
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
0
4
4
5
2

|

d
o
w
n
l
o
a
d
e
d
:

2
7
.
9
.
2
0
2
4

Sub-method Structural and
Behavioral Reflection

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Marcus Denker
von Deutschland

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 26.05.2008 Der Dekan:

Prof. Dr. P. Messerli

This dissertation is available as a free download from http://scg.unibe.ch

Copyright © 2008 Marcus Denker.

The contents of this dissertation are protected under Creative Commons Attribution-ShareAlike
3.0 Unported license.

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page: creativecommons.org/
licenses/by-sa/3.0/

• Any of the above conditions can be waived if you get permission from the copyright
holder.

• Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This
is a human-readable summary of the Legal Code (the full license):
creativecommons.org/licenses/by-sa/3.0/legalcode

Published by Marcus Denker, Switzerland.
First Edition, 2008-05-08

http://scg.unibe.ch
creativecommons.org/licenses/by-sa/3.0/
creativecommons.org/licenses/by-sa/3.0/
creativecommons.org/licenses/by-sa/3.0/legalcode

Acknowledgments

First I want to thank my advisor Oscar Nierstrasz for the opportunity to
join the Software Composition Group, and Stéphane Ducasse, who knew
before me that I would come to Bern. Thanks to both of you for your advice
and support!

I would also like to thank the other members of my Ph.D. committee:
Robert Hirschfeld for many discussions and nice visits to Potsdam. Thanks
to Pierre Cointe for reviewing the thesis, and Horst Bunke for accepting to
chair the examination.

Special thanks goes to Éric Tanter, for great work to build on, for the
great collaboration, many discussions and a very great stay in Chile.

Special thanks to my students: without you, it would have been impos-
sible! To Philippe Marschall who fearlessly realized Persephone, Christoph
Hofer for using Bytesurgeon for real, David Röthlisberger for his work on
Geppetto and Anselm Strauss for going the aspect way.

Thanks to Frédéric Pluquet, Stefan Reichert, Adrian Lienhard, Lukas
Renggli and Nik Haldiman for using Reflectivity. Special thanks to David
for his work on Geppetto, first as a student and later colleague. Thanks to
Mathieu Suen for collaborating on the context extension.

I want to especially thank the current and former members of the
SCG: Orla Greevy, Adrian Kuhn, Adrian Lienhard, Lukas Renggli, David
Röthlisberger, Toon Verwaest, Markus Gälli, Laura Ponisio, Tudor Gîrba,
Nathanael Schärli, Alexandre Bergel, Michele Lanza, Gabriela Arévalo,
Matthias Rieger, Iris Keller and Therese Schmid. It was and is a wonderful
group!

Thanks to Martin von Löwis, Klaus Witzel, Michael Haupt and Hans
Beck. Special thanks to my brother Christian for the cover design and Orla
for reviewing the thesis and lots of support. Thanks to my old friend Jürgen
for exploring Switzerland together, to Markus for a lot of Squeak fun.

Many, many thanks to my family! Thanks for your love and support:

Erika, Gerhard, Melanie, Volker, Hairi, Sonja, Tobias, Lena, Lotta, Christian
and Susanne.

Abstract

Computational reflection is a fundamental mechanism in object oriented
languages. Reflection has proved useful in many contexts, such as in
the design of development environments, language extension, and the
dynamic, unanticipated adaptation of running systems.

We identify three problems with the current approach to reflection in
object oriented languages: partial behavioral reflection needs to be antici-
pated, structural reflection is limited to the granularity of a method, and
behavioral reflection cannot be applied to the whole system.

To address these problems, we extend structural reflection to cover
sub-method elements and present how sub-method structural reflection
supports unanticipated partial behavioral reflection. We add the concept
of context to represent meta-level execution and show how this allows
behