. Noises and room reverberation have a
strong influence on the spectrogram. In Figure 4.4, we visualize the impact of
reverberation, noises, and the combination of both, on the spectrogram.

In spectrograms, harmonics caused by voiced speech sounds appear as equally
spaced, relatively horizontal lines. Voiceless sounds appear as band-filtered noise.
With good recording quality and intelligibility, these structures can be easily iden-
tified in the spectrogram—even at higher frequencies. This is well visible in Fig-
ure 4.4a, where the magnitude spectrogram of a clean speech signal from the
broadcast domain is presented.

We use the data augmentation presented in the following Section 4.4.2 to visual-
ize the influence of reverberation and additive noise. In Figure 4.4b, the influence
of non-stationary, additive noise on the spectrogram is presented using a street
noise signal from CHiME3 challenge data [Barker et al., 2015]. The noise overlays
the speech signal over large frequencies ranges. This makes the identification of
the speech components significantly more challenging. However, speech compo-
nents with relatively high local signal energy can still be identified, such as the
harmonics.
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(a) Original, clean signal with good recording quality
from the broadcast domain. The harmonics and the
noise components of speech are both clearly visible,
even for higher frequencies.
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(b) Non-stationary street noise added to the clean signal
with a 10 dB signal-to-noise ratio. Distortions are
present over wide frequency ranges. Nevertheless,
many harmonics remain visible due to the high local
energy of voiced speech, e.g., in the time interval
from 0.3 to 0.6 seconds. The harmonic structures
are visible up to 3000 Hz.
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(c) Artificial reverberation of an office room applied to
the clean signal. The room reverberation acts like a
low-pass filter, filtering harmonics and noise sounds
and smearing the harmonics along the frequency axis
at lower frequencies. Furthermore, the reverberation
leads to a slight shift of the speech signal on the time
axis and smearing along the time axis due to late
reverberation, e.g., visible at 0.6 seconds.
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(d) Application of reverberation from 4.4c after super-
position with the noise from 4.4b. The low-pass
effect of reverberation affects the noise signal in the
same way as the speech signal. The noise compo-
nents remain dominant up to about 1.5 kHz and can
be seen attenuated up to about 3 kHz. As a result,
the harmonics of speech become even more challeng-
ing to identify.

Figure 4.4: Magnitude spectrograms of a broadcast recording augmented in different ways
to illustrate the effects of reverberation and additive noise on the spectrum.
Additive noise, but especially room reverb, can blur harmonics and other
speech characteristics and make them difficult to extract. All spectrograms
use the same color bar for better comparison.
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The influence of reverberation on the spectrogram is visualized in Figure 4.4c
using a room impulse response of an office room from the Aachen Impulse Response
(AIR) database [Jeub et al., 2009]. According to Jeub et al., the office room has
an area of 32 square meters (5.0 m × 6.4 m) and a ceiling height of 2.9 meters.
Therefore, it is more or less the size of a typical living room. The room impulse
response used for Figure 4.4c was recorded at a distance of 2 meters from the
source to the receiver. We consider this a realistic recording condition of a typical
oral history interview. The room reverberation acts like a low-pass filter. It filters
speech at higher frequencies and smears the harmonics along the frequency axis
at lower frequencies, making them often indistinguishable.

In Figure 4.4d, the influence of both reverberation and noise on the speech
spectrogram is presented. For this example, the room impulse response from
Figure 4.4c is applied to the noisy speech signal from Figure 4.4b. The low-
pass effect of the reverberation affects the noise spectrogram in the same way as
the speech. Thus effect becomes evident considering the beginning of the signal
between 0 and 0.05 seconds, where no speech is present. Up to about 1.5 kHz,
the noise remains quite dominant, making it hard to distinguish speech from noise
in the spectrogram. Like the speech signal, the local noise energy decreases with
higher frequencies. It can be seen slightly attenuated up to about 3 kHz. Above
3 kHz, both the speech and the noise are strongly attenuated.

Figure 4.5 presents spectrograms of six different oral history interviews from our
test set. Thus, these spectrograms show the real-world acoustic conditions of the
interviews. Comparing these spectrograms with the clean speech recording from
the broadcast domain in Figure 4.4a, the various auditory artifacts of the oral
history interviews become evident. In almost all spectrograms, the influence of
room reverberation is visible due to the before described low-pass filter effect. The
interview in Figure 4.5a seems to be similar to the artificially applied reverberation
from the broadcast example in Figure 4.4c. This is true both in terms of the
spectrogram and subjective auditory perception. For the interview in Figure 4.5c,
the low-pass filter effect is most evident. Above 2 kHz, the entire signal is almost
completely suppressed.

In addition to a slight room reverberation, stationary and non-stationary ad-
ditive noises are visible in the spectrogram of the interviews in Figure 4.5d and
Figure 4.5f. The interview from Figure 4.5d is the most similar to the artificial
noisy broadcast example in Figure 4.4b. However, Figure 4.5f is more similar to
the artificial combination of noise and reverberation in Figure 4.4d.

The interviews in Figure 4.5b and Figure 4.5e show other effects and artifacts
visible in addition to these two effects. It is difficult to give a reason for these
effects in retrospect since the recordings were made years or decades ago. Our
hypotheses for these often non-linear, sometimes artificial sounding disturbances
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(a) No noise and some room reverberation, making the
speech sound slightly dull. The reverberation damps
harmonic parts of speech in higher frequencies.
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(b) Moderate stationary noise and other artifacts—
possibly due to aging of the magnetic tape and a
low-quality microphone. Harmonics are barely dis-
cernible in the spectrogram.

0.2 0.4 0.6 0.8
0

1000

2000

3000

4000

5000

6000

7000

8000

(c) Low-energy stationary noise and room reverberation
in what is probably a medium-sized room. Speech
above 2 kHz is almost entirely suppressed.
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(d) Stationary and electric humming noises, ticking
clock in the background, slight room reverberation.
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(e) Voice recorded very loudly. At times slight clipping
occurs. No background noise is audible.
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(f) Probably low-quality microphone, non-stationary
background noise (probably street noises from an
open window), and partial clipping.

Figure 4.5: Spectrograms of six different oral history interviews from the test set repre-
senting various acoustic distortions that occur to varying degrees. All spec-
trograms use the same color bar range for better comparison.
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are the usage of low-quality microphones, clipping, and aging of the magnetic
recording tape before digitization.

In conclusion, our qualitative comparison of the spectrograms of the artificially
augmented broadcast recording with real-world oral history interviews confirms
the hypothesis made in advance that a multitude of different acoustic distortions
co-occurs in oral history interviews with varying degrees. Reverberation is one
of the distortions that seem to occur in most interviews to some degree. The
reverberation of the small and medium-sized rooms in which the interviews were
recorded manifests itself by a low-pass filter effect and smearing of harmonics along
the frequency axis in the spectrogram.

Furthermore, stationary and non-stationary additive noises appear in many in-
terviews to some degree. Reverberation often influences these noises similar to
speech. Data augmentation seems to replicate these effects well and is a promising
approach to improve robustness. We conclude that a combination of both effects is
beneficial for data augmentation for the studied oral history interviews. However,
other acoustic effects can only be simulated to a limited extent since the exact ori-
gin is unclear. These will be further addressed in Chapters 5 and 6 using transfer
learning and model adaptation.

4.4.2 Noise and Reverberation Data Augmentation for
Oral History Interviews

This section lays out our proposed data augmentation approach for multi-condition
training to improve the robustness of hybrid acoustic models for German oral his-
tory interviews. Our proposals are primarily based on the systematic literature re-
view from Section 3.3.2 and the qualitative analysis and comparison of German oral
history interviews with data augmented broadcast spectrograms in Section 4.4.1.
In summary, we propose:

• the combination of noise and reverberation data augmentation of the (clean)
broadcast training data to obtain a wide range of different, realistic recording
conditions for our interviews.

• using the augmented training data not only during neural network training
but for the entire GMM-HMM bootstrap model training. Other approaches
in the literature often use clean training data for the GMM-HMM bootstrap
pipeline and apply data augmentation only in the neural network training
state.

• randomly overlapping different noise signals to generate unique noise signals
for each speech signal in the case that only an insufficient amount of noise
data is available compared to the speech data.
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• combining clean and augmented speech during training. This is based on
observations in preliminary data augmentation experiments, where only aug-
mented and no clean data was used. These experiments resulted in decreased
recognition performance.

In general, these proposals aim to improve robustness and generalization with
multi-condition training. In the following, we describe these proposed aspects in
more detail.

Combination of Noise and Reverberation Data Augmentation

Based on the observations in the previous section, we propose combining noise
and reverberation data augmentation for multi-condition training to improve ro-
bustness for LF-MMI acoustic models for German oral history interviews. The
proposed data augmentation is visualized in Figure 4.6. Each speech signal is aug-
mented by convolution with a randomly selected room impulse response. A room
impulse response from the same room but at a different, random position is used
to augment a randomly selected noise signal. After applying reverberation, the
noise signal is added to the speech with a signal-to-noise ratio randomly drawn
from a predefined range.

Mathematically, the proposed augmentation can be described as

(xn)n∈N := (sn)n∈N ∗ (hn)n∈N + λ · (wn)n∈N ∗ (h̃n)n∈N, (4.1)

where ∗ is the convolution operation for sequences, (sn)n∈N is the sequence of the
(clean) speech signal, (hn)n∈N and (h̃n)n∈N are room impulse responses modeling
the reverberation of one room at different positions, (wn)n∈N is the sequence of the
noise signal, and λ ∈ R is the scaling factor for the given signal-to-noise ratio.

As observed in the previous section, some interviews are distorted by reverber-
ation, but no background noise seems to be present. If only reverberation and no
background noise affects the speech signal, ∀n ∈ N : wn = 0 applies and yields

(xn)n∈N := (sn)n∈N ∗ (hn)n∈N (4.2)

for data augmentation.
Multi-condition training with data augmentation using reverberation and noises

was already studied in the days of GMM-HMMs, for example, by Sehr et al. [2011].
However, with the emergence of hybrid DNN-HMM, it is again the object of in-
vestigation for neural-network-based acoustic models. For example, this becomes
evident in the meta-analysis by Kinoshita et al. [2016] of the contributions for the
REVERB challenge. Kinoshita et al. identify the following two aspects which in-
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Figure 4.6: Visualization of the noise and reverberation data augmentation. Reverber-
ation is applied to the speech and noise signal before both are added with
a random signal-to-noise ratio. The room impulse responses are chosen ran-
domly with the condition that they are from the same room, but they can be
from different positions. This aims to match the actual recording conditions
of oral history interviews.

fluence the overall performance in reverberant speech recognition the most: DNN-
based (hybrid) acoustic models and multi-condition instead of clean training data.

As discussed earlier, a limitation in the literature for real-world applications is
that only exactly one specific challenge or distortion is often examined. This is also
true for the REVERB challenge, where reverberated speech is studied in almost
noise-free conditions (no noise or with 20 dB signal-to-noise ratio) and on limited
vocabulary, read speech task corpora [Robinson et al., 1995; Lincoln et al., 2005].

Different research works explore the combination of different challenges and
data augmentation approaches to address this limitation in the literature at the
beginning of the presented research work. For instance, Hartmann et al. [2016]
studied the combination of noise data augmentation with speed perturbation and
speaker-adaptive augmentation for low-resourced languages.

Also, multi-condition training with noise and reverberation data augmentation
was applied and studied in real-world applications at that time. For instance,
among multiple proposed approaches in the pipeline, Li et al. [2017] use artificial
room impulse responses from a room simulator and real-world noises, including
music and ambient noises, to train the Google Home system for far-field, multi-
channel speech recognition.
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A combination of noise and reverberation data augmentation, similar to the one
we propose for our use case, is studied by Ko et al. [2017] roughly at the same time
as our work. The authors use an equation similar to Equation 4.1 to model the
influence of noises and reverberation but with a sum of noise sources from multiple
positions. In our approach, we only consider one noise source position.

Ko et al. studied data augmentation with simulated and real-world room-impulse
responses and different noise types for far-field ASR with cross-entropy and LF-
MMI models. The approaches are evaluated on the English far-field large vocab-
ulary continuous speech recognition ASpIRE challenge [Harper, 2015] and AMI
meeting corpus [Mccowan et al., 2005; Hain et al., 2006]. The data augmentation
was applied on recordings from the English Switchboard [Godfrey et al., 1992] and
Fisher corpus [Cieri et al., 2004]. Additionally, the authors evaluated their sys-
tem on the close-talk telephone speech from Switchboard. The authors concluded
that real room-impulse responses perform slightly better than simulated impulse
responses. To overcome this, the authors propose using noises with simulated
room-impulse responses.

Ko et al.’s results convincingly show how reverberation data augmentation can
help to adapt the training data for far-field speech recognition tasks with hybrid
acoustic models—and in addition, it can also improve the performance of speech
recognition in general. However, from our task’s perspective, a limitation of the
study is that the studied challenges cover only room reverberation but no noises
and other acoustics distortions we observe in our interviews.

Multi-Condition Bootstrap Training

Ko et al. use a clean-trained bootstrap pipeline and apply the multi-condition
data only for neural network training. Thus, the phonetic decision tree generation,
context-dependent state-tying for the GMMs, and other aspects of bootstrapping
are performed on clean data. The alignment of the data is performed with a clean-
trained GMM-HMM system. While this saves a lot of computational time, this
might be a limitation since the GMM-HMM systems used might not be as robust
against acoustic distortions and lead to poorer alignments.

For distortions without temporal influence on the speech signal, such as addi-
tive noises, it is conceivable to perform the alignment only for the clean data and
use these alignments for the corresponding augmented speech samples. However,
reverberation leads to shifts on the time axis and smearing of the signal along time
due to late reverberation. Both effects are also observable in small and medium-
sized rooms, e.g., as shown by comparing Figures 4.4a and 4.4c. Therefore, we
propose and study the usage of augmented data in bootstrap training to obtain
robust GMM-HMM acoustic models to obtain more precise alignment for distorted
data. We expect that this ultimately leads to improved speech recognition per-
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new noise signal

+

Figure 4.7: Graphical representation of the procedure for generating a new, previously
unused noise signal for each speech sample. Random time points are selected
from three different noise recordings from the database to create new noise
combinations repeatedly.

formance of the hybrid acoustic model trained on top of these GMM-HMMs for
speech recorded in challenging acoustic conditions.

Random Noise Overlapping

We had comparatively little noise data available for the first experiments with
data augmentation with real-world noise recordings. For the 1000 hours of speech
data, only 14.5 hours of noise were available. If the noise were applied to the entire
data, each noise would be seen in training about 70 times per epoch. Overfitting
to this noise would be expected. Therefore, we used a method to artificially create
a new noise signal from the existing noises for each speech sample that has not
been used in exactly this way before.

The procedure is illustrated in Figure 4.7. We randomly select three noises
from the database for each speech signal. A random time point in each signal is
selected from which a portion of the signal is extracted. Another noise signal is
appended if the extracted signal is shorter than the current speech signal. These
three randomly selected noise signals are added to create a new noise signal.

The resulting noises often have a stationary rather than a non-stationary char-
acter. This is due to the averaging effect of a superposition with three different
noises. Training with this data, we expect the robustness to increase, especially for
oral history interviews. We perform comparative experiments with simple station-
ary additive white Gaussian noise (AWGN) to evaluate the influence of real-world
noises created with our approach.

Combining Clean and Augmented Speech During Training

We observed in preliminary experiments on data augmentation with CE-LSTM
models and the 128-hour training data set that training hybrid acoustic models
only on reverberated or noisy speech generally tends to lead to decreased instead
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of increased recognition accuracy. This observation tends to be true for both
broadcast recordings and oral history interviews.

This behavior is probably because this type of training defects the goal of multi-
condition training in ASR and is rather matched-condition training. Matched-
condition training aims to train systems on data that matches the evaluation
or inference data. However, an exact replication of the distribution of acoustic
distortions in oral history interviews is not feasible. As explained before, the
frequency and type of distortions are different in each interview—and the recording
situation cannot be reconstructed in retrospect. Thus, in multi-condition training
with data augmentation, the aim is to obtain training data that do not precisely
match but cover the evaluation or inference conditions, cf. Vincent et al. [2017].

Thus, we propose combining noise and reverberation data augmented speech
with original clean data for training to increase robustness and cover an extensive
range of acoustic conditions. This is in line, e.g., with Ko et al. [2017], who state
that combining clean and reverberated training data also leads to considerable
improvements for close-talking scenarios in their experiments.

Additionally, as for the first experiments in Section 4.3, we apply speed per-
turbation techniques to increase training data variance by creating two additional
versions of each signal using the constant speed factors 0.9 and 1.1.

4.4.3 Experimental Setup
In the following, we lay out our experimental setup to evaluate the noise and
reverberation data augmentation. Again, we conduct all experiments with the
Kaldi ASR toolkit [Povey et al., 2011].

DNN-HMM Acoustic Models

For evaluation, we use the best-performing approach from the acoustic model com-
parison experiments in Section 4.3: the LF-MMI–TDNN-LSTM acoustic model
trained with per-frame dropout. In an ablation study laid out later, we perform
an additional comparison experiment with the CE-LSTM model to demonstrate
that the data augmentation improves the robustness for oral history interviews in
a model and training-criterion independent manner.

Bootstrap Training

In Section 4.3, we compared models with varying training data sizes. In the
current and the subsequent experiments, we train the LF-MMI model with the
entire 1000 hours of training data—or more. We increase the size of the subsets
during bootstrap training for the LF-MMI model, as shown in Table 4.7, to account
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Table 4.7: Training data subsets used for bootstrap training in the previous and the cur-
rent setup. The training data size for the first three GMM-HMM models is
roughly tripled. Feature and tied state configuration are the same as in the
previous setup, cf. Table 4.2.

Model Previous Setup New Setup

Monophone 11,000 shortest utt. 30,000 shortest utt.
Triphone 1 38,000 rand. utt. 100,000 rand. utt.
Triphone 2 38,000 rand. utt. 100,000 rand. utt.
Triphone 3 entire data entire data
Triphone 4 entire data entire data

for this increased training data. The features and tied-state configurations are not
changed. This new setup is more closely related to the Kaldi setup for English
Switchboard models. We expect this setup to improve the alignment (used for
chunking in LF-MMI training) and state-tying, which should ultimately improve
the recognition performance of the hybrid model.

Training Data

We used 266 room impulse responses of real small and medium-sized rooms for
the reverberation data augmentation. This database is obtained by combining a
subset from the Aachen Impulse Response (AIR) database [Jeub et al., 2009] with
in-house room impulse responses.

In our experiments, we study two noise types: artificially created additive white
Gaussian noise and 14.5 hours of real-life noise recordings. For the real-world noise
experiments, we combine in-house data with 8 hours of data from the CHiME3
challenge, recorded in noisy environments (on a bus, in a cafe, pedestrian area,
and street junction) [Barker et al., 2015]. The in-house data contains recordings of
different noise sources, such as sirens, hairdryers, crowd cheering, and noises from
kitchen devices.

We augment the entire GerTV1000h training data set with the room impulse
response and noise databases. In the first step, we create three data augmented
versions of the corpus:

• Reverb+RealNoise: All signals are augmented according to Equation 4.1.
We apply the random noise overlapping to real-world noise recordings to
generate new noise signals for each speech recording. As described in Sec-
tion 4.4.2, noise signals are also reverberated using a room impulse response
from the same room but a different location. After reverberation, we apply a
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Table 4.8: Overview of the different multi-condition training setups used for noise and
reverberation data augmentation experiments. The amount of training data
is kept fixed to the original amount of data for all Mix models. As the name
implies, for 3-fold, the amount of training data is increased 3-fold.

Original Reverb Reverb+
WhiteNoise

Reverb+
RealNoise

Clean 100 % 0 % 0 % 0 %
Mix-Reverb 50 % 50 % 0 % 0 %
Mix-Reverb+WhiteNoise 40 % 40 % 20 % 0 %
Mix-Reverb+BothNoises 35 % 35 % 15 % 15 %
Mix-Reverb+RealNoise 40 % 40 % 0 % 20 %
3-fold* 100 % 100 % 0 % 100 %

random signal-to-noise ratio between 10 and 20 dB. This range roughly cor-
responds to the perceived noise range of typical interviews, from only slightly
perceptible to moderate noise.

• Reverb+WhiteNoise: Similar to Reverb+RealNoise but instead of real-
world noises, additive white Gaussian noise is used with the same setup.

• Reverb: For this augmentation, no noise and only reverberation is used
according to Equation 4.2.

Based on these augmented versions of the GerTV1000h corpus, we created
different multi-condition training sets randomly selecting samples from the cor-
pora versions using different distributions, as shown in Table 4.8. We study four
different mixtures of clean and augmented speech recordings where the overall
amount of training data is kept fixed to the original setup. Mix-Reverb focuses
on reverberation only, combining clean with reverberated speech to equal extents.
This mixture does not contain any additional noises and serves as a comparative
experiment for the influence of noise on multi-condition training. Mix-Reverb-
+WhiteNoise adds AWGN to the setup, while Mix-Reverb+RealNoise adds real-
world noises. Mix-Reverb+WhiteNoise serves as a comparison experiment for
the real-world noise setup Mix-Reverb+RealNoise. In Mix-Reverb+BothNoises,
the share of noises is sightly increased compared to Mix-Reverb+WhiteNoise and
Mix-Reverb+RealNoise, combining AWGN and real-world noises.

Additionally, in later experiments that finished after publishing [Gref et al.,
2018b], we performed experiments where the amount of training data is increased
3-fold using the proposed noise and reverberation data augmentation. The 3-fold
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setup reassembles and extends the concept of Mix-Reverb+RealNoise. It combines
the entire Clean, Reverb, and Reverb+RealNoise versions of GerTV1000h. The
model was first introduced as one part of a larger pipeline in [Gref et al., 2019].

Evaluation Data

We use our default 500.000 words broadcast decoding language model for our
experiments, cf. Section 3.5. Again, we use the fixed-sized subset of the clean
GerTV1000h corpus as a development set to adjust the language model weight to
a fixed value for each acoustic model during decoding all test sets.

The evaluation of the experiments is performed on the same evaluation sets as
in the previous set of experiments in Section 4.3: the DiSCo subsets and German
Broadcast 2016 for the broadcast domain, the Oral History test set, and the In-
teraction test set. These sets cover three different domains to assure a reasonable
estimate of the performance for real-world applications and avoid domain overfit-
ting. The main focus is the German Oral History test set since it represents the
studied use case.

Additionally, we evaluate the models of the main experiments on the acoustic
robustness with additional test sets: Challenging Broadcast (cf. Section 3.4.5) and
Spoken QALD-7 (cf. Section 3.4.8). These sets cover challenging acoustic recording
conditions for different domains. The results on these sets were conducted after
the publication of [Gref et al., 2018b] as these evaluation sets were not available
early on.

Ablation Studies

In Section 4.4.2, we proposed multi-condition bootstrap training instead of training
only the neural network acoustic model on multi-condition data. To verify the
improvement of the robustness of the final acoustic model, we perform an ablation
study. We use the clean-trained bootstrap and apply the multi-condition training
only in the neural network training stage.

Additionally, we perform an ablation where we replace the acoustic model with
the CE–LSTM from Section 4.3, trained on the 128-hour subset of the multi-
condition data—using the same segments of GerTV1000h used in Section 4.3. This
aims to demonstrate that the improvement of the acoustic model’s robustness is
not depended on the selected model, the training criterion, and a large amount of
training data, but is a property of the proposed data augmentation.
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Table 4.9: Comparison of the previous and updated GMM-HMM bootstrap training on
the final LF-MMI-TDNN-LSTM model (with per-frame dropout). Results are
reported as word error rates in percent. Increasing the subsets in bootstrap
training of GMM-HMM models in the new setup leads to consistent improve-
ment of the hybrid model on all domains.

Test Set Old New

GerTV Dev Set 14.0 13.8
DiSCo Average 13.0 12.8

Planned Clean 9.2 9.0
Planned Mix 12.0 12.0
Spontaneous Clean 10.8 10.6
Spontaneous Mix 20.1 19.7

German Broadcast 2016 12.2 12.2
Oral History 34.3 34.2
Interaction 67.6 65.7

4.4.4 Results and Discussion
In the following, we present and discuss the results of the different multi-condition
experiments. We first report the results of the new bootstrap training on clean
data only. This model serves as a new baseline for the subsequent experiments,
where we compare and discuss the different multi-condition setups for the LF-MMI
model. In the two ablation studies, we first analyze the influence of multi-condition
data during bootstrapping. Then, we demonstrate the robustness of the proposed
data augmentation with a CE-LSTM model trained on fewer data.

New Clean-Trained Baseline with Updated Bootstrapping

Table 4.9 compares the results of the LF-MMI–TDNN-LSTM model (trained with
per-frame dropout) for the previous and new bootstrap configuration. The new
bootstrapping utilizes larger subsets of the GerTV1000h corpus for the GMM-
HMM training, cf. Table 4.7. The results show a small yet consistent improvement
in recognition performance for all domains.

It is likely that further increasing the amount of training data in bootstrapping
can lead to further improvement in the overall recognition performance. However,
this comes at the expense of the increased training time and computational load
in trade of a presumably comparatively small improvement. Therefore, we refrain
from this in the presented research work and use the new bootstrap configuration
for all subsequent experiments.
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Table 4.10: Results on different domains of the multi-condition trained LF-MMI–TDNN-
LSTM models. Results are reported as word error rates in percent. DiSCo
Average is the arithmetic mean of the results on the four DiSCo subsets. The
best result with fixed training data size, i.e., without 3-fold, is highlighted for
each test set. Additionally, it is highlighted when 3-fold achieves the overall
best result.
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GerTV Dev Set 13.8 13.9 13.9 13.6 13.9 13.7
DiSCo Average 12.8 12.5 12.4 12.5 12.3 11.8
German Broadcast 2016 12.2 12.2 12.1 12.0 12.3 11.5
Challenging Broadcast 21.2 20.7 20.4 20.5 20.2 20.1
Oral History 34.2 30.6 30.3 29.6 29.5 28.2
Interaction 65.7 53.1 50.8 49.9 49.8 47.8
Spoken QALD-7 20.9 17.9 19.2 19.0 18.6 18.3

Result Overview for Multi Condition Training with Noise and
Reverberation Data Augmentation

In Table 4.10, we report the results of the LF-MMI–TDNN-LSTM models trained
with the different multi-condition training data sets compared to the clean-trained
baseline. We first discuss the multi-condition training setups of the Mix models
with the same training data size as the clean-trained baseline. The 3-fold model,
i.e., the extension of the Mix models with three-fold augmented training data, is
discussed and presented later in this section after the Mix models.

Overall, multi-condition training with data augmentation with fixed training
data size improves performance on all test sets, both in broadcast and the other
three domains. However, the improvements in the broadcast domain are not as
substantial as for the out-of-domain data. In the best cases, the word error rate
on the broadcast test sets improves by 2 to 5 % relative to the clean-trained base-
line. For our oral history data, we observe an improvement by 14 % relative to the
baseline with Mix-Reverb+RealNoise. Spoken QALD-7 shows a similar relative
improvement in the best case with Mix-Reverb, and 11 % relative improvement
with Mix-Reverb+RealNoise. The best relative improvement for the Interaction
test set is 24 % with Mix-Reverb+RealNoise. This indicates that the proposed
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data augmentation can successfully compensate the domain mismatch between
broadcast and the three other domains to a certain extent and at the same time
improve the robustness in the original domain—without increasing the amount of
training data. However, the remaining substantial gap in the word error rate be-
tween the broadcast domain and the other domains indicates that there continues
to be a domain mismatch by the models.

Overall, combining clean data with real-world noise and room reverberation in
Mix-Reverb+RealNoise (cf. Table 4.8) yields the best results among the multi-
condition setups with fixed training data size for four out of six evaluation sets.
Exceptions to this are German Broadcast 2016 and Spoken QALD-7. In the case
of German Broadcast 2016, the overall impact of multi-condition training appears
to be relatively small (0.5 % relative on average), so this might also be considered
statistical noise. However, this is not true for Spoken QALD-7. Multi-condition
training with noise and reverberation data augmentation significantly improves
the overall recognition performance compared to the clean-trained baseline on this
test set. However, Mix-Reverb achieves by far the best result. One possible reason
is that Mix-Reverb best represents the recording conditions of Spoken QALD-7.
This test set was recorded by various people with their respective laptop record-
ing equipment. Noise is hardly encountered in the recordings. However, with
microphones built into the laptop, a distance to the speaker is common, leading
to a similar room reverberation as represented in Mix-Reverb. Among the multi-
condition setups with noises, setup Mix-Reverb+RealNoise with real-world noise
achieves the best results on Spoken QALD-7.

Furthermore, the results confirm an observation made in various of our pre-
liminary experiments: The comparison of systems solely on the GerTV Dev Set
does not lead to a reasonable estimation of the real-world performance of the sys-
tems. This set shows different trends than observed on the test sets. For three
of the multi-condition setups, the results on the development set worsen instead
of improving—as the results do for the test sets. This is not only true for the
out-of-domain data but also for data from the broadcast domain. We assume this
is because the development set is a split of the clean GerTV1000h training data
and thus precisely represents these conditions. Evaluation with only this data set
would thus be susceptible to domain overfitting, cf. the discussion in Section 3.4.
It should be refrained from performing a model selection solely on this GerTV
development set. Furthermore, the choice of the language model weight for decod-
ing, which we have performed on this set so far, might not yield the best possible
results for real-world data. Therefore, in the following chapters, we choose a fixed,
standard language model weight for most experiments.

The 3-fold model finished training much later than the other systems due to the
tripled training data. The model can be understood as an extension of Mix-Reverb-
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Table 4.11: Word error rate (in percent) of the multi-condition trained LF-MMI–TDNN-
LSTM models on the four DiSCo subsets. The best result with fixed training
data size, i.e., without 3-fold, is highlighted for each test set. Additionally, it
is highlighted when 3-fold achieves the overall best result.
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DiSCo Average 12.8 12.5 12.4 12.5 12.3 11.8
Planned Clean 9.0 8.8 8.8 9.2 8.9 9.0
Planned Mix 12.0 11.4 11.2 11.2 11.3 10.8
Spontaneous Clean 10.6 10.2 10.7 10.5 10.4 9.9
Spontaneous Mix 19.7 19.5 19.0 19.0 18.7 17.5

+RealNoise, as it represents similar conditions—just with three-fold increased
training data size. The model consistently outperforms Mix-Reverb+RealNoise
on all test sets and achieves the best result on five of the six test sets. The relative
improvement in the broadcast domain with 3-fold is more substantial, with 5–
8 % relative improvement to the clean-trained baseline. Only on Spoken QALD-7,
Mix-Reverb remains the best model. However, the 3-fold model further reduces
the gap to Mix-Reverb on this set to 0.4 % absolute. With this model, we achieve
a 28.2 % word error rate on our oral history target domain, i.e., slightly less than
18 % relative improvement to the clean-trained baseline.

Discussion of Multi Condition Training on Broadcast Recordings

Table 4.11 further disaggregates the results of the models on the DiSCo data for the
four subsets. This analysis aims to evaluate the different effects of augmentation
on clean and acoustically distorted broadcast recordings. Even though this is not
the target domain of the presented research work, the analysis shall help better
assess the real-world performance of the systems in different conditions.

On the clean subsets, the model trained on Mix-Reverb achieves the best re-
sults. Mix-Reverb contains no additional noises and only combines clean with
reverberated speech. The addition of noises in the other multi-condition data sets
degrades the recognition performance on these subsets compared to Mix-Reverb.
However, the results on Mix-Reverb+RealNoise are only slightly worse than on
Mix-Reverb and better than the multi-condition setups with stationary AWGN.
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At the same time, adding noises to the multi-condition training substantially im-
proves the robustness of the model on the DiSCo Mix subsets. These substantial
improvements lead to the fact that the model training on Mix-Reverb+RealNoise
achieves the best result on average for the DiSCo data even though it is only the
best performing system on one of the four subsets.

The 3-fold training yields another substantial improvement in recognition per-
formance. The model not only achieves better results on the Mix subsets. The
results also indicate improvements by the model for spontaneous speech. To the
best of our knowledge, this is the first time a word error rate below 10 % is achieved
on DiSCo Spontaneous Clean without DNN-LM rescoring.

Discussion of Multi Condition Training on Oral History Interviews

The oral history interviews in our test set have a wide range of recording conditions
and signal quality. Therefore, the overall word error rates only give an averaged
indication of the improvement achieved by the different multi-condition setups. To
assess the performance of the multi-condition setups for the different interviews, a
box plot diagram of the word error rate of each of the 35 oral history interviewees
in the test set is given in Figure 4.8.

The box plots reveal a wide range of word error rates for the different interviews.
Without data augmentation, the distribution is positively-skewed towards lower
error rates. Thus, the median is lower than the average word error rate. Half of
the interviews have a word error rate of 18.4–31.7 %, the other half in the range
31.7–59.6 %.

In general, the word error rate decreases for all quartiles with multi-condition
training, especially for high word error rates. For the clean model, more than a
quarter of all interviews—11 to be exact—have a word error rate above 40 %. For
the multi-condition models, only a few interviews are above this error rate: six
interviews for Mix-Reverb, four interviews for the three Mix models with noises,
and three interviews for 3-fold.

Utilizing real-world noises in training with seems further to improve the recog-
nition for these very challenging interviews. With Mix-Reverb+BothNoises and
Mix-Reverb+RealNoise, three-quarters of all interviews have an error rate below
35 %—and below 33 % for 3-fold—which we consider a substantial improvement
compared to the baseline. With these three models, the error rate of all inter-
views drops below 45 %—except for one outlier that almost consistently has a
word error rate of roughly 60 %. But even for this interview, the real-world noise
setups best improve the recognition performance. The 3-fold model lowers the
word error rate from 59.6 % to 52.8 %. This indicates that acoustic conditions
are one reason for the poor recognition performance on this interview. However,
other challenges in the recording still make recognition extremely difficult, such as
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Figure 4.8: Box plot diagram of the word error rates of the 35 different oral history inter-
views for each model in the multi-condition experiments. The interquartile
range is set to 1.0 so that the same outlier is plotted for all box plots. The
whiskers represent the minimum to maximum word error rate, excluding the
outlier. The lower and upper lines of the boxes represent the first and third
quartiles of the word error rate. Half of the interviews have word error rates
between these two lines. The inner lines of the boxes represent the median.

spontaneous speech, unclear pronunciations, a dialect, and other acoustic artifacts
in the recording not modeled by the data augmentation. Particularly, the 3-fold
model also improves the recognition performance for interviews with a low error
rate.

The box plots only show the overall distribution of word error rates but not
the improvement or deterioration for individual interviews. Even though most
results improve, the recognition performance also deteriorates for some interviews
due to multi-condition. In Mix-Reverb, five of the 35 interviews have a higher
word error rate than the clean-trained baseline. Mix-Reverb+WhiteNoise is the
least robust approach, with seven interviews recognized worse than the baseline.
This could also be a reason for the slightly deviating median in Figure 4.8 for
Mix-Reverb+WhiteNoise compared to the other models. There are only two in-
terviews in the intersection of the deteriorating interviews in Mix-Reverb and
Mix-Reverb+WhiteNoise. This indicates that the models generalized to different
acoustic conditions. In Mix-Reverb+BothNoises, there are only three interviews
with a worse error rate than the baseline. Mix-Reverb+RealNoise and 3-fold show
the most robust improvements, with only two interviews getting worse than the
baseline.
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Figure 4.9: Scatter plot of the relative word error rate improvements compared to the
clean-trained baseline of Mix-Reverb+RealNoise and 3-fold. All points to the
right of the vertical 0-axis represent an improvement in word error rate with
model Mix-Reverb+RealNoise. Similarly, all points above the horizontal 0-
axis are an improvement with 3-fold. The dashed diagonal axis marks the
transition where both models are equally good. If a point is above the line,
the relative improvement is greater for 3-fold. Conversely, the improvement
for Mix-Reverb+RealNoise is greater if the point is below the line. The square
marks both models’ overall test set word error rate improvements.
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4 Acoustic Robustness for Oral History Interviews

We are also interested in the effect of increasing the training data of 3-fold com-
pared to Mix-Reverb+RealNoise. For these two models, we further analyze the
relative improvements in Figure 4.9. The diagram shows no severe differences be-
tween Mix-Reverb+RealNoise and 3-fold since almost all results are close to the
diagonal axis. Therefore, both models seem to improve similar acoustic aspects
in recognition. For many interviews, 3-fold shows better recognition performance
than Mix-Reverb+RealNoise. This is especially true for relatively high improve-
ments in the upper right quadrant above 10 % relative. In this area, 3-fold is
almost always at an advantage. For the other interviews, no model significantly
dominates. Mix-Reverb+RealNoise is better for some interviews, 3-fold for oth-
ers. This indicates that 3-fold plays out its advantage of more training data for
acoustically more challenging interviews.

Preliminary Conclusion and Consideration of Required Training Time

Overall, the 3-fold model is the most robust model in this set of experiments and,
thus, to be chosen for future applications. It shows the best generalization for
out-of-domain data and, in addition, substantially improves the recognition for in-
domain broadcast speech recordings. Therefore, we use this model for subsequent
experiments and applications. However, it must be taken into account that training
the 3-fold model is computationally expensive and slow due to the large amount
of training data.

Training of the neural network is performed on overall 9000 hours of speech
(3-fold speed perturbation and 3-fold noise and reverberation data augmentation)
with features extracted every 10 milliseconds. This results in approximately 3.24 ·
109 300-dimensional inputs per epoch. However, neural network training is not
the only issue. The 9000 hours of speech are time-aligned with bootstrap-trained
GMM-HMM systems in advance.

Overall, on our department’s GPU cluster at the Fraunhofer IAIS with a GeForce
GTX TITAN X GPU node and a CPU node (two 12-core CPUs with 2.4 GHz),
training of the 3-fold model took 66 days, i.e., more than two months. Of this, 23
days were spent on the GMM-HMM bootstrap training, feature extraction, and
data alignment. Overall, 43 days were required for the GPU LF-MMI training of
the TDNN-LSTM neural network. Therefore, comparative experiments with sim-
ilarly large training data can only be performed in the present work to a minimal
extent.
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Table 4.12: Multi-condition bootstrap training (MB) compared to clean bootstrap train-
ing (CB). The reported results are word error rates (in percent) achieved by
the final LF-MMI–TDNN-LSTM (with per-frame dropout). The best result
between CB and MB is highlighted pair-wise for each Mix model.

Mix-Reverb
+WhiteNoise

Mix-Reverb
+BothNoises

Mix-Reverb
+RealNoise

Test Set Clean MB CB MB CB MB CB

GerTV Dev Set 13.8 13.9 13.9 13.6 14.2 13.9 13.9
DiSCo Average 12.8 12.4 12.9 12.5 12.7 12.3 12.8

Planned Clean 09.0 08.8 09.2 09.2 09.0 08.9 09.2
Planned Mix 12.0 11.2 11.6 11.2 11.7 11.3 11.6
Spontaneous Clean 10.6 10.7 10.8 10.5 10.4 10.4 10.8
Spontaneous Mix 19.7 19.0 20.2 19.0 19.8 18.7 19.5

Ger. Broadcast 2016 12.2 12.1 11.6 12.0 12.1 12.3 12.6
Challenging Broadcast 21.2 20.4 20.5 20.5 20.5 20.2 21.2
Oral History 34.2 30.3 31.0 29.6 30.7 29.5 31.0
Interaction 65.7 50.8 52.4 49.9 51.3 49.8 51.7
Spoken QALD-7 20.9 19.2 19.1 19.0 19.1 18.6 20.0

Ablation Study: Influence of Multi-Condition Training in
Bootstrapping

In Table 4.12, we report the results of the ablation study on the influence of
data augmentation in bootstrap training of the GMM-HMM models on the final
LF-MMI acoustic model with fixed training data size. The experiments were
conducted for all three configurations using reverberation and noises, as multi-
condition training has the greatest influence with these setups. We use the phonetic
decision tree and GMM clustering from the clean-trained baseline. The alignment
for LF-MMI training is performed on the data augmented data sets using the
clean-trained Triphone 4 model (cf. Table 4.7).

Most test sets have a better word error rate with the proposed approach than
with clean-trained bootstrapping. In setup Mix-Reverb+WhiteNoise, only Ger-
man Broadcast 2016 and Spoken QALD-7 have lower word error rates with the
clean-trained bootstrap. Interestingly, the improvement is quite substantial for
German Broadcast 2016, without evidently recognizable reasons. In Mix-Reverb-
+BothNoises, which has a somewhat higher proportion of noise than Mix-Reverb-
+WhiteNoise, the two clean DiSCo subsets have slightly better word error rates
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4 Acoustic Robustness for Oral History Interviews

Table 4.13: Results of multi-condition-training achieved by the CE-LSTM model using
the 128-hour subset of the GerTV1000h corpus. Results are word error rates
in percent.
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GerTV Dev Set 16.6 17.1 17.3 17.4 17.3
DiSCo Average 17.2 17.6 17.7 18.0 17.6

Planned Clean 12.1 12.4 12.7 12.8 12.4
Planned Mix 16.7 16.9 16.8 17.3 16.7
Spontaneous Clean 13.9 14.4 14.5 15.1 14.6
Spontaneous Mix 26.0 27.0 26.7 26.8 26.5

German Broadcast 2016 15.1 14.9 15.2 15.4 15.5
Oral History 44.1 40.0 39.5 39.1 38.9
Interaction 78.6 65.6 62.5 62.6 63.4

with the clean-trained bootstrap. For Mix-Reverb+RealNoise, the setup with
multi-condition bootstrapping is better on all test sets.

Generally, applying multi-condition training data in bootstrapping leads to more
robust LF-MMI acoustic models. In particular, the improvement is quite substan-
tial for acoustically challenging tasks, such as our oral history use case. Therefore,
we consider this approach useful for our use case, although re-performing boot-
strapping for each multi-condition setup increases training time.

Ablation Study: Proposed Data Augmentation with Different Model,
Training Criterion, and Training Data

In Table 4.13, we present the results of the ablation study with a different acoustic
model architecture (LSTM instead of TDNN-LSTM), a different training criterion
(CE instead of LF-MMI), and different training data (128 instead of 1000 hours).
The models for this experiment were trained before conducting the LF-MMI ex-
periments with 1000 hours of training data and serve here as an ablation study.
This experiment intends to expose to which extends the observed improvements
of multi-condition training for in-domain and out-of-domain data are a property
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4.4 Study: Multi-Condition Training via Data Augmentation

of the approach itself or whether it is dependent on the model or training data.
The results were first published in [Gref et al., 2018a].

In contrast to the LF-MMI–TDNN-LSTM model experiments on the entire
training data at the beginning of this section, multi-condition training does not
improve the broadcast domain. Subsequent, very time-consuming ablation stud-
ies would be necessary to investigate the exact contribution of each of the three
changed parameters to this result. However, since our primary objective is the
investigation of oral history interviews and domain mismatch to the training data,
we are content with this investigation and leave this to future work.

We observe a substantial improvement for the two out-of-domain test sets, sim-
ilar to the LF-MMI–TDNN-LSTM experiments with 1000 hours of training data.
In particular, for oral history, the word error rate substantially improves with
all multi-condition setups. Moreover, we observe similar trends of the different
multi-condition setups on the oral history test set: modeling room reverberation
in Mix-Reverb achieves more than 9 % relative improvement to the baseline. Also,
modeling additive noises further improves the recognition performance. Using real-
world noises and the proposed random noise overlapping in Mix-Reverb+RealNoise
achieves the best results. These results indicate that, in principle, the proposed
data augmentation for multi-condition training improves ASR performance for oral
history interviews with different model types and training data sets.

4.4.5 Improved 3-fold Acoustic Model and Language
Model Comparison

Over the course of the present research work, we improved the 3-fold model from
the previous experiment (3-fold v1 ) in two iterations. These models serve as
improved baselines for different experiments in the following chapters. The results
for all three variants of the 3-fold models are summarized in Table 4.14. We report
the word error rates using the default and large language models (cf. Section 3.5),
respectively.

First, we point out the substantially and consistently better results of the large
language model on Spoken QALD-7, Challenging Broadcast, and German Broad-
cast 2016. The substantial improvements of the large language model result from
the better perplexity of this language model for these data sets, cf. Table 3.8. As
described in Section 3.5, the large language model’s training data size and vocabu-
lary are multitudes larger than the default’s. It models typical formulations in the
broadcast domain better and includes considerably more proper names and other
entities. In particular, it contains substantially more entities frequently occurring
in the Spoken QALD-7 test set, which causes substantial improvement for this
domain. For Oral History, the perplexity of both language models is very simi-
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4 Acoustic Robustness for Oral History Interviews

Table 4.14: Comparison of the original and improved 3-fold LF-MMI–TDNN-LSTM
acoustic models. Results are reported as word error rates in percent for the
default and large language model. The best result per test set is highlighted
pair-wise for each language model.

Language Model: Default LM Large LM

3-fold Acoustic Model: v1 v1.1 v2 v1 v1.1 v2

GerTV Dev Set 13.7 13.6 13.6 12.9 12.9 12.8
DiSCo Average 11.8 11.9 12.0 11.9 12.2 12.1

Planned Clean 09.0 09.0 08.9 08.8 09.0 08.8
Planned Mix 10.8 11.0 10.6 09.9 09.9 09.8
Spontaneous Clean 09.9 10.0 10.7 10.7 11.1 11.1
Spontaneous Mix 17.5 17.6 17.9 18.4 18.6 18.8

German Broadcast 2016 11.5 11.7 10.9 09.7 09.9 09.2
Challenging Broadcast 20.1 19.7 19.4 17.8 17.4 17.2
Oral History 28.2 27.7 26.6 27.2 27.1 26.0
Interaction 47.8 48.2 47.6 50.9 51.2 49.6
Spoken QALD-7 18.3 19.0 18.3 14.4 14.8 13.6

lar. Nevertheless, the large language model consistently performs better on Oral
history than the default—probably due to the better OOV rate, cf. Table 3.9.

The first improvement of the 3-fold acoustic model is 3-fold v1.1, which finished
training in mid-2019. For the training of this model, more heterogeneous data
for the i-vector extractor training and a slightly adjusted learning rate scheduling
for the acoustic model neural network was used. Furthermore, we adjusted the
subset sizes for the bootstrap model training. Instead of fixed numbers of seg-
ments (cf. Section 4.4.3), fixed relative ratios of segments from the entire data set
are used. This enables the training routine to handle differently sized training
data automatically. The 3-fold v1.1 acoustic model performs a little worse in the
common broadcast domain but better in our target domain Oral History and on
Challenging Broadcast. This is true regardless of the language model chosen in
our experiments. The 3-fold v1.1 was used as a baseline in [Gref et al., 2020] for
cross-lingual domain adaptation experiments presented in Chapter 6.

Towards the end of the presented research work, a further improved version of
the 3-fold model, 3fold v2, was trained and released. This model is more robust
than 3-fold v1 and 3fold v1.1 for almost all of our test sets. The improved 3-
fold v2 model achieves better or equally good recognition performance on all test
sets except for the DiSCo Spontaneous subsets. Overall, the results are consis-
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tent with the different acoustic models using both language models. In particular,
for Oral History, this model substantially improves the recognition performance
and achieves a 26.6 % word error rate with the default language model. A detailed
analysis of the recognition results on all test sets reveals that with 3-fold v2, we ob-
serve an increased number of deletions but significantly reduced substitutions and
insertions. These substantial improvements are achieved by increasing the amount
and diversity of the training data, utilizing a large commercial noise database, and
using more training data in bootstrapping.

In detail, for 3-fold v2, we obtained 350 hours of additional German speech data
for training from different domains, such as podcasts, various interviews recorded
in different acoustic conditions, read speech, and political speeches. Overall, 1345
hours of source data (GerTV1345h) were used for training. As for the original 3-
fold model, the training data was increased 9-fold with 3-fold speed perturbation
and 3-fold noise and reverberation data augmentation.

Additionally, we purchased a large collection with different sounds and ambient
noises recorded in various environments that we use as the real-world noises in
the noise and reverberation data augmentation. Overall, for 3-fold v2, we used
320 hours of noises instead of the small 14.5-hour noise set used previously for
3-fold v1 and 3-fold v1.1. We omit the random noise overlap approach from the
data augmentation for this model since the amount of speech and noise are in a
reasonable ratio.

The 3-fold v2 model has been the standard acoustic model of the Fraunhofer
IAIS Audio Mining system since its release in 2020. It is deployed in various client
systems, including the ARD, where it transcribes the media library for journalists
and archives. The model was first considered in the literature in [Gref et al., 2022b]
and used for adaptation experiments for oral history presented in Section 5.5.

For academic purposes, the 3-fold v2 model can be used for free with a limited
monthly contingent as part of the BAS Speech Science Web Services [Kisler et al.,
2016].1 The version used for the web service uses an updated and improved version
of the large language model.

4.4.6 Summary and Conclusion
The presented experiments studied data augmentation for multi-condition train-
ing for DNN-HMM acoustic models to reduce the domain mismatch between the
broadcast training and oral history interviews. We discussed the acoustic condi-
tions of the studied oral history interviews and identified additive noises and, in
particular, reverberation as the primary challenges of oral history interviews for
the acoustic model.

1https://clarin.phonetik.uni-muenchen.de/BASWebServices
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We proposed and studied the application of noise and reverberation data aug-
mentation for multi-condition training. Additionally, we proposed multi-condition
training during the GMM-HMM bootstrap training and studied the influence on
the final LF-MMI acoustic model.

The experiments show that noise and reverberation data augmentation improves
the robustness of the studied LF-MMI–TDNN-LSTM model not only for acoustic
conditions of oral history interviews but also for the broadcast domain. This
effect becomes stronger when the training data size is increased—but can also be
observed without increasing the data size.

We performed experiments with different setups to investigate different proper-
ties of multi-condition training. We showed that real-world noise leads to better
generalization than artificial AWGN, even if a comparable small noise database
is used. We showed that the improvements from multi-condition training for the
oral history use case do not depend on acoustic model architecture, the training
criterion, and the training data size.

By using numerous test sets with different properties, we were able to show how
the training affects different domains. Overall, we observe a remarkable general-
ization and a decreased domain mismatch of the acoustic model with the proposed
multi-condition training. For the studied oral history use case, we achieved a rel-
ative improvement of 17.6 % with 3-fold multi-condition training compared to the
clean-trained baseline.

4.5 Study: Speech Enhancement for Robust
Speech Recognition

In the overview on robust speech recognition given in Section 4.2, we discussed
the two main recent directions: multi-condition training and speech enhancement.
Due to promising results in the literature and some of our initial experiments, we
focused mainly on multi-condition training in this chapter.

Nevertheless, speech enhancement is an important component in many robust
ASR applications. Some applications, e.g., Du et al. [2018] and Kanda et al. [2018],
combined speech enhancement with multi-condition training. In this section, we
study promising speech enhancement approaches for the oral history use case.

4.5.1 Experimental Setup
Speech enhancement algorithms are often developed and used for specific types of
distortions. Thus, we again focus on acoustic distortions, particularly noise and
reverberation. In our experiments, we study:
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Table 4.15: Comparison of different speech enhancement approaches for the Oral History
test set with the clean-trained and robust 3-fold (v1) TDNN-LSTM–LF-MMI
model. Results are reported as word error rates in percentage.

Acoustic Model

Approach Implementation Clean 3-fold

Original no enhancement 34.2 28.2
Adaptive Filtering Hirsch [2014] 35.1 29.0
DNN Enhancement Hirsch and Gref [2017] 57.4 46.0
Multi-Band Compression Jaeger et al. [2019] 69.6 52.6
WPE Drude et al. [2018] 33.5 27.9

• a classical adaptive filtering implementation by Hirsch [2014] with cepstral
smoothing [Breithaupt et al., 2007].

• a DNN-based speech enhancement from a preliminary work [Hirsch and Gref,
2017] trained on Aurora4 corpus [Parihar and Picone, 2002] for noise reduc-
tion and different microphone qualities.

• a speech enhancement approach based on multi-band compression with self-
regulation based on objective speech intelligibility estimation by Jaeger et al.
[2019].

• blind speech dereverberation with linear prediction called weighted prediction
error (WPE) proposed by Nakatani et al. [2008] and extend in recent years.
For the experiment, we use the NARA-WPE implementation by Drude et al.
[2018].

The first three approaches mainly focus on additive noises and noise reduction.
The second, DNN-based approach is additionally trained to compensate for dif-
ferent microphone qualities, as in the Aurora4 training data. The last approach
focuses on dereverberation.

For decoding, we use the default broadcast language model. We use the clean-
trained and robust 3-fold (v1) model from the previous section for evaluation. The
evaluation is performed on the Oral History test set.

4.5.2 Results and Discussion
The results are presented in Table 4.15 for the clean-trained and the 3fold (v1)
LF-MMI–TDNN-LSTM models. Although all approaches improve perceived audio
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quality, all except one approach resulted in no improvement. These approaches
even substantially decreased the recognition performance when applied as prepro-
cessing to the ASR system.

We observe a slight deterioration of the average recognition performance for
classical adaptive filtering. However, for DNN-based enhancement and multi-band
compression, the degradation in recognition performance is substantial. Both ap-
proaches are designed to improve auditory quality and intelligibility for humans.
The results show that these auditory improvements do not correlate with recog-
nition performance for our ASR system. Furthermore, DNN filtering trained on
Aurora4 data shows poor generalization or domain overfitting for the oral history
interviews. Artifacts in the spectrogram negatively affect recognition performance.

However, blind dereverberation using the weighted prediction error results in a
consistent improvement, both for the clean and the robust acoustic model. The
improvement by WPE is a bit more substantial for the clean-train model but not as
good as the multi-condition training without speech enhancement, cf. Table 4.10.
For the robust 3-fold model, WPE adds a slight improvement. Thus, this approach
should be reconsidered as an addition to the final acoustic model in the final
system.

4.6 Summary and Contributions

4.6.1 Summary
In this chapter, we conducted various experiments and detailed investigations on
the robustness of acoustic models for oral history interviews. After giving an
overview of the general approaches of robust speech recognition, we proceeded
in three subsequent studies with several experiments. For all investigations, we
always used a multitude of test sets from different domains to obtain reliable
estimates of the real-world performance and avoid the selection of models that
suffer from domain overfitting.

In the first study in this chapter, we compared different acoustic models and
training criteria that were state-of-the-art in 2017. The goal was to identify the
acoustic model that shows the best initial results, robustness, and generalization
properties for different domains for further investigations.

We selected four different hybrid acoustic model candidates from the literature
and compared them using two different training data sizes. We used a moderate
training data size with 128 hours of broadcast speech and a large training data size
with 1000 hours. A TDNN-LSTM architecture trained with the LF-MMI criterion
and per-frame dropout achieved the best performance and highest generalization
for the different domains with both training set sizes. The best system in this

130



4.6 Summary and Contributions

study achieves a 34.3 % word error rate on our oral history test set, outperforming
the previous 55 % word error rate baseline by a substantial margin.

In addition, we examined the model’s susceptibility to different speech segmen-
tation granularities. We found that LF-MMI trained models are more susceptible
to long segments than cross-entropy trained models. Long segments lead to a sub-
stantial deterioration in recognition performance for the studied LF-MMI models.
This is considered in the processing workflow of the Audio Mining system that
performs utterance segmentation.

In the second study in this chapter, we investigated multi-condition training
with data augmentation to improve the LF-MMI–TDNN-LSTM model’s robust-
ness for the acoustic conditions in oral history interviews. First, we identified
room reverberation as one of the primary challenges of our oral history interviews
through qualitative analysis of spectrograms from different interviews. We pro-
posed noise and reverberation data augmentation with specific details to improve
robustness. In particular, we combine clean and augmented speech to perform
multi-condition instead of match-condition training, which would not be feasible
for our oral history interviews. We further propose using multi-condition train-
ing in the entire GMM-HMM bootstrap instead of only in the neural network
acoustic model stage to improve robustness further. We proposed an approach for
noise generation for real-world noise to compensate for a small real-world noise
database. Several experiments investigated the influence of bootstrap training,
acoustic model architecture, training criterion, and training data size on the ro-
bustness of multi-condition training with data augmentation.

We explored different combinations of acoustic conditions and identified rever-
beration with real-world noise as the most robust combination in our experiments.
Even without increasing the training data set, our multi-condition training im-
proves robustness not only for the oral history domain but also for the broadcast,
interaction, and speech assistant domains. With a 3-fold increase in training data
size using the proposed data augmentation, an even more substantial improvement
in robustness is achieved for all domains. This model achieves a 28.2 % word error
rate on the oral history test set. As this model performs substantially better in the
broadcast domain than a comparable clean-trained model, as a by-product, this
model has become the standard acoustic model for the Fraunhofer IAIS Audio
Mining system and is deployed and in daily use at clients such as ARD.

The last study investigates different speech enhancement methods for acoustic
robustness on oral history interviews. We explored different approaches for the
clean-trained and robust model from the previous study. The common approach for
blind dereverberation using the weighted prediction error is one of the few effective
approaches for oral history interviews. It does not achieve the same robustness as
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the multi-condition trained acoustic models. However, it can additionally improve
the word error rate of the robust model to 27.9 % on the oral history test set.

In summary, multi-condition training with noise and reverberation data aug-
mentation results in substantial improvements in terms of the word error rate for
oral history interviews, other out-of-domain data, and also improves recognition
for in-domain broadcast training data. In conclusion, the results indicate that this
training approach reduces the domain mismatch and improves generalization as
it not only improves the acoustic robustness of the model but, also also improves
recognition for spontaneous speech to a certain degree. However, oral history in-
terviews still remain challenging as we still observe a wide range of recognition
accuracies, i.e., 14.8–52.8 % word error rates in the interviews. This indicates that
many of the previously discussed challenges in Section 3.3.2 still prevail. There-
fore, in the following chapters, we aim to further improve the acoustic model to
conditions not modeled by the data augmentation and the interviewees’ speech
characteristics by adapting the acoustic model.

4.6.2 List of Contributions
List of scientific contributions in this chapter:

• Noise and reverberation data augmentation was proposed and studied to
improve the real-world performance of LF-MMI acoustic models for oral
history interviews and other domains with unseen conditions by reducing
the domain mismatch and improving acoustic robustness.

• A selection of current hybrid acoustic models was explored and compared in
general performance (for in-domain data) and domain mismatch (for out-of-
domain data).

• The influence of fine and coarse segmentation of speech was studied for de-
coding with cross-entropy and LF-MMI acoustic models.

• The reverberation caused by small and medium-sized rooms was identified
as one of the primary challenges for acoustic models of German oral history
interview recordings.

• Different speech enhancements methods were investigated to improve acous-
tic robustness for oral history interviews for clean-trained and robust LF-
MMI acoustic models.
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In the previous chapter, we improved the robustness of acoustic models against
challenging acoustic recording conditions that are common in many oral history
interviews. We proposed and investigated noise and reverberation data augmenta-
tion for multi-condition training of the acoustic model that substantially improved
the recognition performance not only for oral history interviews but also for speech
recordings from the broadcast and other domains.

A limitation of these experiments is the tremendous amount of time required to
train hybrid acoustic models from scratch on several thousand hours of annotated
speech. Further improvement can be achieved with the further enlargement of
the training data by the proposed and additional data augmentation. However,
training a single acoustic model with this amount of data in our infrastructure
would take several months. This training time is not feasible for research and
real-world applications in new domains.

Moreover, while data augmentation is quite successful in overcoming a mismatch
in acoustic conditions between desired applications and training data, it is limited
to acoustic distortions that can be artificially created. The remaining challenges in
oral history interviews, such as peculiarities in the way of speaking, spontaneous
speech, and dialects, cannot be modeled with the approach. For example, as
shown in the joint investigation [Gorisch, Gref, and Schmidt, 2020] with the Leibniz
Institute for the German Language (IDS)1, the dialect has a substantial influence
on the recognition performance of our system. It may increase the word error rate
up to 60 %.

In this chapter, we investigate the domain adaptation of the acoustic model us-
ing fine-tuning to overcome these limitations and further improve the recognition
performance. In particular, we examine possible domain mismatches due to the
adaptation to obtain a realistic estimate of the real-world performance and robust-
ness of the adapted models. In total, we present three independent, subsequent
studies in this chapter. These studies were conducted some years apart from each
other, when additional oral history data for adaptation and evaluation became
available, enabling us to study different aspects and facets of the adaptation in
more detail.

1https://www.ids-mannheim.de
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In the first of the three studies, we investigate the general idea of fine-tuning
for the domain adaptation of the acoustic model with the 3.5-hour oral history
data set using a leave-one-speaker-out cross-validation approach in Section 5.3.
In particular, we investigate the extent to which the data augmentation from the
previous chapter complements fine-tuning and the respective influence of the two
methods on the recognition.

We investigate automatic transcript alignment in the second study in Section 5.4
as a method to generate data for adaptation semi-automatically to overcome the
limitation of a lack of suitable annotated data for adaptation. We also investigate
the impact of different training data sets and learning rates on potential domain
overfitting.

In the third study in Section 5.5, we investigate domain overfitting within the
oral history domain with additional oral history adaptation and test data from a
different archive. These new interviews were recorded in more recent years and
thus have substantially better recording conditions. This new data allows us to
study the influence of the acoustic conditions and the other challenges of oral
history interviews for speech recognition adaptation in more detail.

In Section 5.6, we summarize the three studies’ findings and contributions.

5.1 Thesis Author Contribution
Parts of this chapter are covered in the publications:

Michael Gref, Christoph Schmidt, Sven Behnke, and Joachim Köhler.
Two-staged acoustic modeling adaption for robust speech recognition
by the example of German oral history interviews. In IEEE Interna-
tional Conference on Multimedia and Expo (ICME), pages 796–801, 2019.
doi:10.1109/ICME.2019.00142

Michael Gref, Nike Matthiesen, Christoph Schmidt, Sven Behnke, and Joachim
Köhler. Human and automatic speech recognition performance on german
oral history interviews. arXiv:2201.06841 [eess.AS], 2022b. URL https:
//arxiv.org/abs/2201.06841

All presented approaches, experiments, findings, results, analyses, conclusions,
figures, and texts are contributions of the thesis author.

The experiments of the first adaptation study summarized and extended in
Section 5.3 are based on [Gref et al., 2019]. The experiments of the third adaptation
study summarized and extended in Section 5.5 are based on [Gref et al., 2022b].
Additional experiments and investigations, e.g., on the influence of the learning
rate and adaptation data size for both studies were conducted in the presented
research work.

134

https://doi.org/10.1109/ICME.2019.00142
https://arxiv.org/abs/2201.06841
https://arxiv.org/abs/2201.06841


5.2 Related Work

5.2 Related Work
In recent years, transfer learning for acoustic model adaptation has raised at-
tention, in particular, for under-resourced language and domain tasks. Transfer
learning is an approach to improve generalization and performance by transferring
knowledge of a model trained in one domain to train a model in another related
domain [Goodfellow et al., 2016]. It is advantageous in scenarios where only little
training data is available for the main task, but a large amount of annotated data
is available for a similar or related task.

Wang and Zheng [2015] give a detailed overview of transfer learning in speech
and language processing. Ghahremani et al. [2017] investigated transfer learning
using weight transfer for LF-MMI models for several well-known English speech
recognition tasks. Transfer learning was also studied for end-to-end speech recog-
nition systems utilizing end-to-end systems’ particularities, such as Ueno et al.
[2018] fine-tuning the encoder of attention-based models using Japanese corpora.

However, most works in automatic speech recognition, such as the aforemen-
tioned, studied transfer learning with a much greater amount of annotated speech
than is available in the oral history task. In addition, most works on domain
adaptation in ASR focus on either data augmentation or transfer learning, usually
to address a particular task or challenge, such as robustness to noise and not the
holistic robustness of an acoustic model.

5.3 Study: Two-Staged Acoustic Modeling
Domain Adaptation

In this first of three studies on transfer learning for the acoustic model, we inves-
tigate the combination of acoustic model fine-tuning with data augmentation—
which can be understood as the adaptation of training data—in a two-staged
approach. We are particularly investigating how both approaches relate to each
other in terms of domain adaptation and robustness improvements and whether
the two methods complement each other for real-world application. This study is
based on [Gref et al., 2019].

5.3.1 Proposed Two-Staged Acoustic Modeling Adaptation
We aim to improve the performance of robust acoustic models by performing a
two-staged acoustic modeling adaptation using very little training data from the
target domain—German oral history interviews in our study. An overview of the
proposed method is given in Figure 5.1.
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Figure 5.1: Proposed approach for two-staged acoustic model adaptation and evaluation
with leave-one-speaker-out cross-validation. Noise and reverberation data
augmentation is applied in Stage 1 to adapt the training data to the acous-
tic conditions of oral history interviews and increase overall robustness. In
Stage 2, transfer learning is applied to tackle remaining challenges such as
interviewees’ characteristics and spontaneous speech.

The first stage of the approach is based on the 3-fold model of Section 4.4.
We use multi-condition training with noise and reverberation data augmentation
to decrease the acoustic domain mismatch between conventional clean broadcast
training data and oral history interviews. This has been proven to significantly
increase the performance of speech recognition systems on German oral history
interviews and improve overall robustness.

The second stage applies transfer learning to tackle the remaining acoustic chal-
lenges and interviewees’ speech characteristics in the target domain that could
not be synthesized in the first stage—such as spontaneous speech, dialectics, and
pronunciations. The transfer learning in Stage 2 is inspired by Ghahremani et al.
[2017]. In our setup, however, a full weight transfer of the entire source model
for initialization of the target model is applied without layer freezing. In partic-
ular, the output layer is not replaced in contrast to some other transfer learning
approaches in speech recognition since we use the same set of phonemes and the
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Table 5.1: Training parameters in both stages of the two-staged acoustic model adapta-
tion.

Parameter Full Training
(Stage 1)

Fine-Tuning
(Stage 2)

Initial learning rate 1e-3 1e-6
Final learning rate 1e-4 1e-7
Per-Frame Dropout yes no

same decision tree, both in the source and target scenario. In the transfer learning
stage, the i-vector extractor of the model trained in Stage 1 is utilized without
adaptation.

In both stages, we apply speed-perturbation proposed by Ko et al. [2015] on the
entire training data to further increase the amount of data three-fold before neural
network training. We consider this a part of the standard Kaldi training routines
for LF-MMI systems.

The neural network training routine in Stage 2 is almost equal to Stage 1.
An overview of the parameters that are different in the transfer learning stage
is given in Table 5.1. The values for Stage 1 are our default values for acoustic
model training. The values for Stage 2 are obtained in preliminary experiments. In
Stage 1, we apply per-frame dropout according to Cheng et al. [2017]. As observed
in the experiments in Section 4.3, per-frame dropout improved the generalization
of the LF-MMI trained models with 128 and 1000 hours of training data. However,
our preliminary experiments with transfer learning showed that dropout reduces
performance when training on small data sets. Therefore, the training in Stage 2 is
performed without per-frame dropout. The training is performed for four epochs
in both stages with a decaying learning rate with fixed decay. The initial and
final learning rate in the second stage is lower than in the first stage due to the
significantly reduced training data size.

5.3.2 Leave-One-Speaker-Out Cross-Validation
We lack suitable training data for the oral history domain at the time of conducting
the study and only have a 3.5-hour data set with 35 different speakers that we
usually use for testing only. To study transfer learning, we apply a strategy similar
to k-fold cross-validation: leave-one-speaker-out cross-validation.

As for k-fold cross-validation, we partitioned the data set in k subsets and
iterated training and validation with varying subsets. However, this is not done
randomly but according to speakers. Each of the k subsets consists of precisely
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one speaker. We loop k times over the data subsets and keep one speaker out of
the training set for validation and train a model the remaining k − 1 speakers, as
illustrated in Figure 5.1. This way, we run k experiments in Stage 2 and evaluate
each trained model on the speaker absent in the training data.

5.3.3 Experimental Setup
The experiments are carried out using the Kaldi ASR toolkit. We use the same
TDNN-LSTM topology with LF-MMI training we studied in Chapter 4.

Training Data

For training in Stage 1, we use the 3-fold (v1) acoustic model as presented in
Chapter 4. In summary, we created the following two artificially distorted versions
of the 1000 hour GerTV1000h source training data. We combined them with the
original (clean) set to create a 3000-hour multi-condition source training set:

• Reverb: All signals are convolved according to Equation 4.2 with randomly
selected room impulse responses of small or medium-sized rooms from our
data collection. No noise is applied here.

• Reverb+RealNoise: Similar to Reverb but randomly selected noise record-
ings from our database are included according to Equation 4.1, applying a
random signal-to-noise ratio between 10 and 20 dB.

This broadcast training data can be considered out of domain for the oral history
scenario. As presented in Section 3.3.2 and further analyzed in Section 4.4.1, the
broadcast recordings severely differ from oral history interviews in many different
aspects, such as recording technology, audio signal quality, and speech character-
istics.

We use our 3.5-hour oral history test set with 35 different interviewees for the
leave-one-speaker-out cross-validation experiments. This data size is substantially
smaller than the adaptation data size in other transfer learning works in the field
of ASR. As in all prior experiments, we use the additional broadcast and other-
domain test sets for evaluation to assure robustness, detect domain overfitting,
and obtain a reliable estimate of the real-world performance for unseen data.

Decoding

In contrast to all prior and subsequent experiments, in this study, we explicitly
consider the speaker identity to be known for each segment in the oral history set.
This is required for the k-fold cross-validation. Additionally, considering speaker
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Table 5.2: Comparison of the best language model weights (LMWT) on models from
the multi-condition experiments. The primary LF-MMI–TDNN-LSTM models
from Table 4.10 are considered.

Model GerTV
Dev

Oral History
(Test)

Clean 8 8
Mix-Reverb 8 8
Mix-Reverb+WhiteNoise 9 8
Mix-Reverb+BothNoises 8 8
Mix-Reverb+RealNoise 8 8
3-fold (v1) 8 8

identities to be known can also affect the decoding. In particular, the i-vector
extraction can be performed across multiple segments instead of segment-wise to
obtain more robust speaker embeddings and improve the acoustic model’s speaker
adaptation, cf. Xue et al. [2014]. We refer to this as speaker-aware decoding in
contrast to our default speaker-unaware decoding.

In [Gref et al., 2019], we only evaluated and reported the systems with speaker-
aware decoding of the oral history test set. As an extension in the presented re-
search, we additionally perform and report speaker-unaware decoding. This makes
the results comparable to the previous and following experiments and better reflect
the expected real-world performance in the Audio Mining system, where we decode
each segment independently, i.e., in a speaker-unaware manner. Additionally, by
comparing speaker-aware and speaker-unaware decoding, we gain insights into the
influence on our models.

We use the same default 5-gram broadcast language model and G2P-based pro-
nunciation lexicon as in the previous experiments. However, in this study, we do
not adjust the language model weight for decoding for each model. As discussed
in Section 4.4.4, adjusting each model solely to the GerTV development set may
not necessarily lead to the best results. Therefore, determining a specific language
model weight for each of the 35 leave-one-speaker-out experiments based on the
GerTV development set involves the risk of distorting the recognition results due
to high statistical noise. Instead, we use a fixed language-model weight of eight
and do not adjust this parameter for the adaptation experiments. This fixed value
also seems to be the best configuration for most models, including the models from
the previous chapter as summarized in Table 5.2.
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Ablation Studies

In this study, we are particularly interested in studying the differences, similarities,
and combination of transfer learning and data augmentation in terms of domain
adaptation, robustness improvements, and real-world performance. Therefore, we
perform ablation studies to investigate the individual influence of the two methods
on the final performance by comparing four different models:

1. Proposed Approach: Applying both Stage 1 and Stage 2, i.e., apply trans-
fer learning with 3.5 hours oral history data on the 3-fold trained robust
acoustic model.

2. Stage 1 Only (Data Augmentation): Evaluating the performance of the
source model trained in Stage 1 using the 3-fold noise and reverberation data
augmentation.

3. Stage 2 Only (Transfer Learning): Applying transfer learning on a clean-
trained baseline model (without noise and reverberation data augmentation).

4. Baseline (Clean): Clean-trained baseline model with 1000 hours of broad-
cast speech without transfer learning and noise and reverberation data aug-
mentation.

We had to re-train the clean baseline model with an updated version of the Kaldi
ASR toolkit to apply transfer learning approaches for comparison experiments.
Due to the default non-deterministic dithering in MFCC feature extraction in
Kaldi, the baseline model results slightly vary compared to Section 4.4. However,
the deviations are within the range of decimal places and do not influence the
conclusions drawn.

Evaluation Metrics for Leave-One-Speaker-Out Cross-Validation

As usual, we use the overall word error rate of entire test sets defined according
to Equation 3.1 to report the results of the experiments. However, for leave-one-
speaker-out cross-validation of the fine-tuned models, the evaluation is performed
on speaker subsets from the oral history data set. We report two values to as-
sess the cross-validation better and make the results comparable to previous and
following word error rates reported on the oral history data set.

First, we report an accumulated word error rate of the oral history test set.
We sum up the number of word errors and number of words in the reference for
each of the 35 different interviews in the 35 separate leave-one-out experiments.
This accumulated word error rate is the quotient of the sum of word errors and
the sum of reference words. This corresponds to the conventional calculation of
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word error rate on the entire test set. Thus, this word error rate is comparable
to the results of previous and following experiments without leave-one-speaker-out
cross-validation.

Additionally, we report the arithmetic mean and standard deviation of the in-
dividual word error rates of all 35 different experiments. The conventional (ac-
cumulated) word error rate and this average of word error rates are similar but
vary slightly. In the default word error rate calculation, longer interviews have a
stronger effect on the overall error rate since each interview has a slightly different
length and number of words in the reference. Mathematically, the conventional
word error rate can also be understood as the weighted arithmetic mean of word
error rates of interviews, where each interview’s word error rate is weighted with
the number of words in the reference.

5.3.4 Results and Discussion
In the following, we present the results of the two-stage acoustic model adapta-
tion experiments. We first report the results for the leave-one-speaker-out cross-
validation using the oral history data set. We show that the proposed combination
of fine-tuning and data augmentation improves the recognition for oral history in-
terviews better than one of the approaches alone. Then we study a possible domain
overfitting and real-world performance of the proposed method by evaluating the
approach on multiple data sets from different domains.

Leave-One-Speaker-Out Cross-Validation

The results of the 35 leave-one-speaker-out cross-validation experiments using the
3.5-hour oral history data set are summarized in Table 5.3. We report results both
for speaker-aware and speaker-unaware decoding.

The accumulated and average word error rates are very similar for all configu-
rations, differing by a maximum of 0.2 percentage points in absolute terms. This
indicates a very homogeneous distribution of the length of the different oral history
interviews in our data set.

As expected, speaker-aware decoding yields better results than conventional,
speaker-unaware decoding. The absolute difference is about 1.1–1.9 percentage
points and roughly 4–6 % relative. The deviation is smaller for the more robust
models 3-fold and 3-fold Fine-Tuned than for the less robust models. Thus, these
models seem to cope slightly better with speaker-unaware decoding, which is ad-
vantageous for the application in our Audio Mining system.

Overall, the proposed two-stage approach shows the best performance for both
decodings. By fine-tuning the 3-fold model, a relative improvement of 5.7 %
(speaker-aware) and 5.8 % (speaker-unaware) is achieved. For the clean-trained
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Table 5.3: Results of the leave-one-speaker-out cross-validation experiments for the two-
staged acoustic model adaptation using the oral history data set. Results are
reported for speaker-aware and (the default) speaker-unaware decoding, both
as the accumulated (Acc.) test set word error rate and average (Avg.), i.e.,
arithmetic mean of the 35 interviews’ word error rate ± standard deviation.

Speaker-Aware Speaker-Unaware

Stages Model Name Acc. Avg. Acc. Avg.

1+2 3-fold Fine-Tuned 25.5 25.4 ± 07.5 26.6 26.5 ± 07.5
1 3-fold 27.0 26.9 ± 07.6 28.2 28.1 ± 08.3
2 Clean Fine-Tuned 29.6 29.5 ± 09.2 31.5 31.4 ± 10.5
None Clean 31.6 31.4 ± 10.0 33.4 33.2 ± 11.3

model, the relative improvement due to fine-tuning is 6.3 % (speaker-aware) and
5.6 % (speaker-unaware). These substantial improvements are remarkable since
a comparatively small data set was used for the adaptation. However, the effect
of fine-tuning the clean-trained baseline model on 3.4 hours is not sufficient to
achieve the same performance of 3-fold data augmentation.

The fine-tuning of the acoustic model, but especially the data augmentation,
also reduce the standard deviation of the word error rates. To further investigate
the distribution of the word error rates of the 35 different interviews, the box plot
diagrams of the word error rates with speaker-unaware decoding for each interview
are shown in Figure 5.2.

The improvement due to fine-tuning has a particular impact on the interviews
with higher word error rates. While the lower quartile only slightly changes due
to the adaptation for Clean and 3-fold, the median and upper quartile for both
models decrease with fine-tuning. Using the proposed two-stage approach, about
75 % of the interviews achieved a word error rate below or near 30 %. Except
for one outlier, all interviews have a word error rate below or near 40 %. While
half of the interviews have an error rate below 28.0 % for the 3-fold model, the
median reduces to 25.6 % with fine-tuning. Overall, the box plots reveal that 3-
fold data augmentation leads to more significant improvements for the oral history
data. However, both the Clean and 3-fold models similarly benefit from adaptation
through fine-tuning.

We report the results for speaker-unaware decoding as they reflect the expected
real-world performance in Audio Mining and are comparable to the other exper-
iments in the presented research work. The corresponding diagrams for speaker-
aware decoding can be found in Appendix B.3. An additional evaluation of these
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Figure 5.2: Box plot diagram of the word error rates of the 35 interviews for each model
in the leave-one-speaker-out experiments with speaker-unaware decoding.

diagrams for speaker-aware decoding does not provide additional insights since
they show the same trends, with a slightly lower total error rate.

The relative word error rate improvements of each leave-one-speaker-out exper-
iment using the proposed approach compared to the clean-trained baseline model
are shown in Figure 5.3. For 32 out of the 35 experiments, the word error rate
improved, and only for three experiments did the word error rate slightly increase.
A subjective inspection did not reveal any obvious reason for the slight deteriora-
tion on these three interviews. All three interviews differ in terms of speaker style
and recording situation. Most interviews are improved by 15–20 % relative to the
baseline.

A more in-depth look at the 35 individual experiments is given in Figure 5.4,
where we present the results of the ablation study of the proposed approach. Data
augmentation has a larger impact on speech recognition than fine-tuning in many
experiments. On average, the relative word error rage increase is 17.4 % removing
the data augmentation from the pipeline. The data augmentation increases the
word error rate for three interviews in the leave-one-speaker-out experiments.

The effects of fine-tuning are not as substantial as those of data augmentation.
However, for 31 of the 35 interviews, fine-tuning further improves the recognition
performance of the 3-fold model. If fine-tuning is removed from the approach, we
observe an average error rate increase of 5.6 %. For five of the 35 interviews, fine-
tuning results in a higher impact on the improvement than data augmentation. In
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Figure 5.3: Histogram of the relative word error rate improvements with the proposed ap-
proach two-staged acoustic model adaptation compared to the clean baseline
for each leave-one-speaker-out experiment with speaker-unaware decoding.
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Figure 5.4: Ablation study of the two-staged acoustic model adaptation with speaker-
unaware decoding by removing either data augmentation (Stage 1) or fine-
tuning (Stage 2). Results are illustrated as a scatter plot of the relative word
error rate increase compared to the proposed approach when one of the stages
is removed. Positive values represent an increase in word error rate, i.e., the
ASR performance deteriorates by removing this stage from the approach. The
dashed diagonal axis marks the transition where both stages have an equal
impact.
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Table 5.4: Two-staged acoustic model adaptation results on test sets from different do-
mains. Results are reported as word error rates in percent. Fine-tuned model
results on the Oral History test set (marked with an asterisk) are obtained as
leave-one-speaker-out cross-validation with speaker-unaware decoding, cf. Ta-
ble 5.3.

Test Set Clean Fine-
Tuned 3-fold

3-fold
Fine-
Tuned

GerTV Dev Set 13.8 13.6 13.7 13.4
DiSCo Average 12.6 12.4 11.8 11.8

Planned Clean 09.0 09.2 09.0 08.9
Planned Mix 11.6 11.7 10.8 10.8
Spontaneous Clean 10.3 10.1 09.9 09.9
Spontaneous Mix 19.5 18.8 17.5 17.4

German Broadcast 2016 12.3 11.9 11.5 11.2
Challenging Broadcast 20.7 20.5 20.1 19.6
Oral History* 33.4 31.5 28.2 26.6
Interaction 66.5 64.4 47.8 47.1
Spoken QALD-7 20.6 19.7 18.3 17.7

conclusion, data augmentation of the source model and fine-tuning combine well in
the two-stages approach, improving speech recognition for oral history interviews.

Robustness with several evaluation sets

In this section, we investigate a possible domain overfitting by evaluating the two-
staged approach on test data from other domains. We use the entire oral history
set in the second stage for transfer learning for this experiment, and no data is
held out. The results are shown in Table 5.4.

Even though we used the two-staged acoustic modeling adaptation to improve
the performance on oral history interviews, the model performs better than the
comparison models on all evaluation sets. The increase in performance is higher on
rather challenging test sets while maintaining or even slightly increasing the good
performance on the more clean, broadcast tasks. Therefore, we conclude that the
two-staged approach is useful for adaptation to a specific task and can also help
increase the generalization of the acoustic model when suitable adaptation data is
used.
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5.3.5 Summary and Conclusion
In this study, we presented a two-staged acoustic modeling adaptation for robust
speech recognition. We evaluated the approach on our challenging German oral
history interview use case. We assessed the reliability of our approach with a leave-
one-speaker-out evaluation method in which we performed 35 experiments for one
setup. We showed that the proposed approach increases the speech recognition
performance for most experiments and performs better than using either data
augmentation or fine-tuning alone. On average, the word error rate decreases
relative to a clean-trained baseline by 19.3 % with speaker-aware decoding and
20.4 % with speaker-unaware decoding. Data augmentation of the source model
has the most substantial influence, but fine-tuning serves as a purposeful addition.

Furthermore, we showed that our approach helps to increase the generalization
of acoustic models and leads to improved recognition for challenging recordings
while maintaining good performance on clean broadcast tasks. Fine-tuning in the
two-step approach does not lead to domain overfitting in our experiments, despite
the very small amount of training data. However, this is certainly dependent on the
data used. In further experiments, we investigate the influence of the adaptation
training data on speech recognition.

5.4 Study: Adaptation on Semi-Automatically
Created Training Data

In this second study on transfer learning of the acoustic model, we extend the pre-
vious two-staged approach to overcome the lack of suitably annotated, in-domain
oral history interviews for acoustic model adaptation. We utilize the robust 3-
fold acoustic model to semi-automatically create training data from raw, non-
segmented transcripts for the fine-tuning stage. We study two research questions
in this section. First, we investigate whether fine-tuning the model, initially used
to create the adaptation data, substantially improves the speech recognition for
oral history interviews. Second, we study different amounts of adaptation data
and the influence of the learning rate to investigate potential domain overfitting
by fine-tuning.

5.4.1 Proposed Acoustic Model Fine-Tuning on
Semi-Automatically Created Adaptation Data

In the previous study, we used leave-one-speaker-out cross-validation to show that
the combination of data augmentation and transfer learning leads to an improved
generalization of the model and, in particular, higher recognition accuracy for oral
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history. However, the small amount of adaptation data in the previous experiments
limits the improvement. Annotation, i.e., verbatim transcription with segmenta-
tion using timestamps every few seconds, of several hundred hours of interviews is
generally required to obtain substantially improved recognition results. However,
this is costly and time-intensive, which results in a lack of representative training
data.

The historians at the archive Deutsches Gedächtnis transcribed numerous oral
history interviews for their research. However, these transcripts are not directly
employable for acoustic model training. The transcribed interviews are often sev-
eral hours long without timestamps or temporal segmentation. Furthermore, the
transcriptions are not always verbatim. They may contain formatting and com-
ments in the text, which are not always easy to distinguish from the spoken word
transcription by automatic processing. It is also not ensured that the entire inter-
view has been transcribed or parts have been omitted.

The proposed approach to overcome the lack of German oral history ASR train-
ing data is to utilize these raw, non-segmented transcripts and semi-automatically
create training data for adaptation. We extend the two-staged acoustic model
adaptation idea from Section 5.3 with an automatic transcript alignment stage.
The concept is illustrated in Figure 5.5. The idea is to use the robust 3-fold LF-
MMI source model from Stage 1, trained on multi-conditioned broadcast speech,
to perform automatic transcript alignment on the raw transcribed interviews. This
data is then used as adaptation data in the subsequent stage to fine-tune the 3-fold
broadcast acoustic model to the oral history domain.

In the most general sense, automatic transcript alignment is a standard com-
ponent in the bootstrap training of most HMM-based speech recognition systems
for short segments, cf. Section 4.3.1. However, alignment of non-verbatim, partly
incomplete, hour-long speech is a substantially different task. Only certain audio
parts where the transcript matches the spoken words with high confidence should
be aligned. The remaining transcript and audio are to be removed. At the Fraun-
hofer IAIS, this type of alignment was studied by Turzynski [2017]. Automatic
audio transcript alignment has also been proposed and implemented in Kaldi as
a component of the JHU Kaldi system for the Arabic MGB-3 ASR challenge by
Manohar et al. [2017].

We performed different primary experiments with both approaches and decided
to use Manohar et al.’s approach with LF-MMI implementation for the presented
research work. This automatic transcript alignment consists of segmentation and
data clean-up based on the source acoustic model. The segmentation step aims
at obtaining segments of a few seconds length from the hour-long interviews for
acoustic model training. The data clean-up aims to remove segments or words
with erroneous transcriptions.
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Figure 5.5: Acoustic model adaptation on automatically time-aligned speech recordings.
The approach extends the two-staged adaptation using the source model to
time-align and clean-up raw, transcribed but not time-aligned oral history
interviews.
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In their work, Manohar et al. [2017] also studied transfer learning for domain
adaptation. However, their proposed approach differs from ours in substantial
aspects. In our approach, we apply the automatic transcript alignment on speech
that we consider out of domain for the acoustic model performing the alignment.
Further, we use the semi-automatically created in-domain training data to adapt
the source acoustic model to the target domain. In contrast, Manohar et al. use
the automatically aligned data in their system to train a source model adapted
using transfer learning on manually annotated speech.

5.4.2 Experimental Setup
Our study investigates how well the challenging oral history interviews can be
processed with the automatic transcript alignment using a model trained on data-
augmented broadcast speech and what improvements this adaptation data provides
for the transcription of oral history interviews. Additionally, we again investigate
the effect of adaptation to the oral history domain on recognition performance
in other domains to estimate the real-world performance of our system. We also
examine different amounts of adaptation data to determine what improvement
can be expected from different amounts of adaptation data and whether a large
amount of adaptation data affects performance in other domains.

In the following, we lay out our experimental setup for this study. We keep the
primary experiment parameters the same as in the previous studies to make the
results comparable. Therefore, the experiments are again carried out using the
Kaldi ASR toolkit. We also use the same TDNN-LSTM topology with LF-MMI
training we initially studied and selected in Chapter 4. Also, we use the same
transfer learning setup as in Section 5.3, in particular, the same 3-fold v1 source
model trained on data-augmented broadcast speech and transfer learning config-
uration. The decoding is performed with the default broadcast language model.
For the fine-tuning experiments on 3-fold, we use the fixed language model weight
as in the two-staged adaptation experiments—which is also the best configuration
in most cases for oral history and the other test data. Results are reported with
speaker-unaware decoding, as for most prior experiments.

The primary object of study in this experiment is the data used for automatic
transcript alignment and the amount of training data for fine-tuning. We use
the raw oral history interviews described in Section 3.4.9 for our experiments.
The interviews were provided by the archive Deutsches Gedächtnis. The primary
selection criterion was that the interviewees did not appear in the oral history test
set. Apart from that, the selection was made randomly.

The transcripts of the interviews were provided in the original document for-
mats. These were mainly formatted document types, such as MS Word and RTF.
We performed an automatic preprocessing and text normalization to remove the
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Table 5.5: Raw, transcribed but not time-aligned oral history interview data sets used
for alignment and adaptation experiments. From top to bottom, the data
set extends the previous one, subsequently increasing the data set size. The
average interview length is reported as the arithmetic mean ± the standard
deviation.

Set Inter-
viewees

Raw Length
[hrs:min]

Raw Number
of Words

Average Interview
Length [hrs:min]

OH10 10 44:23 291,553 4:26 ± 1:25
OH49 49 195:09 1,293,103 3:58 ± 2:16
OH99 99 379:09 2,451,103 3:49 ± 2:01
OH150 150 546:45 3,568,885 3:38 ± 1:54

transcribers’ comments from the transcription (usually, but not always in braces),
write out abbreviations, numbers, and dates, remove special characters, and restore
the casing of words at the beginning of sentences as good as possible. Generally,
however, no manual data selection or correction of transcripts is performed due
to the large amount of data. Thus, from the acoustic model training data per-
spective, the resulting transcriptions have to be considered partly erroneous and
incomplete.

The interviews were provided and processed in four tranches. Each tranche
was combined with the previous one creating a larger data set used for alignment
and adaptation experiments. These four data sets are summarized in Table 5.5
with fundamental information. Due to the combination, the smaller data sets are
a subset of the larger data sets, i.e., mathematically speaking, OH10 ⊂ OH49 ⊂
OH99 ⊂ OH150, where OHn is the data set with n interviewees. The final set
comprises 150 interviews with 547 hours of raw audio recordings and more than
3.5 million transcribed words.

The average interview length is approximately 3.5 hours. However, we observe a
relatively high standard deviation of almost two hours. The length of all interviews
is presented in Figure 5.6 to examine the interview lengths in more detail. Overall,
the interviews in the four delivered tranches seem to follow a similar underlying
distribution, as indicated by the four different colors in the figure. As the amount of
data increases, this underlying distribution becomes more evident. Most interviews
are between 1–5 hours long, with a peak at 3–4 hours. Nine interviews are shorter
than one hour, and 15 interviews, i.e., 10 % of OH150 are longer than 5 hours. The
shortest interview recording has only 18 minutes duration. The longest, combined
interview lasts more than 12 hours.
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Figure 5.6: Histogram of the audio length of the raw interviews used for alignment and
adaptation experiments. Each tranche is represented with a different color.
Thus, the stacked bars represent the distribution of the combination of the
respective tranches, i.e., the OHn data set.

Our experiments investigate how much audio and how many transcribed words
can be aligned. We cannot evaluate the alignment results objectively since we
have no ground truth. However, we are anyway particularly interested in improv-
ing speech recognition. Thus, we use the four data sets for different adaptation
experiments with the 3-fold model and evaluate the influence on the speech recog-
nition performance. These experiments investigate the impact of the different
data sizes and whether the automatically aligned data for fine-tuning can actually
improve speech recognition.

Acoustic model training with larger training data sets is computationally expen-
sive. Therefore, an exhausting hyperparameter optimization for all adaptation sets
is not feasible within the scope of this work. However, to investigate the influence
of the learning rate on acoustic model adaptation and, in particular, the impact
on different domains, we perform representative experiments on the medium-sized,
transcript-aligned oral history adaptation set OH49.

5.4.3 Results and Discussion
In the following, we present the results of our experiments. We first present the
results of the automatic transcript alignment. Then, we present the speech recog-
nition results when using the aligned data for fine-tuning.

Automatic Transcript Alignment

The result summary of the automatic transcript alignment for the four interview
sets is presented in Table 5.6. Depending on the data set size, 39–47 % of the overall
audio was aligned using the 3-fold LF-MMI model. However, the number of aligned
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Table 5.6: Results of the automatic transcript alignment of the oral history interviews.
Results are reported for the four data sets. The 3-fold LF-MMI model was
utilized for the alignment.

OH10 OH49 OH99 OH150

Overall Aligned Audio 47.4 % 38.9 % 42.4 % 45.5 %
Overall Aligned Words 67.9 % 55.4 % 60.7 % 64.4 %
Length [hrs:min] 21:02 75:58 160:55 248:34
Number of Segments 18,231 64,704 138,532 213,783
Number of Words 198,059 715,993 1,488,271 2,297,880
Unique Words 15,666 36,935 60,026 80,421
Average Segment Length [s] 4.2 ± 2.4 4.2 ± 2.3 4.2 ± 2.4 4.2 ± 2.4
Average Words Per Segment 10.9 ± 7.3 11.1 ± 7.0 10.7 ± 7.1 10.7 ± 7.2
Average Words Per Second 2.6 ± 0.9 2.6 ± 0.9 2.5 ± 0.9 2.5 ± 0.9

words is in the range of 55–68 %, thus, substantially larger than the aligned audio.
This is because many interviews contain passages in which interviewees do not
speak. The alignment removes these audio passages.

Overall, slightly more than half of the spoken, transcribed words were aligned
with the audio and can be used for acoustic model training. The smallest set
with ten interviews comprises about 21 hours of training data, the largest set with
all 150 interviews comprises almost 250 hours. The overall length of the data
set and the number of words is about one-fourth of the GerTV1000h corpus, cf.
Table 3.2. The vocabulary size (number of unique words) is about one-third of
the GerTV1000h corpus. The four oral history adaptation sets are quite similar in
terms of statistical properties. They also have similar properties to the broadcast
GerTV1000h training data, cf. Table 3.4. The average segment length, words
per segment, and words per second are slightly lower for the aligned oral history
interviews than for GerTV1000h.

Figure 5.7 shows the ratio of aligned audio to the raw audio length per interview
in more detail. We observe a maximum in interviews whose audio could be aligned
to 50 to 60 %. Overall, however, the distribution is quite wide, and most interviews
fall into the range of 30–80 %. Only for some interviews, more than 80 % of the
audio could be aligned.

However, some interviews could practically not be aligned at all. A qualitative
evaluation of these interviews showed that the failed alignments are partly due
to incomplete or non-matching transcripts and extremely difficult, oral-history-
specific characteristics. These are mainly dialects and challenging recording con-
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Figure 5.7: Histogram of the aligned audio length of the raw interviews. Each tranche
is represented with a different color. Thus, the stacked bars represent the
distribution of the combination of the respective tranches, i.e., the OHn data
set.

ditions. Some are barely intelligible even for humans. Although the data is initially
lost for model adaptation, the reliable discarding of the non-alignable interviews
indicates the general reliability of the automatic transcript alignment approach
even for challenging oral history interviews. Furthermore, it indicates the impor-
tance of robustness of the source model required for the alignment, as acoustic
challenges often seemed to be the primary reason for the failed alignment.

Acoustic Model Fine-Tuning Results

The results of the adaptation experiments with the four semi-automatically cre-
ated oral history training data sets are reported in Table 5.7. We present the
results compared to two baselines: the source 3-fold model and a comparable LF-
MMI–TDNN-LSTM trained from scratch on the largest oral history data set. As
presented in Table B.2 in the appendix, we also evaluated training from scratch
on the smaller subsets for comparison. However, for the sake of clarity, we only
report the baseline with the best results using the largest data set. We also again
report the results of the adaptation experiments on the oral history test set from
Section 5.3 for comparison. We refer to this data as T35.

First, it is noteworthy that the baseline system trained from scratch on 250 hours
of transcript-aligned oral history interviews already achieves a word error rate on
the oral history test set comparable to the 3-fold model trained with substantially
more data. This indicates an overall decent quality of the transcript alignment
that enabled this recognition performance.

The results show that adaptation on data created with automatic transcript
alignment generally improves recognition performance on the oral history test
set. The more data used, the higher the improvement. There is also a slight
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Table 5.7: Results of acoustic model adaptation experiments with oral history training
data created with automatic transcript alignment. Results are reported as
word error rates in percent. T35 refers to the adaptation using the oral history
test set presented in Section 5.3. The result of this model on the oral history
test set, marked with an asterisk, was obtained using the leave-one-speaker-out
cross-validation approach.

Baselines 3-fold v1 Fine-Tuned

OH150 3-fold v1 T35 OH10 OH49 OH99 OH150

Training Data Size: 249 h 3×992 h 3.5 h 21 h 76 h 161 h 249 h

GerTV Dev Set 17.9 13.7 13.4 13.6 13.8 13.8 13.8

DiSCo Average 21.0 11.8 11.8 12.3 12.7 12.7 12.7
Planned Clean 15.1 9.0 8.9 9.2 9.5 9.6 9.5
Planned Mix 21.3 10.8 10.8 11.3 11.4 11.4 11.4
Spontaneous Clean 16.2 9.9 9.9 10.5 11.4 11.6 11.4
Spontaneous Mix 31.4 17.5 17.4 18.4 18.4 18.4 18.4

German Broadcast 2016 15.9 11.5 11.2 11.8 11.3 11.2 11.3
Challenging Broadcast 26.3 20.1 19.6 19.8 19.5 19.5 19.5

Oral History 28.6 28.2 *26.6 25.7 25.2 24.7 24.5
Interaction 58.6 47.8 47.1 47.7 48.6 49.2 49.1
Spoken QALD-7 28.4 18.3 17.7 17.7 18.1 17.5 17.8

cross-domain improvement with the semi-automatically generated training data
on Challenging Broadcast and Spoken QALD-7. However, on the DiSCo subsets
and Interaction, the model adapted with T35 continues to be the best performing
system. This might indicate some domain overfitting with an increased adaptation
data set size.

The improvements relative to the results with the 3-fold source model per test
set are compared in Figure 5.8. In this plot, the effect of adaptation and the influ-
ence of training data size becomes evident. We observe a monotonically increasing
but flattening curve with increasing adaptation data size for oral history. The rela-
tive improvement with 76 hours of data is already above 10 % and becomes about
12–13 % with 161 and 249 hours. Except for small outliers, we observe mainly
consistent behavior and slight improvements around 2.5 % relative for Broadcast
2016, Challenging Broadcast, and Spoken QALD-7. DiSCo and Interaction dete-
riorate almost monotonically with increasing adaptation data. However, the curve
for both seems to saturate at 161 hours. Further experiments are required to
reasonably estimate the behavior with more in-domain adaptation data, which is
currently unavailable.

We want to investigate further the effects of adaptation on the different domains.
We are particularly interested in why the recognition on the Interaction test sets
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Figure 5.8: Relative word error rate improvements of the acoustic models adapted with
increasing oral history adaptation data size on different test sets. All values
above zero indicate an improvement in the recognition performance. The
result on Oral History with T35 was obtained using a leave-one-speaker-out
evaluation in Section 5.3.
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Figure 5.9: Influence of word error types on the word error rate for Oral History and In-
teraction with different adapted models. The different error types are stacked
in the graph so that the stacked graph represents the total word error rate.
Each color represents the influence of the respective error type on the total
word error rate.

deteriorates with adaptation, although Interaction and Oral History share many
similar challenges. Figure 5.9 shows the respective influence of substitutions, in-
sertions, and deletions on the word error rate for the Oral History and Interaction
test set for each model.

Substitutions account for the largest impact in each case for both test sets.
This is typical for challenging speech recognition test data with unconstrained
vocabulary. Adaptation with the oral history training data reduces the influence
of substitutions for both test data so that words are recognized more precisely.

Insertions have only a slight influence on both test sets. Strikingly, deletions have
a comparatively substantial impact on the overall word error rate for Interaction.
In particular, short words are often not recognized. This issue becomes more
substantial for the Interaction test set with adaptation towards the oral history
domain, while it has little influence on the Oral History test set. In particular,
short words are recognized more poorly for Interaction with increasing adaptation.
As summarized in Section 3.4.11, Oral History and Interaction differ, particularly
in the speed of speech. While Oral History has one of the slowest average speaking
rates, Interaction has the highest speaking rate in our data collection. We observed
that a high speaking rate increases deletions in our ASR systems. The adaptation
with oral history seems to contribute to the systems’ accuracy decreases with
increasing speech tempos.
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Table 5.8: Results of experiments with different learning rate configurations for fine-tuning
with transcript-aligned oral history interviews. The adaptation experiments
were carried out with the oral history training set OH49. Results are reported
as word error rates in percent compared to the 3-fold source model. X/Y
refers to the initial and final learning rate used for fine-tuning. 1e-6/1e-7 is the
default configuration.

Fine-Tuned (LR)

Test Set 3-fold 1e-7/1e-8 1e-6/1e-7 1e-5/1e-6

GerTV Dev Set 13.7 13.7 13.8 14.2
DiSCo Average 11.8 12.0 12.7 13.5

Planned Clean 9.0 8.9 9.5 10.1
Planned Mix 10.8 10.9 11.4 12.1
Spontaneous Clean 9.9 10.4 11.4 11.9
Spontaneous Mix 17.5 17.7 18.4 20.1

German Broadcast 2016 11.5 11.3 11.3 11.6
Challenging Broadcast 20.1 19.5 19.5 20.4
Oral History 28.2 26.3 25.2 25.5
Interaction 47.8 47.1 48.6 49.8
Spoken QALD-7 18.3 17.3 18.1 21.3

Influence of the Learning Rate

We used the same learning rate configuration for all experiments, initially estab-
lished in preliminary experiments with small data sets. The adaptation set size
was increased by ten-fold or more in the current experiments. On the one hand,
the question arises whether an increase in the amount of training data is essential
for the observed improvements or whether an increase in the learning rate with a
fixed amount of training data leads to similar improvements. On the other hand,
the question arises whether a lower learning rate is more effective in avoiding do-
main overfitting when the adaptation data is increased multi-fold. To investigate
the influence of re-adjusting the learning rate, we have examined different learning
rates with the medium-sized data set OH49. The results are presented in Table 5.8.

The results show that the best results on oral history are achieved with our
proposed default learning rate of 1e-6/1e-7. Increasing the learning rate to 1e-
5/1e-6 leads to slightly worse results on oral history. However, it substantially
deteriorates all other test sets and domains—almost always worse than the 3-fold
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Figure 5.10: Relative word error rate improvements of fine-tuning with different learning
rates on the semi-automatically created oral history training set. The ex-
periments were carried out with the OH49 set.

baseline. Since this is true across domains, except for oral history, this indicates a
significant domain mismatch due to fine-tuning towards oral history.

Reducing the learning rate to 1e-7/1e-8 leads to better results on the other-
domain test sets Interaction and Spoken QALD-7 than the default learning rate
and the 3-fold baseline. An improvement over the 3-fold baseline is also observed
for oral history and the broadcast domain. A reduced learning rate with the oral
history OH49 adaptations set thus seems to generally achieve a slight but consistent
improvement and a further reduction in domain mismatch over the 3-fold model.

As shown in Figure Figure 5.10, the influence of the different learning rates on
different domains becomes even more evident when considering the improvement
per test set relative to the source model. With the lowest learning rates, the
relative improvements are almost all in the range from −2 to 5 %, with the biggest
relative improvement on Oral History and deterioration only on DiSCo. As the
learning rate increases, the domain mismatch seems to increase. With the highest
learning rate, only oral history improves. Overall, the proposed learning rate of 1e-
6/1e-7 seems to be an appropriate compromise to achieve adequate improvements
in the oral history domain without risking a substantial domain mismatch.

Compared to Figure 5.8, where we studied different data set sizes with a fixed
learning rate, increasing the training data set seems more suitable to avoid domain
mismatch than increasing the learning rate. Since only three learning rates were
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investigated in our study, we can assume a better learning rate exists between
the investigated ones. However, training acoustic models is computationally and
time-intensive. An exhaustive hyperparameter optimization for all learning rates,
especially individually for each data set size, is not feasible within the scope of this
work. In Section 5.5.2 we continue investigating the influence of the learning rate
in additional adaptation experiments with different training data sizes.

5.4.4 Summary and Conclusion
In summary, our experiments in this study showed that automatic transcript align-
ment is well suited to overcome the lack of training data and to adapt an out-of-
domain acoustic model to a target domain in the same language. A substantial
amount of hours-long, raw transcribed but not time-aligned oral history interviews
were time-aligned to create in-domain training data semi-automatically. These in-
terviews were used to fine-tune the robust 3-fold broadcast acoustic model.

Our contribution in this study is to investigate automatic transcript alignment
and adaptation for out-of-domain data in the same language. We further studied
the influence of the adaptation data size and the learning rate on the overall
performance and domain overfitting using several test sets from different domains.
Overall, the adapted models generalize well and are thus also able to better handle
similar challenges in other domains.

Our experiments show that the recognition performance on oral history im-
proves monotonically with larger semi-automatically generated training data sets.
Only for Interaction and DiSCo, which is closest to the broadcast training data,
we observe a deterioration of the recognition performance due to the proposed
adaptation. We observe a fairly consistent improvement for our other test sets
from different domains with different oral history adaptation data sets. Overall,
we substantially improved the recognition on the Oral History test set to a 24.5 %
word error rate with the best adaptation.

5.5 Study: Domain-Mismatch within the Oral
History Domain

Towards the end of the present research work in 2021, an additional oral history
corpus for automatic speech recognition became available. These annotated inter-
views were provided by the Haus der Geschichte (House of the History) Foundation
(HdG) in a joint, interdisciplinary research project. The HdG data sets differ sub-
stantially from the oral history interviews provided by the Deutsches Gedächtnis
archive in the KA3 project, primarily studied in the presented research work. As
discussed in Section 3.4.10, the HdG interviews were recorded more recently and
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thus have substantially better audio quality. Therefore, the HdG data cover a
specific subdomain in the oral history domain and can be considered a Clean Oral
History data set. In contrast, the primarily considered (transcript aligned) KA3

training and test interviews represent Mixed Oral History data.
This new data allows us to investigate interviews in the oral history domain more

nuancedly in the following study. In particular, we investigate the influence of the
acoustic recording conditions of oral history interviews on the acoustic model and
domain adaptation. The experiments in this study are primarily based on [Gref
et al., 2022b].

5.5.1 Experimental Setup
For the experiments in this section, we utilize the latest robust 3-fold acoustic
model, 3-fold v2, as the source model and baseline. Thus, the results of these ex-
periments are not directly comparable to the previous experiments in the presented
research work, as the 3-fold v2 model generally performs better on all domains than
the primary used 3-fold v1 model, cf. Section 4.4.5. Furthermore, for evaluation,
we do not use the default language model but the large 5-gram general-purpose
broadcast language model, which was the standard language model at that time,
cf. Section 3.5.

We use the 6:20-hour speaker-independent training split of the HdG corpus rep-
resenting the Clean Oral History domain for adaptation. As Section 3.6 describes,
we obtained three annotations of three different transcribers for each segment in
the HdG corpus. Since there is no reasonable way to automatically merge the three
different transcriptions into one for training without manual post-annotation, we
use the transcription of transcriber A for training. Since this might lead to a bias
in the evaluation towards the annotation style of A, the evaluation with HdG data
is always done on the transcriptions of all transcribers A, B, and C. In this way,
bias or overfitting towards transcriber A can be identified and prevented.

Additionally, we use the semi-automatically created OH150 data set from Sec-
tion 5.4 with 250 hours of transcript-aligned interviews from 150 different speakers
for adaptation. This data set represents the Mixed Oral History domain. Both
data sets differ substantially in size. Therefore, we additionally study adaptation
with a 10 % subset of OH150. By comparison of the 250-hour and this 25-hour sub-
set OH10%

150 , we investigate the effect of a possible domain overfitting to the acoustic
conditions of the Mixed Oral History domain when training on 250 hours. We fur-
ther investigate the combination of this mixed data set with the comparatively
clean HdG training data set.

Except for the language model, the source 3-fold model, and the adaptation
data, we use the precisely same setup as in Section 5.4 for these experiments.
In particular, we use our proposed default learning rate, which is a reasonable
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Table 5.9: Comparison of acoustic model adaptation experiments using different oral his-
tory adaptation and test sets. Results are reported as word error rate in per-
centage. HdG Test and Dev. Average (Avg.) are the respective arithmetic
mean ± the standard deviation of the results of the ASR system on the three
different human transcriptions. Additionally, we also report the respective re-
sults for Transcriber A, B, and C as the reference.

Adaptation Data

Test Set 3-fold v2
Baseline

HdG
Tr. A OH10%

150
HdG

+OH10%
150

OH150

(Mixed)
Oral History 26.0 25.7 24.7 24.6 23.9

HdG Dev. Avg. 17.3±1.06 17.0±1.08 16.7±1.02 16.6±1.08 17.1±1.09
Transcriber A 16.7 16.4 16.2 16.0 16.4
Transcriber B 16.6 16.3 16.1 16.0 16.5
Transcriber C 18.5 18.2 17.9 17.9 18.4

HdG Test Avg. 16.4±0.32 15.9±0.30 15.6±0.33 15.7±0.37 16.1±0.36
Transcriber A 16.1 15.6 15.3 15.3 15.8
Transcriber B 16.4 15.9 15.6 15.7 16.1
Transcriber C 16.8 16.2 16.0 16.1 16.5

compromise for adaptation in terms of domain overfitting in Section 5.4.3. In this
study, we again discuss an adjustment of the learning rate. In detail, we investigate
a reduction of the learning rate as an alternative approach to reducing the size of
the adaptation data set OH150 to OH10%

150 .

5.5.2 Results and Discussion
In the following, we present and discuss the results of the adaptation experiments.
We first present the results on the different oral history test sets. Then we present
the results of the adapted models on the test sets from other domains to estimate
the real-world performance of the models for unseen data. We conclude with a
discussion of the learning rate adjustment.

Results on Oral History Test Sets

All adaptation experiments on the different oral history test sets are summarized
in Table 5.9. The experiments show that adaptation of the acoustic model can lead
to consistent speech recognition improvements in the overall oral history domain.
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Figure 5.11: Relative improvements of the four differently adapted models on the three
different oral history test sets. The error bars for the HdG sets represent
the standard deviation of the three different reference transcripts used for
evaluation.

However, the overall improvement is dependent on the adaptation data. In partic-
ular, more data does not necessarily lead to better recognition performance. With
the 250 hours of forced aligned data for adaptation, we achieve an improvement
of 8.2 % relative to the 3-fold v2 broadcast base model on Mixed Oral History
Test—our conventional, primary used test set in this work. This adapted model
outperforms our prior best model from Section 5.4, adapted on the same OH150
data, by 1.6 percentage points, due to the improved 3-fold v2 source acoustic model
and larger language model.

An overview of the relative improvements of the models is shown in Figure 5.11.
All models improve the recognition performance on all test data. However, adap-
tation on the largest 250-hour data set OH150 has wildly different effects on the two
oral history domains. While it substantially improves recognition performance for
interviews with challenging acoustic conditions, it achieves the least improvement
on the clean HdG oral history domain. On the HdG development and test set, the
relative improvement of this model is in the range of 1–2 %.

In contrast, adaptation on the HdG training split of Transcriber A results in a
2.0 % relative improvement on HdG Dev and 3.2 % on Test. This is remarkable,
as only 6.35 hours instead of 250 hours of training data is used. The adaptation
improvements are very similar for Transcriber A, B, and C. Thus, the improvement
on the HdG data is consistent and not just a bias towards the transcription style
of A. However, the improvement of this adaptation on the mixed test set is only
1.1 % relative to the baseline.
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The greatest improvement on the clean HdG test interviews is obtained utilizing
the 25-hour subset OH10%

150 with interviews in mixed acoustic conditions. Although
this data set has substantially worse acoustic recording conditions and contains
semi-automatic transcriptions, the acoustic model seems to generalize better with
this data. For HdG Dev, the relative improvement is 3.2 % relative to baseline, and
for HdG Test 4.9 %. On Mixed Oral History, we achieved a relative improvement
in a similar range of 5.1 %. Therefore, we infer that this training data set size with
interviews in mixed acoustic conditions seems a reasonable compromise to cover
both clean and mixed interviews by adapting the acoustic model.

Combining the 25-hour training data set with the clean HdG interviews slightly
improves further the performance on Mixed Oral History, and the HdG Dev set.
However, on HdG Test, the performance is somewhat decreased. Overall, the dif-
ferences in recognition performance by adding the HdG training set to OH10%

150 are
not very substantial. Although adding the HdG interviews in this setup slightly
increases the variance for the different annotators, overall, the results remain con-
sistent for all reference transcribers.

Overall, we conclude that substantial improvement on oral history interviews
can be achieved with comparatively few hours of adaptation data, both semi-
automatically and manually annotated. Furthermore, we infer a large data set can
lead to overfitting to the recording conditions in the domain, as in the case of the
mixed oral history interviews. Thus, depending on the application and the type
of data, it may be valuable to experiment with varying subsets of data. Overall, a
relative improvement of about 5 % can be achieved by adapting the acoustic model
for each of the two different oral history test data.

Compared to the human word error rate of 8.7 percent for the HdG data that
we worked out in Section 3.6, speech recognition still has quite a way to go to
achieve human performance on oral history data. The error rate has to be roughly
halved until an ASR system can replace manual transcription in most scenarios
and make human transcriptions superfluous. However, the current recognition
performance of the systems is already sufficient so that after a manual correction,
the transcript can be used for the Zeitzeugenportal of the Haus der Geschichte
Foundation. The transcripts are essential documents for the practical use of oral
history interviews. They are primarily used to index the videos’ contents for the
thematic classification on the online service Zeitzeugenportal. Since oral history
videos are also a meaningful component of the exhibition practice in museums, the
transcripts are also used for cut lists. Additionally, the transcripts serve for the
subtitling of the videos.

Furthermore, our analysis of two different oral history corpora uncovers a sub-
stantial difference in speech recognition performance. The Mixed Oral History
test data is much more challenging for the ASR system than the HdG data—even
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Table 5.10: Comparison of acoustic model adaptation experiments on test sets from other
domains. Results are reported as word error rate in percentage.

Adaptation Data

Test Set 3-fold v2
Baseline

HdG
Tr. A OH10%

150
HdG

+OH10%
150

OH150

GerTV Dev Set 12.8 12.8 12.8 12.8 13.1
DiSCo Average 12.1 12.2 12.4 12.5 12.9

Planned Clean 8.8 8.8 8.9 9.0 9.2
Planned Mix 9.8 9.9 10.0 10.0 10.4
Spontaneous Clean 11.1 11.3 11.5 11.6 11.9
Spontaneous Mix 18.8 19.0 19.3 19.4 20.0

German Broadcast 2016 9.2 9.1 9.1 9.1 9.5
Challenging Broadcast 17.2 17.3 17.4 17.5 18.0
Interaction 49.6 50.1 50.3 50.2 51.3
Spoken QALD-7 13.6 13.2 13.3 13.0 12.4

when adapted with 250 hours of additional representative data from the very same
source. Depending on the model, the absolute difference in the word error rate
between the mixed and clean interviews is 9.5 % (3-fold v2), 7.7 % (OH150), and
8.9–9.0 % (OH10%

150 with/without HdG train). Both data sets from the German
oral history domain have similar characteristics of speakers, especially in terms of
age, language, dialects, and topics. The main difference lies in the wide range of
recording age of the mixed interviews and the resulting acoustic recording qual-
ity. Therefore, for our models, approximately 9 % of word error rate percentage
points are still attributable to the acoustic challenges of oral history. Thus, further
improving acoustic robustness for oral history remains an open field of research,
although substantial improvements have been made.

Results on Test Sets from Other Domains

In Table 5.10, we summarize the results of the adapted models on the test sets
from domains other than oral history. Similar to the adaptation experiments in
Section 5.4, the adaptation towards the oral history domain decreases the recog-
nition performance on DiSCo and Interaction. However, in this experiment, we
also observe a slight deterioration instead of improvement in recognition perfor-
mance on Challenging Broadcast, cf. Table 5.7. In particular, this deterioration is
strongest for adaptation with OH150. This is noteworthy as the adaptation of the
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3-fold v1 source model with this data improved the performance on this test set.
However, the recognition accuracy of the source model 3-fold v2 with the large
language model used in this experiment is already substantially better than the
3-fold v1 baseline, cf. Table 4.14. Therefore, the observed behavior is probably be-
cause the improved 3-fold v2 source model already models the acoustic challenges
of Challenining Broadcast quite well. Further, non-domain-specific adaptation
seems detrimental to the robustness in this domain.

On the Spoken QALD-7 test set, we achieve a relative improvement similar to
the oral history test sets with the different adaptations. With the 250-hour OH150
adaptation, a relative improvement of 9.0 % is achieved. This is a new benchmark
on this test set. With this model, the word error rate is now roughly in the range
of DiSCo Average and GerTV Dev. We consider this a successful reduction of the
domain mismatch between broadcast and the speech assistant domain.

Discussion on Learning Rate Reduction vs. Data Set Reduction

In the previous evaluation, the 10 % subset OH10%
150 of the 250-hour oral history

training corpus OH150 proved a reasonable compromise for adaptation for the
different oral history domains. Adaptation with 250 hours resulted in domain
overfitting for interviews in mixed acoustic conditions. However, we used a fixed
learning rate for all experiments. Instead of reducing the data set size to 10 %, one
could also reduce the learning rate accordingly to avoid domain overfitting. This
is investigated in the following experiment.

As a comparison to the 25-hour subset, we train a model with the entire 250
hours of data and a learning rate reduced by the same factor, i.e., 1e-7/1e-8 instead
of the default 1e-6/1e-7 learning rate setup. The results are shown in Table 5.11
compared to the models trained on OH10%

150 and OH150 with the default learning
from the previous section.

As to be expected, the 250-hour model with ten times reduced learning rate has
almost the same word error rate for the test sets from the broadcast domain and
as the 25-hour model with default learning rate. Likewise, it is narrowly better for
Interaction, Spoken QALD-7, and (Mixed) Oral History. As more and different
utterances are used for training, a slightly better generalization of this model
with more data and the corresponding adjusted learning rate is to be expected.
Remarkably, however, we see a substantial difference on the HdG interviews in
favor of the model trained on OH10%

150 with less training data and the default learning
rate.

For the different oral history evaluation and development sets, the relative im-
provements compared to the 3-fold v2 source model are illustrated in Figure 5.12.
On (Mixed) Oral History, the relative improvement of OH10%

150 with the default
learning rate and OH150 with the reduced learning rate are very similar. However,
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Table 5.11: Comparison of adaptation experiments with reduced learning rate instead of
reduced training data size. 1e-6/1e-7 is the default learning rate setup, 1e-
7/1e-8 is the reduced learning rate. The detailed results for each reference
annotator on the HdG sets are reported in Table B.3 in the appendix.

Adaptation Data Set OH10%
150 OH150 OH150

Adaptation Data Size 25 h 250 h 250 h
Learning Rate 1e-6/1e-7 1e-7/1e-8 1e-6/1e-7

GerTV Dev Set 12.8 12.9 13.1
DiSCo Average 12.4 12.4 12.9

Planned Clean 08.9 09.0 09.2
Planned Mix 10.0 09.9 10.4
Spontaneous Clean 11.5 11.5 11.9
Spontaneous Mix 19.3 19.2 20.0

German Broadcast 2016 09.1 09.1 09.5
Challenging Broadcast 17.4 17.4 18.0
(Mixed) Oral History 24.7 24.6 23.9
HdG Dev. Avg. 16.7±1.02 17.0±1.07 17.1±1.09
HdG Test Avg. 15.6±0.33 15.9±0.32 16.1±0.36
Interaction 50.3 50.2 51.3
Spoken QALD-7 13.3 13.2 12.4

Oral History (Mixed) HdG Test (Clean) HdG Dev. (Clean)
0
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Figure 5.12: Comparison of the relative improvements of the learning rate discussion on
the three different oral history test sets. The error bars for the HdG sets
represent the standard deviation of the three different reference transcripts
used for evaluation. The same colors as in Figure 5.11 are used for the
reference models with the default learning rate.
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for both HdG sets, the results of OH150 with the reduced learning rate lies between
OH10%

150 and OH150 with the default learning rate. Overall, the absolute adapta-
tion data set size seems less crucial for domain adaptation than an appropriate
learning rate choice. Using a subset achieves similarly good or better results and
simultaneously saves training time.

5.5.3 Summary and Conclusions
The presented study investigates the influence of oral history training data from
different domains on the acoustic model adaptation via fine-tuning. We utilized a
new, clean oral history corpus provided in 2021 that primarily contains oral history
interviews with high recording quality. We utilized this corpus for adaptation and
evaluation, studying the influence of acoustic recording conditions of oral history
interviews on the proposed adaptation and the overall performance of the speech
recognition systems.

In particular, we showed that even with just 25 hours of adaptation data, a
consistent improvement by 5 % relative to a robust baseline was achieved for the
different oral history domains. Utilizing 250 hours of adaptation data in diverse,
mixed acoustic recording conditions leads to more substantial improvements on
similar data—but only to minimal improvements on clean oral history interviews.
Thus, a large amount of adaptation data might not necessarily lead to good gen-
eralization but instead might lead to domain overfitting. On the other hand, we
achieved relative improvements in the range of 2.0–3.2 % in the same domain with
as little as six hours of adaptation data for clean oral history interviews.

By comparing the results on the clean and mixed oral history test data, we
inferred that, on average, roughly nine percentage points of the word error rate of
our systems are attributed to challenging acoustic recording conditions. Although
we achieved substantial improvements in acoustic robustness in the presented re-
search work, especially in Chapter 4, this issue is not yet fully resolved. It remains
one of the core challenges for oral history interviews.

Furthermore, we have shown that adaptation of the acoustic model toward the
oral history domain also influences the performance of speech data from other
domains. Adaptation leads to degradation in the broadcast domain for a robust
source model that works very well on this domain. However, the adaptation si-
multaneously leads to substantial improvements in the speech assistant domain,
which also has acoustic challenges.

In conclusion, it appears that for acoustic model adaptation via fine-tuning,
quality over quantity applies, whereby quality does refer to the audio quality but
rather how accurately the adaptation data matches the target domain. Naturally,
with only a few hours of additional training data, no enormous improvement of the
ASR can be achieved. However, the proposed adaptation allows improvement with
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comparatively little transcription effort. With human correction of automatically
generated transcripts, such an improvement can save many person-hours when
processing vast amounts of data, as is common in many oral history archives.
These can further improve the speech recognition system in an iterative adaptation
process.

5.6 Summary and Contributions

5.6.1 Summary
In this chapter, we investigated fine-tuning of the LF-MMI trained DNN-HMM
acoustic model as an additional method for acoustic robustness and domain adap-
tation in three different studies. We first studied the method as a two-staged
acoustic model adaptation approach using a leave-one-speaker-out evaluation with
the 3.5-hour oral history data set. With this approach, we improved the average
word error rate on this set of the 3-fold v1 model from 28.2 % in the last chapter
to 26.6 %, simultaneously improving recognition performance on speech recordings
from other domains. The small amount of adaptation data primarily limited the
improvement.

We studied automatic transcript alignment to semi-automatically generate adap-
tation data from raw transcribed but not time-aligned oral history interviews.
Despite the challenging recording conditions, we have demonstrated that suitable
adaptation data can be generated from the raw transcribed interviews without
further manual correction. We further improved the word error rate on the oral
history test set to 24.5 % with the best adaptation of the 3-fold v1 model. With
the adaptation of the 3-fold v2 model, we achieved a word error rate of 23.9 %.

Additionally, we investigated the influence of the amount and type of adaptation
data and the learning rate on improving the acoustic model for target domain and
domain overfitting. Our experiments indicate that domain overfitting becomes
more dominant with increasing amounts of adaptation data. While more adapta-
tion data monotonically improves the model’s accuracy for the target domain, it
may degrade the performance on other domains. This may limit the applicability
of the model for unseen real-world data. Our models were evaluated on differ-
ent test sets from several domains to obtain a reliable estimate of the real-world
performance and avoid selecting models that suffer from domain overfitting.

Overall, our experiments in the different studies show that substantial relative
improvements in speech recognition for the target domain can be achieved with
comparatively little training data. In the case of a domain mismatch, adaptation
with a smaller subset may be more goal-directed than more training data. The
main advantage of the fine-tuning approach is that an improvement in speech
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recognition performance for the target domain can be achieved with comparatively
little training time, i.e., without investing several weeks to months to train only
one model. The fine-tuning approach allows training and evaluation of a multitude
of models instead of only a few, which is advantageous both for research and
adaptation for Audio Mining users’ demands.

5.6.2 List of Contributions
List of scientific contributions in this chapter:

• Two-staged LF-MMI acoustic model domain adaptation was proposed and
investigated, combining data augmentation for acoustic robustness with acous-
tic model fine-tuning. The approach was studied using a leave-one-speaker-
out cross-validation.

• Automatic transcript alignment was studied for semi-automatic generation
of in-domain, oral history adaptation data.

• Investigation of the influence of the amount of adaptation data on the general
robustness and domain overfitting were performed.

• Domain overfitting through fine-tuning within different oral history sub-
domains was studied with adaptation data from two German oral history
archives.
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In the previous chapters, we first investigated and improved the acoustic robust-
ness for the challenging recording conditions of oral history interviews. Then we
investigated adaptation via fine-tuning on automatically transcript-aligned speech
to adapt the acoustic model to the oral history target domain. Data augmentation
and fine-tuning were reasonably combined to improve the recognition performance
for the oral history domain substantially.

However, the adaptation via fine-tuning can lead to domain overfitting for some
test sets, decreasing the models’ overall robustness and applicability for real-world
systems. In this chapter, we propose and study a multi-staged, cross-lingual adap-
tation to overcome this limitation and further improve the acoustic model robust-
ness for different domains. The proposed approach aims at utilizing training data
from heterogeneous domains both in the same and different languages. Particu-
larly, we exploit publicly available English speech recognition corpora from diverse
domains for training.

Automatic transcription of oral history interviews is not only of interest for Ger-
man. As discussed in Section 3.3.1, it is also a relevant research topic for many
low-resource languages for which generally substantially less annotated speech is
available for training. This chapter also contributes to this low-resource speech
recognition research, investigating cross-lingual adaptation from English to Ger-
man with a small amount of German oral history training data for LF-MMI models.

The chapter is structured as follows. Section 6.2 provides an overview of related
works on cross-lingual and multilingual adaptation in automatic speech recogni-
tion. Section 6.3 presents the proposed approach. The experimental setup for
evaluation is presented in Section 6.4. Section 6.5 presents and discusses the re-
sults. In Section 6.6, we summarize the chapter’s findings and contributions.

6.1 Thesis Author Contribution

Parts of this chapter are covered in the publication
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Michael Gref, Oliver Walter, Christoph Schmidt, Sven Behnke, and Joachim
Köhler. Multi-staged cross-lingual acoustic model adaption for robust
speech recognition in real-world applications - A case study on German oral
history interviews. In 12th International Conference on Language Resources
and Evaluation (LREC), pages 6354–6362. European Language Resources
Association (ELRA), 2020. URL https://aclanthology.org/2020.lrec-1.780

in which the multi-staged cross-lingual adaptation was proposed and studied by the
thesis author. All presented approaches, experiments, findings, results, analyses,
conclusions, figures, and texts are contributions of the thesis author. A co-author
supported the experiments in coordination with the thesis author by training the
English source model described in Section 6.4.1 using the noise and reverberation
data augmentation, model, and training routines proposed and studied by the
thesis author. Respective author contributions are given in Appendix C.

Section 6.3–6.5 summarize and extend the paper’s content. The experiments,
analysis, and discussions in the paper were extended and continued by the thesis
author in the presented research work to put the overall contribution of the pro-
posed approach into perspective to the other chapter’s experiments, findings, and
contributions.

6.2 Related Work
Cross-lingual acoustic model adaptation or knowledge transfer in automatic speech
recognition aims at utilizing the knowledge of models trained in one language to
improve recognition performance for a target language. The general idea is to
exploit similarities between two languages by training a system on large amounts
of annotated speech in the source language and adapting the system to the tar-
get language with usually only little annotated speech. A related task is multi-
lingual speech recognition, where a system is trained simultaneously on multiple
languages. Cross-lingual adaptation and multilingual training are often applied for
low-resource languages where only insufficient training data is available to train
single-language systems successfully. If the goal is to improve recognition perfor-
mance for one particular target language, cross-lingual adaptation is often applied
on top of multilingual acoustic models.

For DNN acoustic models, the approaches share the idea that the lower layers
of the network are primary language-independent while the layers near the output
are language-dependent. For multilingual trained systems, this is due to the si-
multaneous training on multiple languages, e.g., as studied by Huang et al. [2013],
Ghoshal et al. [2013], and Grezl et al. [2014] for cross-lingual adaptation of mul-
tilingual DNN-HMM acoustic models with shared hidden layers. For cross-lingual
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systems adapted from one language to another, this is the case for related languages
with similar characteristics. For instance, this is studied by Chuangsuwanich et al.
[2016], who investigated automatically identifying language subsets of multilingual
training data close to the target language and more beneficial for adaptation.

In the late 2010s, cross-lingual adaptation still was a recent research topic en-
abling substantial improvements for low-resource speech recognition tasks. For
instance, Xu et al. [2016] studied semi-supervised learning and cross-lingual knowl-
edge transfer with multilingual data and neural network fine-tuning. Feng and Lee
[2018] investigated cross-lingual knowledge transfer in a multilingual setup with
language-dependent pre-final layers under each softmax output layer.

Only a few works studied cross-lingual adaptation for sequence-discriminative
LF-MMI hybrid acoustic models. Ma et al. [2017] studied multilingual training us-
ing LF-MMI models with a joint LF-MMI output layer across languages followed
by the adaptation to a low-resourced target language. Pulugundla et al. [2018]
studied and proposed a multilingual LF-MMI trained system for low resource In-
dian language speech recognition.

Near the end of the 2010s, the research focus is increasingly moving towards
end-to-end speech recognition. Cross-lingual adaptation is of particular research
interest for these models, as they are often simpler to train than hybrid systems
using phonetic representations and combining HMMs and DNNs, cf. Section 2.3.
For instance, Kunze et al. [2017] studied the cross-lingual adaptation from English
to German for the end-to-end wav2letter model [Collobert et al., 2016]. The au-
thors combined ten different German corpora, mainly from the Bavarian Archive
for Speech Signals (BAS) [Schiel, 1998], with overall 416 hours for adaptation.
Cross-lingual adaptation of a CTC-based multilingual end-to-end acoustic model
was studied by Tong et al. [2018]. The authors further investigated cross-lingual
adaptation with the end-to-end implementation of the LF-MMI criterion (cf. Sec-
tion 2.3.2) in [Tong et al., 2019]. In recent years, Vyas et al. [2021] investigated
CTC and end-to-end LF-MMI training with the recent wav2vec 2.0 model [Baevski
et al., 2020] for training an English system and for cross-lingual adaptation from
English to Tagalog and Swahili. Luo et al. [2021] studied adaptation with an
English-trained QuartzNet end-to-end system [Kriman et al., 2020] for cross-lingual
adaptation to German, Spanish, and Russian, adaptation to different English ac-
cents, and other domains within the English language. The authors also studied
cross-lingual adaptation from Mandarin to Cantonese.

Most of these related works perform only a single-staged (supervised) adaptation
from multilingual or single-language source models to the target language. In
our approach, we study a multi-staged adaptation for LF-MMI models not only
to perform language adaptation but particularly to improve the model for the
German oral history domain and simultaneously minimize domain overfitting.
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6.3 Proposed Approach
The proposed multi-stage cross-lingual adaptation consists of three subsequent
training stages, as shown in Figure 6.1. We first use a vast amount of data from a
different language to pre-train the acoustic model and then train in two stages on
decreasing data for more nearby domains in the target language. At the transition
of each stage, we transfer the corresponding learned knowledge to the initial net-
work in the next stage. The approach is designed for the specific use case to utilize
three vastly differently sized data sets from different domains. For our use case,
we consider several combined English corpora in the first stage, German broadcast
data in the second, and only a small adaptation set of the German oral history
target domain in the last adaptation stage.

6.3.1 Stage 1: Other-Language Pre-Training
In the first stage of the proposed approach, a robust acoustic model is pre-trained
using a vast amount of different-language, heterogeneous, out-of-domain training
data. Generally, a model reasonably trained on such data learns to perform a
robust extraction of relevant acoustic input features and learns useful internal
representations for the classification task. We assume that these aspects are, at
least to some extent, language-independent for related languages. We then apply
a weight transfer of all hidden layers and use these layers to initialize the acoustic
model neural network training in the second stage to use this knowledge for tasks
in languages with less available data.

English is probably the language with the most available training data for speech
recognition. Therefore, we propose combining several English corpora from dif-
ferent domains to train the acoustic model in this stage. By combining corpora
from different domains, we obtain a heterogeneous training set covering a wide
range of different conditions.1 Furthermore, we apply the three-fold noise and re-
verberation data augmentation from Section 4.4 in our approach to improve the
model’s robustness and generalization. In this and all subsequent stages, we again
apply Kaldi’s default speed perturbation [Ko et al., 2015] to further increase the
variability and amount of data three-fold using constant speed factors 0.9 and 1.1.
Thus, the training data in this stage is increased nine-fold.

The LF-MMI acoustic model training configuration is the same as for the Ger-
man models in the previous chapters. As a default step of the acoustic model
training, we train an i-vector extractor on English data in this stage.

1The combination of multiple public English speech corpora for ASR training was also proposed
and studied by Chan et al. [2021] for the Google SpeechStew ASR system after our publication
[Gref et al., 2020].
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Figure 6.1: Proposed cross-lingual, multi-staged acoustic model adaptation approach. We
first pre-train the acoustic model on 9×3400 hours of English speech data, then
adapt it to the German language using 9 × 1000 hours. Finally, the acoustic
model is adapted to the German oral history target domain with 3 × 25 hours
of automatic transcript-aligned speech. Three-fold noise and reverberation
data augmentation is applied for English and German Broadcast training to
improve the model’s acoustic robustness. In all stages, Kaldi’s default speed
perturbation is applied.
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6.3.2 Stage 2: Same-Language Cross-Lingual Adaptation
In the second stage, the acoustic model is adapted to the language of the target
domain, however, utilizing a large amount of training data from another domain.
We perform the cross-lingual adaptation implicitly and apply no phoneme map-
ping. We replace the language-dependent LF-MMI and CE-regularization output
layers of the LF-MMI acoustic model trained on English with randomly initialized
output layers for tied states of German bootstrap GMM-HMM models—and then
train this LF-MMI acoustic model on German speech.

In this stage, the feature extraction and representation learning of the lower lay-
ers is further improved for the target language while the classification of language-
dependent subphonetic units is learned. As in the previous stage, training data
is increased nine-fold to improve acoustic robustness and generalization as in the
previous stage using noise and reverberation data augmentation and speed pertur-
bation.

We apply the English-trained i-vector extractor from the previous stage for the
German acoustic model training in this stage. We do not adapt the extractor on
data from the target language as we consider the i-vectors to be mainly language-
independent.

6.3.3 Stage 3: Same-Language Domain Adaptation
The acoustic model is adapted to the target domain in the last stage. We not
only transfer the hidden layers in this stage but utilize a full weight transfer. This
adaptation is the fine-tuning approach investigated in Chapter 5. In contrast to the
previous stage, we do not replace the output layer since we use the same phone set
and phonetic decision tree in Stage 2 and Stage 3. We obtain the training lexicons
using the same grapheme-to-phoneme (G2P) pronunciation model.

Since we lack training data for German oral history interviews, we again uti-
lize the adaptation data created with the automatic audio transcript alignment
investigated Section 5.4 for the same-language domain adaptation.

6.4 Experimental Setup
In the following section, we describe the experimental setup for our investigation
of the proposed multi-stage cross-lingual adaptation. The experimental setup is
in large parts the same as in the previous chapters to ensure comparable results.
In particular, we again carry out all experiments using the Kaldi ASR toolkit
[Povey et al., 2011] with LF-MMI training [Povey et al., 2016] of the TDNN-LSTM
acoustic model architecture selected in Section 4.3.
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However, in this chapter, we use a slightly updated version of the training rou-
tine compared to the experiments in Chapter 4 and the first two of three adapta-
tion studies in Chapter 5. In these experiments, we used the training routine of
the original 3-fold (v1) acoustic model investigated and proposed in Section 4.4.
The training routine we apply in this chapter was improved to train an improved
3-fold v1.1 baseline model and varies in some details, cf. Section 4.4.5. In particu-
lar, for the bootstrap GMM-HMM model training, fixed relative ratios of segments
from the entire training data set are used instead of fixed amounts of segments,
enabling the training routine to handle differently sized training data automati-
cally. This is particularly useful for the experiments in this chapter, where the
amount of training data of each stage varies substantially. Furthermore, the train-
ing is slightly improved by using more heterogeneous data for the i-vector extrac-
tor training and a slightly adjusted learning rate scheduling. In the following, we
present and discuss the remaining experimental setup details for each stage and
different types of experiments.

6.4.1 Training of English Model in Stage 1
For English model training in Stage 1, we combined the training data sets from
the well-known corpora Librispeech [Panayotov et al., 2015], the 2018s, 240-hour
version of the English Common Voice Corpus2, Switchboard [Godfrey et al., 1992],
and Fisher [Cieri et al., 2004]. Overall, the English training data comprises more
than 3400 hours of annotated speech. We create two distorted versions in addition
to the clean data set using the noise and reverberation data augmentation from
Section 4.4. The first version uses a random 5–10 dB signal-to-noise ratio, the
second one 10–20 dB. We utilize 266 room impulse responses of small and medium-
sized rooms for reverberation and several noises recorded in real-life scenarios in
both versions.

For a preliminary assessment of the acoustic model, an English general-propose
language model for decoding based on crawled texts is used. The English model
achieves a 9.17 % word error rate on Librispeech test-clean and 18.30 % on the
data from Voices Obscured in Complex Environmental Settings (VOiCES) [Richey
et al., 2018].

6.4.2 Adaptation to German in Stage 2
For the cross-lingual adaptation from English to German in Stage 2, we again
utilize the 1000-hour large-scale corpus of German broadcast speech GerTV1000h
also used in the previous chapters for acoustic model training. For the noise and

2https://commonvoice.mozilla.org
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reverberation data augmentation in this stage, we apply the same 3-fold setup
as in Section 4.4.3. In summary, two additional distorted versions of the clean
training are created. The first version applies artificial reverberation using 266
room impulse responses of small and medium-sized rooms. The second one is
created with both reverberation and noises using a random 10–20 dB signal-to-
noise ratio.

Related works indicate that hyperparameter tuning, such as layer-freezing or a
decreased learning rate for the lower layers, can improve cross-lingual adaptation.
However, most works studied the cross-lingual adaptation with comparably small
adaptation set sizes. Due to the week-long training of one LF-MMI acoustic model
on 9000 hours of annotated speech, it is not feasible to perform hyperparameter
tuning in the presented research work. Therefore, we use the default training
routine as for from-scratch training with four epochs, default learning rates, and
per-frame dropout, cf. Table 5.1. We show that the cross-lingual adaptation im-
proves robustness and decreases domain overfitting with this initial configuration.

6.4.3 Adaptation to Oral History Domain in Stage 3
The adaptation of the German broadcast model from Stage 2 to the oral history
domain is based on the extensively studied acoustic model adaptation from Chap-
ter 5. We use the best configuration investigated in that chapter, especially the
default learning rate, which has been proven beneficial in several different experi-
ments (cf. Sections 5.4.3 and 5.5.2). Furthermore, we also do not apply per-frame
dropout for this adaptation stage. We utilize the 25-hour OH10%

150 oral history
adaptation set of automatically transcript-aligned oral history interviews of 150
different speakers, cf. Section 5.5.

6.4.4 Evaluation
The evaluation is performed on the same three test sets from the broadcast domain
and the three test sets from other domains as in the previous experiments, cf. Sec-
tion 3.4. We study the influence of the different adaptations on domain overfitting
by comparing the relative improvements on the diverse domains. We do not per-
form adaptation or evaluation on the HdG data sets studied in Section 5.5. These
data sets were created in 2021, while the presented experiments in this chapter
were conducted in 2019 and published in 2020.

For decoding, we utilize the same default broadcast language model also used
in most experiments in the previous chapters. Additionally, we evaluate all mod-
els with the large broadcast language model Large LM with a 2 million words
vocabulary trained on 1.6 billion running words, cf. Section 3.5. Comparing the
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recognition performance of the acoustic models with two different language mod-
els allows us to better assess the influence of cross-lingual adaptation by further
reducing the influence of the language model on the evaluation.

6.4.5 Performed Experiments
We use two baseline models to compare our proposed approach. These models
are trained without neural network initialization from a prior model, and no fur-
ther adaptation is performed. The first baseline is the 3-fold v1.1 acoustic model
trained from scratch on the 1000 hours of German broadcast data with the data
augmentation and training setup described for Stage 2. The second baseline is a
model trained from scratch on the 25-hour OH10%

150 adaptation set of automatically
transcript-aligned oral history interviews.

Furthermore, to determine how each stage contributes to the improvements of
the proposed approach, we carry out three ablation study experiments in which
we omit one of the stages from training. The ablation study without English pre-
training Stage 1 is the adaptation approach from German Broadcast to the oral
history domain studied in Chapter 5 but with 3-fold v1.1 as the source model.
The experiment with removed Stage 3 is conventional (single-staged) cross-lingual
adaptation as referenced in the related work. In the ablation study without Stage
2, the English model is cross-lingually adapted to the oral history domain using the
25-hour adaptation set. This experiment contributes to low-resource challenges by
investigating the effects of cross-lingual adaptation with a small data set from the
target language for different domains. Thus, overall, we compare the proposed
approach with overall five different models.

In experiments without English pre-training—both in the baselines and in the
ablation study—the i-vector extractor is also trained with the corresponding data
used in the first respective training step. We also study the influence of the i-
vector extractor on the knowledge transfer from English pre-training Stage 1 by
comparing the German and English trained i-vector extractor in an additional
experiment.

6.5 Results and Discussion
The results of the proposed approach, baseline models, and the ablation study
experiments are summarized in Table 6.1 for both language models. We have not
included the detailed results on the four individual DiSCo subsets in the table for
the sake of clarity. The results on the individual subsets show the same trends
as DiSCo Average and do not allow to draw further conclusions. For the sake of
completeness, the results are added in Table B.4 in the Appendix.
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Table 6.1: Multi-staged cross-lingual adaptation results compared to two baselines and
three ablation studies. Results are reported for the default and the large de-
coding language model as word error rates in percent. The upper row per test
set shows the word error rate decoding with the default language model. The
respective next row (+Large LM ) shows the results of the acoustic models on
this test set with the larger language model.
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Stage 1 (English) × × ×
Stage 2 (German Broadcast) × × × ×
Stage 3 (Ger. Oral History) × × × ×
GerTV Dev Set 13.6 22.5 13.8 18.4 13.4 13.7

+Large LM 12.9 22.7 12.9 18.1 12.9 13.1
DiSCo Average 11.9 27.9 12.5 20.8 11.9 12.4

+Large LM 12.2 28.7 12.5 20.8 12.1 12.4
German Broadcast 2016 11.7 21.1 11.3 15.9 11.8 11.3

+Large LM 09.9 20.2 09.4 14.3 09.7 09.6
Challenging Broadcast 19.7 33.6 19.8 26.6 19.5 19.4

+Large LM 17.4 31.9 17.6 24.6 17.3 17.4
Oral History 27.7 37.4 25.9 28.7 27.4 25.9

+Large LM 27.1 38.2 25.3 28.5 26.5 25.2
Interaction 48.2 69.1 48.2 58.6 47.4 47.1

+Large LM 51.2 72.0 51.4 60.1 50.6 50.3
Spoken QALD-7 19.0 36.7 19.1 31.1 18.6 18.4

+Large LM 14.8 30.1 14.3 24.6 13.8 13.6
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Overall, Table 6.1 shows that the multi-staged cross-lingual adaptation improves
speech recognition and robustness, particularly for the three test sets from non-
broadcast domains. The proposed approach achieves the best results for all these
three test sets—consistently with both language models. For the broadcast do-
main, the results are less evident. In the following, we discuss the individual
results in detail compared to the different reference models and, in particular, the
influence of the three different stages.

6.5.1 Comparison to Baselines
The oral history baseline performs significantly worse than the broadcast baseline
on all sets—even on the target domain. This is due to the considerably smaller
amount of training data. Compared to the broadcast baseline, the proposed ap-
proach achieves a relative word error improvement of 6.3 % on the oral history
test set using the default language model. The relative improvement using the
larger language model is 7.1 %. For Interaction, the relative improvement is less
substantial in the range 1.9–2.3 % depending on the language model. For Spoken
QALD-7, the word error rate also improves with the proposed approach with both
language models. However, the improvements are somewhat different for the two
language models. A relative improvement of 2.9 % is achieved with the Default
LM. With Large LM, the improvement is 8.2 % relative to 3-fold v1.1. As discussed
in Section 4.4.5, the large language model’s vocabulary is better suited than the
default language model for modeling the various entities in Spoken QALD-7’s test
prompts. Therefore, we assume that the poor modeling properties of the default
language model for this test set tend to mask the improvements of the acoustic
model achieved by the multi-stage cross-lingual adaptation.

The proposed approach simultaneously improves or maintains the recognition
performance on Challenging Broadcast and German Broadcast 2016 with both
language models. However, we observe a decrease in performance for GerTV Dev
and DiSCo Average. We consider the reduced performance is because this data
is already very close to the conditions presented by the GerTV1000h broadcast
training used to train the broadcast baseline model. The following section further
explores how the three stages contribute to these observations.

6.5.2 Ablation Study
We investigate the contribution of each of the three stages to the recognition per-
formance of the proposed approach by removing one of three stages at a time.
The overall word error rates for each test set with both language models are sum-
marized under Ablation Study in Table 6.1. In the first ablation study setup, we
remove the English pre-training of the acoustic model in Stage 1. In particular, we
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randomly initialize the acoustic model in Stage 2 for training on German broad-
cast data from scratch and then adapted it to the oral history domain in Stage
3. In the second setup, we omit the adaptation to German broadcast in Stage
2. Instead, we adapt the English model from Stage 1 to the target language and
domain in one stage using only the 25-hour oral history adaptation set created
with automatic transcript alignment. In the last setup, we omit the fine-tuning to
the oral history target domain and evaluate the model adapted from English to
German with 3 × 1000 hours of broadcast speech in Stage 2.

Undoubtedly, training on 3 × 1000 hours of German language data in Stage 2
has the most significant impact on recognition performance on all German test
sets. The impact of English pre-training in Stage 1 and adaptation according
to oral history in Stage 3 on the different domains is not that evident, making a
detailed comparison of the two worthwhile. Figure 6.2 shows the effect of removing
the stage for all test sets when decoding with both language models. A clear
difference is evident between test sets of the broadcast domain and the three test
sets of other domains. Both stages contribute to an improvement in recognition
performance for the other-domain test sets. Unsurprisingly, for Oral History, the
domain adaptation in Stage 3 has the greatest impact. However, for Interaction
and Spoken QALD-7, the cross-lingual in Stage 1 has a greater impact.

For the broadcast domain, the results are more heterogeneous. As presented in
Chapter 5, adaptation to the oral history domain tends to deteriorate the perfor-
mance on DiSCo due to domain overfitting. However, the cross-lingual adaptation
from English to German in Stage 1 improves the performance for all configura-
tions, except German Broadcast 2016 and GerTV Dev with large language models.
In the following sections, we examine the contribution and impact of each stage
in further detail by investigating the relative improvement of the Stages to the
respective baseline.

Removing Stage 1: Removing English Pre-Training

To make the influence of the cross-lingual adaptation better comparable for the
different test sets and language models, we visualized the improvement relative to
the broadcast 3-fold v1.1 baseline of the proposed approach and the mono-lingual
model with removed Stage 1 in Figure 6.3. The English pre-training Stage 1 has
little influence on the Oral History test set, with an almost negligible improvement.
However, we observe an improved performance for virtually all other test sets due
to the cross-lingual Stage 1. For Challenging Broadcast and Interaction, the cross-
lingual adaptation enables the system to improve instead of degrading results
compared to the baseline. For DiSCo Average, the results are just minimally
better, although the recognition performance with the baseline for this test set
is still better. For Spoken QALD-7, we observe a quite substantial improvement
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Figure 6.2: Ablation study of the multi-staged cross-lingual adaptation. The results are
reported as an increase in the relative word error rate per test set and for
two independent language models (LM) when a stage is removed from the
proposed approach. An increase in the error rate indicates that the stage
contributes to improving the recognition accuracy for the respective test set.
Correspondingly, a decrease in the error rate indicates that the stage is detri-
mental to the approach for that test set and degrades recognition accuracy.

182



6.5 Results and Discussion

due to cross-lingual Stage 1. The previously discussed language model dependence
and greater relative improvement with Large LM on this test set are revealed by
the relatively large deviation from the diagonal axis. Overall, we infer from the
results that the cross-lingual component of our proposed approach contributes to a
consistent improvement on different domains and thus to a reduction of the domain
overfitting that we observed in Chapter 5 in different mono-lingual adaptations.

Furthermore, the improvement achieved by the cross-lingual adaptation in the
proposed approach is consistent for both language models on most test sets, except
for German Broadcast 2016. The proposed approach still improves the recognition
performance over the broadcast baseline for this test set. However, with the Large
LM, the performance is better without cross-lingual pre-training, applying just a
single-stage mono-lingual adaptation.

Adaptation from English to German Oral History with Removed
Stage 2

As shown in Table 6.1, omitting training on the 1000 hours of German language
data significantly and consistently degrades recognition performance for all test
sets and domains. The results are also substantially worse than the broadcast
baseline. However, comparing the results with the oral history baseline reveals
that this single-stage cross-lingual adaptation is suitable for low-resource tasks
where only a few hours of annotated speech for the language is available. Using
only English training data and the small oral history adaptation set, we reduce
word error from 37.4 to 28.7 % on Oral History decoding with the default lan-
guage model. Results are similar for the large language model. This value is
only one absolute percentage point higher than the result achieved by the robust
3-fold v1.1 broadcast baseline trained on 3 × 1000 hours of manually annotated
German broadcast speech. This low-resource-trained model even outperforms the
Mix-models from the data augmentation Chapter 4 on the Oral History test set
using only one-fortieth training data (cf. Table 4.10). Thus, adapting from a rich-
resourced language directly to the target language and domain is suitable if no
other data is available for training in the target language. In particular, we show
this for LF-MMI acoustic models with an LSTM-TDNN topology, which usually
requires a lot of training data.

For real-world applications, one cannot expect this low-resource cross-lingual
model to be as robust as models trained robustly on large-scale data from the
target language—but substantially more robust than training from scratch on the
small data set only. We observe a word error rate in the range 14.3–26.6 % for
the broadcast domain. The range is 24.6–60.1 % for the other three domains.
Figure 6.4 shows the improvement of this mono-stage mono-lingual adaptation
relative to the from-scratch trained oral history baseline. By initializing with the
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Figure 6.3: Relative WER improvement of the proposed multi-staged cross-lingual acous-
tic model adaptation compared to a mono-lingual adaptation, excluding the
English pre-training Stage 1 for both language models. Each arrow represents
a WER improvement for a test set relative to the broadcast 3-fold v1.1 base-
line acoustic model. The starting point of each arrow represents the relative
improvement of the mono-lingual adaptation (without Stage 1) from German
Broadcast to Oral History. The end of the arrow represents the improvement
of the proposed approach with multi-staged cross-lingual adaptation (includ-
ing Stage 1). If the arrow points to the top right corner, the proposed approach
simultaneously improves the word error rate for both language models. Values
above zero indicate an improvement of the WER.
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Figure 6.4: Improvements of single-stage cross-lingual adaptation from English to German
with 25 hours of Oral History interviews relative to a from-scratch trained
baseline.

English model, the word error rate for all test sets improves substantially between
15.2–29.1% relative. The improvements are consistent for all domains and best for
broadcast and oral history. The results are very similar for both language models,
with a slight advantage for the Large LM.

Adaptation from English to German Broadcast with Removed Stage 3

This experiment evaluates the initialization with the English-trained model for
large-scale German speech corpora training compared to the broadcast baseline.
In Figure 6.5, we show the improvement of the English pre-training relative to
the 3-fold v1.1 baseline. The results are nowhere near as substantial as the pre-
vious experiment with the oral history adaptation and baseline. However, for the
non-broadcast domains, we observe a small but consistent relative improvement
on all three test sets with both language models. By far, the greatest improve-
ment is achieved on Spoken QALD-7 with the large language model. The other
improvements relative to the baseline are below or slightly above 2 %.
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Figure 6.5: Improvements of single-stage cross-lingual adaptation from English to German
with 3 × 1000 hours of broadcast speech relative to a from-scratch trained
baseline.

6.5.3 Influence of the i-Vector Extractor Language
In the following experiments, we study whether the improved robustness through
knowledge transfer of the English model is due to weight transfer, as we expect,
or due to a better i-vector extractor trained on English data instead of German.
Therefore, we compare each combination of German and English trained i-vector
extractors with a random model initialization and initialization of hidden layers
with the English trained model when training on the 1000 hour German broadcast
data. For simplicity, we only report results on the small language model. The
results are summarized in Table 6.2.

We achieved the best results on all test sets, except German Broadcast 2016, us-
ing the proposed setup with English-trained i-vector extractor and acoustic model
initialization from the English-trained model. Using the German i-vector extractor
with English model initialization leads to the worst result for Challenging Broad-
cast, Oral History, and Interaction. This is to be expected since i-vectors of the
same speakers from two differently trained i-vector extractors point to different
directions in the two different 100-dimensional vector spaces. Since the English
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Table 6.2: Comparison of German and English trained i-vector extractors in acoustic
model training on German broadcast data with random model initialization
and with cross-lingual adaptation from English-trained model.

Acoustic Model
Initialization Rand. Eng. Rand. Eng.

i-vector
Language Ger. Ger. Eng. Eng.

GerTV Dev Set 13.6 13.5 13.5 13.4
DiSCo Average 11.9 11.9 11.9 11.9
German Broadcast 2016 11.7 11.6 11.8 11.8
Challenging Broadcast 19.7 19.8 19.6 19.5
Oral History 27.7 27.8 27.7 27.4
Interaction 48.2 48.5 47.8 47.4
Spoken QALD-7 19.0 19.2 19.4 18.6

model is trained with i-vectors from one space, using different i-vectors in the
second stage causes wrong estimations of speakers, and this relation has to be
relearned for the new vector space in Stage 2.

Using the English i-vector extractor instead of the German one with random
acoustic model initialization leads to similar results. Only for Spoken QALD-7,
the German i-vector seems to perform better with random acoustic model ini-
tialization. And for Interaction, this is the case for the English-trained i-vectors.
Therefore, we infer that the proposed cross-lingual adaptation leads to improved
acoustic models and not a better i-vector extractor trained on English data. In
order to perform adaptation sensibly, the i-vector extractor must be used, which
was also used to train the original model. The influence of the language, language
combination, and amount of training data for the i-vector extractor training for
LF-MMI acoustic models is further explored in the subsequent work by Wang et al.
[2021].

6.6 Summary and Contributions

6.6.1 Summary
In this chapter, we proposed and investigated a multi-staged cross-lingual acous-
tic model adaptation approach to improve the acoustic model’s robustness and
decrease domain overfitting. Our approach addresses challenges where only lit-
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tle training data for the target domain is present. It enables the exploitation of
large-scale training data from other domains in both the same and other languages.

We studied our approach for our German oral history use case with intending
to obtain an acoustic model that is robust enough to be applied in real-world
applications. We first trained a robust acoustic model for English with more
than 3000 hours of data. Then we adapted it to German using 1000 hours of
German broadcast data. Three-fold noise and reverberation data augmentation
from Chapter 4 was utilized in both stages. This model is again adapted using 25
hours of German, in-domain oral history interviews.

We performed extensive experiments to determine the robustness and real-world
performance of the model. We evaluated the model not only with in-domain oral
history data but also with our several German test sets from other domains and
two different decoding language models. To thoroughly determine which stage of
the proposed approach contributed to the improvements in the different domains,
we conducted ablation study experiments. Thereby we have shown that the direct
adaptation of LF-MMI acoustic models from one language to another leads to good
results, even using only very little training data from the target domain. Thus,
this observation can contribute to the ongoing research on speech recognition for
under-resourced language.

The model trained with our proposed approach achieves a relative reduction of
the word error rate by more than 30 % compared to a model trained from scratch
only on the target domain, and 6–7 % relative compared to a model trained ro-
bustly on 1000 hours German broadcast training data. Overall, we achieve a 25.9 %
word error rate on the Oral History test set with our default language model and
25.2 % with a larger language model, simultaneously improving the performance
in the Interaction, speech assistant, and challenging broadcast domain.

6.6.2 List of Contributions
List of scientific contributions in this chapter:

• Multi-staged cross-lingual adaptation was proposed and investigated that re-
duces domain overfitting and increases the robustness of the domain-adapted
LF-MMI acoustic model with a cross-lingual pre-training stage.

• Contributions to low-resource oral history speech recognition tasks were
made by studying cross-lingual adaptation from English to German Oral
History with only 25 hours of annotated speech achieving performance on
the target domain similar to a from-scratch trained model on 1000 hours
German broadcast speech.
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• Investigation of the influence of the training data language was performed
to study the influence on the i-vector extractor for LF-MMI acoustic models
in cross-lingual adaptations.
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7.1 Conclusion
Automatic transcription of oral history interviews offers a variety of benefits to
researchers and historians. It can significantly reduce workload and enable new
types of analysis. However, the last 20 years of research have revealed various
challenges that make the transcription of oral history interviews demanding. Even
in recent years, nearly all works are characterized by a high word error rate—
particularly when compared to other standard speech recognition benchmarks.

The present research dealt with developing a robust speech recognition system
for German oral history interviews from 1980–2010 of the Deutsches Gedächtnis
archive at the University of Hagen. A lack of representative training data for the
oral history speech domain and a high word error rate of 55 % of the baseline system
characterized the beginning of the presented research work in 2017. The main
objective of this research was to develop and improve automatic speech recognition
systems for the German oral history interviews of this archive. To achieve this goal
despite the lack of data, we explored the adaptation of data and models described
in the following. In our investigations, we particularly focused on the real-world
performance of the system and investigated the possible overfitting to the target
domain for all proposed systems.

First, we analyzed the challenges of oral history interviews in general, as re-
ported in the literature, and examined the challenges of the German interviews
we studied. For this purpose, we conducted several preliminary studies to inves-
tigate the respective challenges of the interviews and identify the components of
the speech recognition system that need to be improved the most. Furthermore,
we studied human transcription accuracy for interviews and postulated a human
word error rate for transcription of interviews with high recording quality. We
examined the speech rate of oral history interviews compared to speech record-
ings from other domains. Additionally, we investigated the language model and
vocabulary influence using intrinsic evaluation metrics. We identified the acoustic
model as the component to be improved, particularly the acoustic recording con-
ditions of the interviews, characterized by room reverberation and noise, and the
spontaneity in the interviewees’ speech.

After comparing selected acoustic models, we investigated and compared meth-
ods for improving acoustic robustness. In our interviews, we identified room rever-
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beration as one of the main acoustic challenges generated by a relatively large dis-
tance between the speakers and the microphone in small and medium-sized rooms.
The robustness of the acoustic model was improved significantly using noise and
reverberation data augmentation, without the need to increase the training data
size. The performance not only improved for the oral history interviews but also
for broadcast, speech assistance systems, and conversational interaction. With a
three-fold increase training data set, an even more substantial improvement was
achieved—however, at the expense of the training time of the model. This 3-fold
model was trained on 3 × 1000 hours of broadcast speech and required over two
months of training on our GPU cluster. It achieved a 28.2 % word error rate on
oral history and concurrent new benchmarks on the test data of the other do-
mains. Due to its robustness, it has been used in the Fraunhofer IAIS Audio
Mining system as a default model, e.g., at the ARD. Furthermore, we have inves-
tigated different speech enhancement approaches as pre-processing for the ASR.
Three different approaches for noise suppression worsened the error rate instead of
improving it. However, the common method WPE served as a useful complement
and improved the error rate to 27.9 %.

The enormous training time of the model and the lack of representative oral
history data for training remained a challenge. We investigated acoustic model
adaptation via fine-tuning to address both issues and adapt models more quickly
to the target domain. In three studies, we explored different properties and facets
of adaptation. In the first of the three studies, we investigated the combining data
augmentation of the source model training and subsequent domain adaptation.
A leave-one-speaker-out cross-validation experiment improved the average word
error rate to 26.6 % using only 3.4 hours of adaptation data. The adaptation also
improved the robustness for test data from other domains.

In the second study on acoustic model domain adaptation, we investigated auto-
matic transcript alignment as an approach to semi-automatically generate adapta-
tion data from transcribed but temporally unaligned oral history interviews using
the robust 3-fold model. We showed that this type of semi-automatic data genera-
tion is purposefully for adaptation. We investigated the impact of the adaptation
data size and learning rate on domain adaptation and domain overfitting. The
best adaptation on 250 hours improved recognition performance on oral history
to a 24.5 % word error rate. However, this came at the expense of the recognition
performance deteriorating for specific other domains.

The third study on domain adaptation investigated domain overfitting in detail
for oral history using more recently recorded oral history interviews with high
recording conditions. We showed that the size of the adaptation data set has a
significant impact on domain adaptation. If training and testing conditions do
not overlap exactly, a smaller dataset is more appropriate to improve the model’s
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general recognition performance. Using an updated version of the 3-fold model (3-
fold v2) as the source model and adapting it to 250 hours of speech, we achieved
a 23.9 % word error rate for the interviews with mixed acoustic conditions mainly
studied in the presented research work. The model’s error rate is 16.1 % for the
more recent oral history interviews with high recording quality. With adaptation
on 31 hours of oral history interviews from two different archives, we achieved a
good compromise of 24.6 % WER for oral history in mixed acoustic conditions and
15.7 % WER in clean acoustic conditions.

Further reduced domain overfitting is desirable for robust real-world perfor-
mance for unseen data. For this purpose, we proposed a multi-stage cross-lingual
domain adaptation of the acoustic model, exploiting the vast availability of differ-
ent English corpora for the German speech recognition system to improve robust-
ness. Using the proposed adaptation, we improved the robustness of the previous
domain adaptation quite consistently for almost all different domains. In particu-
lar, the cross-lingual adaptation of the multi-staged approach improved the recog-
nition performance for the domains that are not modeled by either the broadcast
training data or the oral history adaptation data. This indicates a reduction in
domain overfitting.

Overall, we trained the acoustic model to cope with the different, heterogeneous,
and unpredictable challenges of oral history interviews through the various investi-
gated and combined approaches in the presented research work. This significantly
improved the robustness not only for this domain but simultaneously for other
domains not seen during training. Figure 7.1 summarizes the progression of word
error rates on the representative oral history test set in our work for the primary
models. The overall best system achieved an error rate of 23.4 %. Overall, we have
more than halved the error rate of the baseline system. By continuously evaluating
the models and approaches on numerous datasets of different domains, we have
ensured that the models work robustly for multiple unforeseen conditions and
provide improved transcription accuracy. We achieved a transcription accuracy
that allows automated indexing of large oral history archives via the Fraunhofer
IAIS Audio Mining system and facilitates transcription for subtitling and further
analysis by only requiring correction of transcription errors.

7.2 Outlook and Future Work
The tremendous research interest of the international community in automatic
speech recognition yielded many new approaches in recent years. These approaches
can be promising for future work on the robust speech recognition of oral history
interviews to extend and further improve the results and methods of the present
research work.
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Figure 7.1: Summary of speech recognition results on the German oral history test set of
the primary models and approaches studied in the presented research work.

The emerging research field of end-to-end speech recognition enables promis-
ing approaches to train models with substantially reduced explicit human knowl-
edge. In particular, for spontaneous speech, dialects, and age- and health-related
changes in the speech of contemporary witnesses, end-to-end approaches could be
used for automated learning and improved modeling of pronunciations compared
to explicit phonetic pronunciations from a lexicon. However, this is likely to re-
quire sufficiently large training data sets. The automated transcript alignment for
adaptation investigated for oral history interviews in this thesis could be exploited
to generate training data semi-automatically for oral history end-to-end systems.

Recent approaches, such as the wav2vec 2.0 [Baevski et al., 2020], utilize enor-
mous amounts of non-transcribed speech for self-supervised pre-training of the
system. These approaches can be promising for oral history interviews, as many
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archives contain vast amounts of untranscribed interviews. For these systems, the
noise and reverberation data augmentation investigated in this thesis, a multi-stage
and possibly multi-lingual adaption can also be helpful to further improve the chal-
lenging task of automatic transcription of these interviews. The combination and
comparison of these approaches with recent data augmentation approaches, such
as SpecAugment [Park et al., 2019], and new, large-scale German corpora, such as
CommonVoice, holds the potential for further substantial improvements.

Oral history interview archives are often very heterogeneous, with many un-
predictable challenges regarding recording conditions and the recorded speakers.
Robustly assessing the applicability of these systems for real-world applications
and avoiding domain overfitting is crucial to developing systems that can be rea-
sonably applied to transcribe these archives automatically. We advocate following
the method proposed in our research work, evaluating and assessing the speech
recognition systems not only on one oral history test set but on many different,
well-curated, and documented data sets from diverse domains.

In this research work, substantial insights have been gained on the various chal-
lenges of oral history interviews for hybrid automatic speech recognition and the
individual components. Methods for improvement have been proposed and inves-
tigated. These insights and investigated methods can be an important building
block for future work on end-to-end speech recognition for oral history interviews
to make the recognition performance more robust for this challenging domain.
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A Appendix: Supplementary Toolkit
and Software Descriptions

This appendix gives a supplementary overview of software and toolkits for auto-
matic speech recognition and automatic transcription. Section A.1 presents and
compares several relevant automatic speech recognition toolkits. Additionally, a
detailed description of the toolkit Kaldi, which is used in this presented research
work, is given. In Section A.2, the Fraunhofer IAIS Audio Mining system is pre-
sented, in which the speech recognition models trained in the presented work are
integrated for real-world application.

A.1 Automatic Speech Recognition Toolkits

A.1.1 Overview
Like many other research branches of machine learning, automatic speech recog-
nition research is primarily driven by flexible toolkits and frameworks that pro-
vide pre-implemented methods and algorithms for the efficient training of models.
These toolboxes allow researchers to use state-of-the-art systems to study and
extend new approaches and concepts.

Many toolkits for speech recognition have been proposed over the years and
have been applied by many different researchers. One of the earliest toolkits used
for speech recognition is probably the Hidden Markov Model Toolkit (HTK ). As
the name implies, hidden Markov models are the main focus of the toolkit. HTKs
primary use certainly is speech recognition, even though the toolkit is not limited
to this application—and it was state of the art for many years. The toolkit was
first released to the public in the early 1990s. In 2015, the latest version of HTK
was released in which Young et al. [2015] introduced deep neural networks to HTK.

Without claim to completeness to this list, other toolkits in the field of speech
recognition that should be acknowledged (in chronological order) are Julius by Lee
et al. [2001], Sphinx-4 by Walker et al. [2004], and the RWTH Aachen University
Open Source Speech Recognition Toolkit (RASR) by Rybach et al. [2009]. In 2011,
Povey et al. [2011] proposed the Kaldi speech recognition toolkit. Kaldi has gained
enormous popularity since its release. Deep neural networks were adopted in
Kaldi very early, e.g., by Veselý et al. [2013]. Another noteworthy toolkit for
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Table A.1: Number of citations of popular speech recognition toolkits at the end of Oc-
tober 2020. Numbers according to Google Scholar statistics.

Toolkit Reference Citations

HTK HTK Book (in all versions since 1993) 6959
Julius Lee et al. [2001] 783
Sphinx-4 Walker et al. [2004] 569
RASR Rybach et al. [2009] 126
Kaldi Povey et al. [2011] 4482
EESEN Miao et al. [2015a] 579

speech recognition is EESEN by Miao et al. [2015a], a toolkit for end-to-end speech
recognition using CTC.

Each of the aforementioned toolboxes deserves acknowledgment. For the present
work, however, the question arises as to which of the toolboxes is the most promis-
ing and advanced to work with. It can be assumed that leading researchers use
the most promising toolboxes for their work. Therefore, the number of citations
in scientific publications of the toolboxes in question might give a good indication
to answer the above question. An overview is given in Table A.1.

While all toolkits have a remarkable number of citations, Julius, Sphinx-4,
RASR, and EESEN have not been applied in research to the same extent as HTK
or Kaldi. With almost 4500 citations, respectively, nearly 7000 citations, Kaldi
and HTK are far more popular in the research community than the other toolkits.

Considering that HTK was proposed two decades before Kaldi, the question
remains open as to which toolbox is currently state of the art. In an attempt to
answer this question, Figure A.1 compares the number of citations of both toolkits
in recent years.

The number of citations for Kaldi has increased almost monotonously over the
years since its publication in 2011. However, HTK’s citations have been steadily
decreasing since 2015. In 2016, Kaldi surpassed HTK in annual citations. It is
not possible to give an undoubted reason for the enormous popularity of Kaldi
over HTK. However, one of the main reasons certainly is the very fast adoption
and constant improvement of deep neural networks for acoustic modeling in Kaldi
since 2013—while they were adopted in HTK much later in 2015.

At the beginning of the present work in early 2016, the rapidly growing popular-
ity of Kaldi was already foreseeable. Furthermore, at the Fraunhofer IAIS, Kaldi
was already being applied in 2017—while EESEN was also studied, cf. Schmidt
et al. [2016]. For these two reasons, and to work with the latest approaches in
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Figure A.1: Citation count of the Kaldi paper and the HTK book in recent years according
to Google Scholar statistics in March 2022.

speech recognition throughout the present work, Kaldi was chosen as the toolkit
for this work.

A.1.2 The Kaldi Speech Recognition Toolkit
According to Povey et al. [2011], the main focus of Kaldi is acoustic modeling
research and the main important features of Kaldi that differentiate Kaldi from
other toolkits, such as HTK, are:

• integration with (weighted) finite-state transducers using OpenFST [Allauzen
et al., 2007]

• extensive linear algebra support

• extensible design

• open license

• complete recipes for widely known and available data sets

• thorough testing

The extensible design and open license of Kaldi enable many researchers to
participate in developing new approaches that are often integrated quickly in the
toolkit. New training routines and approaches are regularly integrated and pro-
vided as recipes for well-known data sets. This is of great value for the present
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Table A.2: Components of conventional speech recognition systems as weighted finite-
state transducers.1

FST ASR Component Input Symbols Output Symbols

H HMM HMM States CD Phones
C Context Dependency CD Phones Phones
L Pronunciation Lexicon Phones Words
G Language Model (Grammar) Words Words

work, as these recipes can be used as a starting point for developing new speech
recognition systems for German oral history interviews.

A.1.3 Speech Recognition with Weighted Finite-State
Transducer in Kaldi

Weighted finite-state transducers (weighted FSTs or WFSTs) have become popular
in speech recognition since they provide a natural representation of speech recog-
nition systems’ many components. WFSTs can represent hidden Markov mod-
els, context-dependency, pronunciation lexicons, language models, and alternative
recognition outputs (lattices) [Mohri et al., 2002]. As finite-state transducers, each
of these components has state transitions that are labeled with a weight, or cost,
input and output symbols, as presented in Table A.2.

In order to illustrate how a pronunciation lexicon and a language model are
represented as weighted finite-state transducers, simplified examples are shown in
Figures A.2 and A.3. The lexicon has phoneme sequences as input and words
as output. For different pronunciations of the same word, different pronunciation
probabilities can be applied as weights. The language model input and output
symbols are equal. Word sequence probabilities are modeled as weights for each
state transition. While only a few nodes are shown in the examples, real finite-
states transducers for large-scale vocabulary speech recognition systems comprise
nodes and transitions for millions of recognizable words and word sequences. These
transducers can barely be visualized.

The entire speech recognition decoding pipeline can be (simplified) represented
by concatenating the transducer of each component in the following manner:

HCLG := H ◦ C ◦ L ◦ G.

1Cf. http://www.inf.ed.ac.uk/teaching/courses/asr/2019-20/asr10-wfst.pdf, p. 8.
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k : ε/1 a : : KI/1 Q : ε/0.7 i : : ε/1

i : : ε/0.3

l : Klaus/1

aU : ε/1 s : ε/1

Figure A.2: Exemplary phonetic pronunciation lexicon with three entries as weighted
finite-state transducer L. The WFST models the pronunciation of the Ger-
man words Klaus and KI. The latter word is modeled with two alternative
pronunciations: with and without a glottal stop between a: and i:. The la-
bels x : y/w at state transitions (arcs) mean x is an input symbol, y is an
output symbol, and w is the respective weight for this state transition. The
label ε means no input or output symbol for this transition. The entire input
and output sequences are the concatenation of all respective symbols for a
path from start node 0 to a final state (4, 5, and 8).

0 1 2 3 4

KI/0.8

Klaus/0.2

braucht/1
viele/0.7

wenig/0.3

Daten/0

Figure A.3: Exemplary language model that models four possible word sequences as
weighted finite-state transducer G. Since input and output symbols are equal
at each arc, the words at each arc are only labeled once both for input and
output.

This provides a conveniently and efficiently integrated weighted finite-state trans-
ducer with HMM states as input and words as output symbols [Mohri et al., 2002].

For numerical stability, negated logarithmic probabilities of the components,
such as word sequence probabilities, pronunciation probabilities, and silence prob-
abilities, are used as weights for the transducers, cf. Mohri et al. [2002]. Operations
on the transducers weights are based on the tropical semiring

(R ∪ {∞}, ⊕, 0, ⊗, 1),

with ⊕ = min, 0 = ∞, ⊗ = +, and 1 = 0, to work with the negated logarithmic
probabilities as weights, cf. Mohri et al. [2002]. Thus, decoding based on the Bayes’
decision rule is also realized with weighted finite-state transducer operations on the
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Figure A.4: Example for a weighted finite-state acceptor U that models the hidden
Markov model acoustic state likelihood for a feature sequence of length 3
with 4 HMM acoustic states, cf. Povey et al. [2012].

tropical semiring. Since the logarithm function is strictly monotonically increas-
ing, the Bayes’ decision rule (Equation 2.4) can be formulated using logarithmic
probabilities which leads to the log-linear model

ŵ ≈ arg max
w∈W

(
λ log(P (w)) + max

s∈S
(log(P (X|s)) + log(P (s|w)))

)
. (A.1)

In case negated logarithmic probabilities are used, we obtain

ŵ ≈ arg min
w∈W

(
−λ log(P (w)) + min

s∈S
(− log(P (X|s)) − log(P (s|w)))

)
.

As can be easily seen, multiplication of probabilities is represented as the ad-
dition of (negated) logarithmic probabilities, and all operations in the latter log-
linear model can be realized using the tropical semiring. Additionally, a language
model weight (LMWT ) λ is introduced to the acoustic and language model prob-
abilities, cf. Yu and Deng [2015, p. 102]. The LMWT is a parameter that must be
parameterized after training the model on development data to obtain accurate
recognition results.

In order to describe the decoding process with finite-state transducers in Kaldi,
let U be a weighted finite-state acceptor—a transducer with only a single transition
symbol instead of input and output symbols—that models the acoustic model
observation probabilities (or acoustic likelihood, as called in Kaldi) for a given
sequence of features. Considering a feature sequence of length T ∈ N, acceptor U
has T + 1 states. Each state transition corresponds to the negated, logarithmic
probability of observing the feature vector xt at time step t being in state sk. The
acceptor is structured as exemplarily shown in Figure A.4.

200



A.2 The Fraunhofer IAIS Audio Mining System

The search graph S that is used for decoding, cf. Povey et al. [2012], is obtained
by concatenating U with the input of the HCLG transducer, i.e.,

S := U ◦ HCLG.

Thus, the solution to the decoding problem formulation of Equation A.1 is equiv-
alent to finding the best path through S, e.g., using the Viterbi search algorithm.

Some important implementation details were left out in the above description to
illuminate the fundamental idea behind the decoding process with weighted finite-
state transducers in Kaldi. These are, for example, pruning, determinization and
minimization of transducers before concatenation, and the Kaldi lattice generation
algorithm with separate storage of acoustic and graph costs. Detailed descriptions
of the exact algorithms can be found in in [Mohri et al., 2002] on speech recognition
with weighted finite-state transducers in general, in [Povey et al., 2012] on lattice
generation in Kaldi, and in the official Kaldi documentation.

One major advantage of speech recognition with weighted finite-state transduc-
ers is that existing algorithms from toolboxes for mathematical operations on finite-
state transducers, such as OpenFST by Allauzen et al. [2007], can be exploited
for operations on the transducers. These algorithms are usually highly optimized
to perform operations on FSTs. Moreover, these specialized algorithms reduce
the redundancy and complexity of each speech recognition component stored as
FSTs, which ultimately decreases the model size and increases inference efficiency
for decoding. A further advantage is that the system is easily extensible with new
model variants if the new variant can be expressed using finite-state transducers.

However, this also has the disadvantage of being less flexible due to being lim-
ited to operations and models that can be realized with FSTs. New algorithms or
model variants must be able to be expressed as finite-state transducers. Specifics
of algorithms in speech recognition are not necessarily considered for optimization,
which might lead to slower performance or less precise results, due to approxima-
tion at certain steps, than an implementation taking these aspects into account,
cf. for example, RASR by Rybach et al. [2009] which follows this approach.

A.2 The Fraunhofer IAIS Audio Mining System
A.2.1 Overview
The Fraunhofer IAIS Audio Mining system is designed to automatically create
segmented and time-aligned transcriptions from long, unstructured audiovisual
media files. Thus, the system combines automatic speech recognition with an audio
analysis workflow, including segmentation of the audio signal, context detection,
and speaker analysis using several pattern recognition algorithms.
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Currently, the Fraunhofer IAIS Audio Mining system enables archivists, journal-
ists, and hosts of audiovisual broadcast data to face the challenges caused by the
continuously increasing amounts of long audiovisual recordings. This is achieved
by making the files both text-searchable and structured. Thus, the amount of time
a user needs to work with such data is noticeably reduced.

For example, the system enables end-users to quickly navigate within interviews
using a graphical user interface (GUI) that exploits the analysis results provided
by the Audio Mining system. One example for such a GUI using the Fraunhofer
IAIS Audio Mining system is shown in Figure A.5. An embedded media player
allows users to navigate to segments of specific speakers directly. A unique color
represents different speakers in the time bar below the video. Furthermore, a
search engine enables the user to find all media files in which a keyword or phrase
was spoken by searching the transcripts of spoken words provided by the automatic
speech recognition. The GUI highlights all occurrences of the searched words in
the time bar of the currently played media file.

A.2.2 Audio Analysis in Audio Mining
In the following, we describe the audio analysis workflow as components of the
Audio Mining system in more detail. This description is partly based on the work
by Schmidt et al. [2016] from the Fraunhofer IAIS Institute. It is updated in this
work to cover significant post-publication developments until 2022—particularly
in the field of speech recognition. The schematic structure of the audio analysis
workflow for one media file is illustrated in Figure A.6.

Audio Segmentation

The raw, unstructured audio signal is first cut into segments at speaker, chan-
nel, and environment changes by an audio segmentation algorithm proposed by
Tritschler and Gopinath [1999]. For the segmentation, the Bayesian information
criterion (BIC) is applied on full covariance Gaussian models of Mel-frequency
cepstral coefficients.

Speech-/Non-Speech Detection

After segmentation, each segment is classified using a speech-/non-speech detec-
tion. Segments containing speech are passed to the following processing steps.
The detection algorithm is a Gaussian mixture model - universal background model
(GMM-UBM) approach trained for the classification task. In particular, the algo-
rithm is trained to classify segments as non-speech on which no speech recognition
is to be performed, such as music with vocals.
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Figure A.5: Graphical web user interface of the Fraunhofer IAIS Audio Mining system
in 2018. The video player on the left side uses the automatically gener-
ated transcript as subtitles. The colored time bar below the player displays
segmentation and speaker clustering results to simplify navigation in large
videos. Non-speech segments are represented by gray. A search mask in the
upper right corner allows searching in a database of all indexed videos for
words in the transcript, title, and other search modalities.

Raw
Audio Signal

Audio
Segmentation

Speech / Nonspeech
Detection

Speaker Clustering
Speaker Recognition

Language
Recognition

Automatic
Speech Recognition

Keyword
Extraction

Analysis
Results

Figure A.6: Audio analysis workflow of the Audio Mining system, based on Schmidt et al.
[2016] and updated to cover recent developments. The processing steps to
obtain a structured transcription and searchable keywords for a raw audio
signal are presented from left to right.

203



A Appendix: Supplementary Toolkit and Software Descriptions

Speaker Clustering

This analysis step aims to identify all speech segments of the same speaker within
one recording. As described above, only segments classified as speech in the pre-
vious step are considered for clustering.

We apply a BIC-based clustering algorithm in a bottom-up fashion, cf. Tritschler
and Gopinath [1999]. By default, an attempt is made to automatically find the
ideal number of speakers during clustering. Towards 2017, an additional option
was added to Audio Mining to specify the maximum number of speakers in the
given audio stream—in case they are known before analysis. Furthermore, the
Fraunhofer IAIS performed experiments with i-vectors [Dehak et al., 2011] and
added the possibility to perform speaker clustering with these features.

Speaker Recognition

Speaker recognition aims at finding all speech segments for known speakers in the
given audio signal. Thus, Audio Mining users can search for well-known personali-
ties, such as celebrities or politicians, in large collections of audiovisual media files.
In Audio Mining, for example, users can search for quotes of individual politicians
on specific topics by combining the search option for known speakers and tran-
scription. The speaker recognition currently applied in Audio Mining is based on
i-vectors and applies k-nearest neighbors classification.

The main difference between speaker clustering and recognition is that the
speakers are not known for clustering, and segments with similar voices are grouped.
In speaker recognition, however, the speakers are known, i.e., training samples exist
for these speakers used for comparison. The speakers can be trained for individual
use cases.

Language Recognition

Language recognition was introduced to Audio Mining in 2020 by Rieber [2020]. It
enables automated detection of which language is spoken in the segment to select
a speech recognizer with the appropriate language in the subsequent analysis. The
language detection is based on the convolutional Inception V3 model by Szegedy
et al. [2016] that is well-known for image classification tasks. As input for the
Inception V3, Rieber uses Mel-scaled spectrograms (that we referred to as filter
bank features in the previous section) with a 128-dimensional feature space and
fixed length of 10 seconds.

Currently, two different languages are available in Audio Mining to transcribe
speech: German and English. Accordingly, the language recognition component is
trained to detect three classes: German, English, and Other—for other languages
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currently not supported by the system. However, more languages for Audio Min-
ing are currently in preparation. For instance, French and Russian will become
available in the near future.

Automatic Speech Recognition — Acoustic Model

Currently, Audio Mining supports transcription of German and English with sev-
eral speech recognition models for different domains—and more languages are in
preparation. However, at the beginning of the presented research work in 2017,
only one German speech recognition model was used in Audio Mining. This ASR
model is one of the models developed by Stadtschnitzer [2018] at the Fraunhofer
IAIS institute in the years 2012–2018 and has been selected for release in Au-
dio Mining. It is a cross-entropy trained hybrid DNN-HMM acoustic model, as
described in Section 2.2, with a fully connected DNN, trained with the widely
adopted Kaldi ASR toolkit by Povey et al. [2011]. It was trained on an in-house,
1000h large-scale, German broadcast corpus called GerTV1000h [Stadtschnitzer
et al., 2014]. A detailed overview of this corpus is given in Section 3.4.

As Schmidt et al. [2016] state, CTC-RNN models trained with the EESEN-ASR-
Toolkit [Miao et al., 2015a] have also been studied. In 2016–2017, these CTC-RNN
models were considered for Audio Mining, as they provided slightly better results
than the back than applied DNN-HMM model. However, this was abandoned, as
further research, such as the work of Stadtschnitzer and the presented research
work, showed that LF-MMI models, as described in Section 2.4.3, have the poten-
tial to achieve much better results for the German transcription use cases. The
acoustic model currently used in Audio Mining is a robust acoustic model that has
been trained as part of the presented work in the following Chapter 4.

Automatic Speech Recognition — Language Model

At the beginning of the presented research work, the language model used in Audio
Mining was trained on broadcast text corpora consisting of 75 million words with a
lexicon of about 500,000 words. This model is also used for most of the experiments
presented in this work.

In recent years, the Fraunhofer IAIS has been training large-scale language mod-
els daily using recent crawls of German news sites. These models are deployed
daily to the Audio Mining instances of clients—such as public broadcasters. This
ensures that the Audio Mining system can recognize all new words and names
entering the German language. These models are much larger than the previous
language model and usually have a vocabulary of over 2 million words. One of
these models trained on text data with 1.6 billion running words was also con-
sidered and studied for the oral history use case. We give a detailed overview of
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the language models used for the experiments in the presented research work in
Section 3.5.

Automatic Speech Recognition — Pronunciation Lexicon

The phonetic transcriptions for the lexicons of the different German language mod-
els are each obtained using a grapheme-to-phoneme (G2P) pronunciation model
trained with Sequitur G2P [Bisani and Ney, 2008]. This model was trained us-
ing the German pronunciation database Phonolex2 from the Bavarian Archive for
Speech Signals (BAS), cf. Schiel [1998].

Not all G2P phonetizations are error-free since the pronunciations are generated
automatically, learned from manually annotated German words. Wrong pronunci-
ations in the lexicon lead to poor recognition of these words. Different work at the
Fraunhofer IAIS studied approaches to improve further pronunciation modeling,
such as Milde et al. [2017], who studied multi-task sequence-to-sequence models
for the G2P task.

The G2P’s susceptibility to errors is particularly strong for words that do not
stem from the language the system was trained on—such as loanwords or angli-
cisms. This is due to their irregular pronunciation given the spelling compared
to, for instance, native German words. In the context of the presented research
work, student studies have been supervised that address this very problem and
investigate different methods to improve the conversion for anglicisms: [Pritzen,
Gref, Zühlke, and Schmidt, 2022] and [Pritzen, Gref, Schmidt, and Zühlke, 2021].

The work [Pritzen et al., 2022] proposes multi-task learning for sequence-to-
sequence G2P systems where an additional anglicism classification task is added
to a sequence-to-sequence G2P model. This approach aims to make the system
aware of deviating pronunciation of anglicisms during training.

In [Pritzen et al., 2021], a comparative pronunciation mapping approach is pro-
posed that compares likelihoods of German and English G2P systems to auto-
matically detect the word heritage and select the appropriate G2P conversion. A
phoneme mapping from the English to the German phoneme set was trained as
part of the approach. The mapping uses German phoneme recognition applied on
artificially created text-to-speech training samples of English words. This phoneme
recognition is based on a German acoustic model trained in Chapter 4.

Keyword Extraction

In the last step of analysis in Audio Mining, keywords are extracted from the
ASR generated transcript using a term frequency - inverse document frequency
(tf-idf ) approach. Audio Mining users can provide a blacklist or a whitelist to

2https://www.phonetik.uni-muenchen.de/forschung/Bas/BasPHONOLEXeng.html
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ignore unwanted keywords in the keyword extraction and improve the client’s
application. The extracted keywords are stored in an external metadata format
within an Audio Mining database, along with all results from the previous analysis
steps. This allows users to search and filter media files that contain a specific topic.

Future Direction

The Audio Mining system is continuously improved to meet new client require-
ments and keep up with the state of art. For this purpose, new components are
added, and existing components are enhanced regularly. For instance, the speaker
diarization pipeline—the combination of audio segmentation and speaker cluster-
ing that identifies who is speaking when—is being replaced by more state-of-the-art
approaches in two different student projects—both supervised as part of the pre-
sented research work. In particular, the system is being improved with regard
to specific challenges such as fast speaker changes, short speaker segments, and
double-talk.

Multi-modal emotion recognition and sentiment analysis have been developed
since October 2020 in a research project focusing on the application for oral his-
tory interviews [Gref et al., 2022b]. This project is a collaboration of the Haus
der Geschichte (HdG) foundation in Bonn and the Fraunhofer IAIS. For the multi-
modal recognition, the audio signal, the video stream, and the automatically gener-
ated ASR transcription are considered to recognize the emotions and the sentiment
of the statements made in interviews. We plan to integrate this analysis compo-
nent in Audio Mining or in a more general mining platform in the future to provide
more sophisticated search options for audiovisual data.

Further work at the Fraunhofer IAIS aims to incorporate more languages into
Audio Mining, on-the-fly lexicon extension, and improve computation time for
analysis, for example, through parallelization or GPU-decoding for the speech
analysis components.

A.2.3 Audio Mining Application for German Broadcasters
The Fraunhofer IAIS Audio Mining system has been continuously improved and
developed further for more than ten years. The first and to date most significant
use case is the application of Audio Mining at the archives of the ARD3—a joint
organization of Germany’s regional public-service broadcasters.4

Since 2015, Audio Mining has operated in the computing center of the ARD
and is connected to the digital archives of the individual broadcasters. Nowadays,

3Arbeitsgemeinschaft der öffentlich-rechtlichen Rundfunkanstalten der Bundesrepublik
Deutschland; Working group of public broadcasters of the Federal Republic of Germany

4https://idw-online.de/de/news426319

207

https://idw-online.de/de/news426319


A Appendix: Supplementary Toolkit and Software Descriptions

the system automatically processes up to 2000 hours of audiovisual data per day.5
The analysis results enable journalists and editors of the broadcasters to face the
challenges of the ever-increasing amounts of audiovisual recordings in their archive.
For example, Audio Mining enables the broadcasters to find interviews of different
persons on specific topics or with certain quotations in the enormous audiovisual
archives with little effort.

The Audio Mining system and its several audio analysis components were de-
veloped and optimized for precisely this application in the broadcasting sector.
Therefore, annotated broadcast recordings and news texts are used for training
the speech recognition components. From an audio analysis perspective, broadcast
recordings are characterized by the recordings being recorded and post-processed
using highly professional equipment. Thus, the recordings usually have excellent
recording quality with well intelligible speech with almost no background noise,
barely perceptible reverberation, and well-adjusted volume levels. The following
section shows that most of this does not apply to the oral history interviews ex-
amined in the presented research work. Therefore, this mismatch between the
broadcast training data and the oral history application poses major challenges to
the Audio Mining speech recognition system.

5https://www.iais.fraunhofer.de/en/business-areas/speech-technologies/audio-mining-
ard.html
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B.1 Automatic Speech Recognition
Fundamentals

Speech Input

Acoustic Analysis
(Feature Extraction)

Global Search

arg max
w∈W(

P (w) · max
s∈S

(P (X|s) · P (s|w))
)

Recognized Word Sequence

Observation Probabilities

Pronunciation Model
(including AM State

Transition Probabilities)

Language Model

(sn)n∈N

X := (x0, ..., xT )

ŵ := (ŵ0, ŵ1, ..., ŵN)

P (X|s)

P (s|w)

P (w)

Figure B.1: Factorized Bayes’ decision rule for hidden Markov model-based automatic
speech recognition.
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Acoustic Model
Which phonemes can be heard here?

Phonetic 
Pronunciation Lexicon

What sequence of phonemes does 
this word consist of?

Language Model
How likely is this word sequence?

beispiel b aI S p i: l
das d a s
dass d a s
lexikon l E k s i k O n

d a s I s t aI n b aI S p i: l

-1.1398 das ist ein
-2.6641 das isst ein
-4.4211 dass ist ein
...

das ist ein beispiel

Figure B.2: Simplified, informal schematic structure of components in a large-vocabulary
automatic speech recognition system.
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Figure B.3: Time-frequency analysis applying short-time Fourier transform on an exem-
plary harmonic signal with varying frequency characteristics along time. One
can clearly distinguish the decreasing magnitude at frequency index k1 and
the increasing magnitude at frequency index k2 along time from the magni-
tude spectrum using time-frequency analysis (frame index m ∈ {0, 1, 2, 3}).
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Figure B.4: Commonly used Mel scale (from 0 to 8000 Hz) maps Hertz frequencies to
respective MEL frequencies.
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Figure B.5: Masks for Mel filter bank with 23 filters and cutoff frequencies at 40 Hz and
7800 Hz.
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1. TDNN Layer
Input Dim: 5 time steps
Output Dim: 4

2. TDNN Layer
Input Dim: 3 time steps
Output Dim: 2

Figure B.6: Schematic architecture of a time delay neural network with two stacked
TDNN layers. The semitransparent hexahedrons symbolize the sequentially
applied layers along the time axis. For simplicity, the application of the layers
is shown only for specific time steps: for the first TDNN layer at time steps
one, two, and eight; for the second layer at time step one only.

213



B Appendix: Supplementary Results, Figures, and Tables

B.2 Phone-Rate Estimation

Table B.1: Number of segments that could be aligned by the GMM-HMM acoustic model
for phone rate estimation.

Data Set Overall Clean 3-fold 3-fold v2
GerTV1000h 773,631 768,684 770,081 771,089
DiSCo Planned Clean 1,364 1,362 1,362 1,362
DiSCo Planned Mix 2,200 2,197 2,200 2,200
DiSCo Spontaneous Clean 2,861 2,850 2,854 2,855
DiSCo Spontaneous Mix 1,650 1,619 1,640 1,644
German Broadcast 2016 227 222 222 223
Challenging Broadcast 593 553 563 568
Oral History 2,392 2,365 2,389 2,390
Interaction (Linguistics) 2,630 2,528 2,615 2,610
Spoken QALD-7 212 205 204 212
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B.3 Two-Staged Acoustic Model Adaptation
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Figure B.7: Box plot diagram of the word error rates of the 35 interviews for each model
in the leave-one-speaker-out experiments with speaker-aware decoding.
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Figure B.8: Histogram of the relative word error rate improvements with the proposed
approach two-staged acoustic model adaptation compared to the clean base-
line for each leave-one-speaker-out experiment with speaker-aware decoding.
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Figure B.9: Ablation study of the two-staged acoustic model adaptation with speaker-
aware decoding by removing either data augmentation (Stage 1) or fine-tuning
(Stage 2). Results are illustrated as a scatter plot of the relative word error
rate increase compared to the proposed approach when one of the stages is
removed. Positive values represent an increase in word error rate, i.e., the
ASR performance deteriorates by removing this stage from the approach.
The dashed diagonal axis marks the transition where both stages have an
equal impact.
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B.4 Acoustic Model Adaptation

Table B.2: Results of LF-MMI–TDNN-LSTM trained models (with per-frame dropout)
using solely transcript-aligned oral history interviews. Training is performed
from scratch.

OH49 OH99 OH150 OH10%
150

Training Set Size: 76 h 161 h 249 h 25 h

GerTV Dev Set 22.2 19.1 17.9 22.3
DiSCo Average 27.0 22.6 21.0 27.5

Planned Clean 18.3 16.3 15.1 18.9
Planned Mix 29.2 23.8 21.3 30.2
Spontaneous Clean 20.9 17.5 16.2 20.9
Spontaneous Mix 39.7 32.9 31.4 39.8

German Broadcast 2016 20.0 16.8 15.9 20.8
Challenging Broadcast 32.4 28.0 26.3 33.2
Oral History 35.3 30.5 28.6 37.3
Interaction 64.9 60.5 58.6 69.6
Spoken QALD-7 36.7 31.8 28.4 35.9

Table B.3: Detailed results for each HdG reference annotator of the comparison of adapta-
tion experiments with reduced learning rate instead of reduced training data
size. 1e-6/1e-7 is the default learning rate setup, 1e-7/1e-8 is the reduced
learning rate.

Adaptation Data Set OH10%
150 OH150 OH150

Adaptation Data Size 25 h 250 h 250 h
Learning Rate 1e-6/1e-7 1e-7/1e-8 1e-6/1e-7

(Mixed) Oral History 24.7 24.6 23.9
HdG Dev. Avg. 16.7±1.02 17.0±1.07 17.1±1.09

Transcriber A 16.2 16.4 16.4
Transcriber B 16.1 16.3 16.5
Transcriber C 17.9 18.2 18.4

HdG Test Avg. 15.6±0.33 15.9±0.32 16.1±0.36
Transcriber A 15.3 15.6 15.8
Transcriber B 15.6 15.9 16.1
Transcriber C 16.0 16.2 16.5
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B.5 Multi-Staged Cross-Lingual Acoustic Model
Adaptation

Table B.4: Detailed results for the DiSCo evaluation subsets of the multi-staged cross-
lingual adaptation compared to two baselines and ablation studies. Results
are reported both for the default and the large decoding language model as
word error rates in percent.
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Stage 1 (English) × × ×
Stage 2 (German Broadcast) × × × ×
Stage 3 (Ger. Oral History) × × × ×
DiSCo Average 11.9 27.9 12.4 20.8 11.9 12.4

+Large LM 12.2 28.7 12.5 20.7 12.1 12.4
Planned Clean 09.0 19.2 09.4 14.7 08.8 09.2

+Large LM 11.1 22.5 11.6 17.1 11.1 11.6
Planned Mix 11.0 31.1 11.1 21.6 10.7 10.7

+Large LM 09.0 19.0 09.3 14.5 09.2 09.3
Spontaneous Clean 10.0 21.2 10.9 16.6 10.3 11.1

+Large LM 09.9 30.4 10.0 20.2 09.6 09.9
Spontaneous Mix 17.6 40.2 18.4 30.3 17.6 18.4

+Large LM 18.6 43.0 19.0 31.1 18.6 18.9
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C Appendix: Key Publications
In this appendix, the key publications of the present research work were attached
for the review of the doctoral committee of the University of Bonn / Rheinische
Friedrich-Wilhelms-Universität Bonn.

Some of the attached publications are protected by the copyright of the re-
spective publisher and may not be published, copied, or distributed without their
consent. A brief author contribution is given for each paper. Co-authors for whom
no individual contribution is given contributed through scientific supervision.

C.1 Improved Transcription and Indexing of
Oral History Interviews for Digital
Humanities Research

Michael Gref, Joachim Köhler, and Almut Leh. Improved transcription
and indexing of oral history interviews for digital humanities research.
In 11th International Conference on Language Resources and Evalua-
tion (LREC), pages 3124–3131. European Language Resources Association
(ELRA), 2018a. URL https://aclanthology.org/L18-1493

© 2018 European Language Resources Association (ELRA), licensed under the
Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-
NC 4.0).

Author Contribution
All presented approaches, experiments, findings, results, analyses, conclusions,
figures, and texts are contributions of the thesis author. The co-authors of the
publications contributed as follows:

Dr. Almut Leh described and discussed the oral history transcription use case
for historical research and the oral history archive Deutsches Gedächtnis of the
University of Hagen. In coordination with the thesis author, she also selected
and provided the 35 oral history interviews for the oral history speech recognition
test set introduced and investigated in the presented research work as the primary
object of study, cf. summary in Section 3.4.6.
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C.2 Improving Robust Speech Recognition for
German Oral History Interviews Using
Multi-Condition Training

Michael Gref, Christoph Schmidt, and Joachim Köhler. Improving robust
speech recognition for German oral history interviews using multi-condition
training. In 13th ITG Conference on Speech Communication, pages 256–260.
VDE / IEEE, 2018b. URL https://ieeexplore.ieee.org/document/8578034

© 2018 VDE Verlag GmbH, published in IEEE Xplore.

Author Contribution
All presented approaches, experiments, findings, results, analyses, conclusions,
figures, and texts are contributions of the thesis author.
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C.3 Two-Staged Acoustic Modeling Adaption for
Robust Speech Recognition by the Example
of German Oral History Interviews

Michael Gref, Christoph Schmidt, Sven Behnke, and Joachim Köhler.
Two-staged acoustic modeling adaption for robust speech recognition
by the example of German oral history interviews. In IEEE Interna-
tional Conference on Multimedia and Expo (ICME), pages 796–801, 2019.
doi:10.1109/ICME.2019.00142

© 2019 Institute of Electrical and Electronics Engineers (IEEE). Personal use
of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

Author Contribution
All presented approaches, experiments, findings, results, analyses, conclusions,
figures, and texts are contributions of the thesis author.
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C.4 Multi-Staged Cross-Lingual Acoustic Model
Adaption for Robust Speech Recognition in
Real-World Applications—A Case Study on
German Oral History Interviews

Michael Gref, Oliver Walter, Christoph Schmidt, Sven Behnke, and Joachim
Köhler. Multi-staged cross-lingual acoustic model adaption for robust
speech recognition in real-world applications - A case study on German oral
history interviews. In 12th International Conference on Language Resources
and Evaluation (LREC), pages 6354–6362. European Language Resources
Association (ELRA), 2020. URL https://aclanthology.org/2020.lrec-1.780

© 2020 European Language Resources Association (ELRA), licensed under the
Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-
NC 4.0).

Author Contribution
All presented approaches, experiments, findings, results, analyses, conclusions,
figures, and texts are contributions of the thesis author. The co-authors of the
publications contributed as follows:

The training of the English model used as the source model for the cross-lingual
adaptation, described in Section 6.4.1, was performed by Dr. Oliver Walter. He
selected and prepared the English training data. Dr. Oliver Walter trained the
English source model using the noise and reverberation data augmentation, model,
and training routines proposed and studied by the thesis author. He also performed
a preliminary evaluation of the English model using the two English test sets
described in the aforementioned section.
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C.5 Human and Automatic Speech Recognition
Performance on German Oral History
Interviews

Michael Gref, Nike Matthiesen, Christoph Schmidt, Sven Behnke, and Joachim
Köhler. Human and automatic speech recognition performance on german
oral history interviews. arXiv:2201.06841 [eess.AS], 2022b. URL https:
//arxiv.org/abs/2201.06841

Author Contribution
All presented approaches, experiments, findings, results, analyses, conclusions,
figures, and texts are contributions of the thesis author. The co-authors of the
publications contributed as follows:

Nike Matthiesen selected and provided the oral history interviews of the Haus der
Geschichte (HdG) foundation. She coordinated and supervised the transcription of
these interviews at the HdG in coordination with the thesis author. A summary
of the HdG data is given by the thesis author in Section 3.4.10. The human
word error rate investigations of the thesis author on this data are summarized in
Section 3.6.
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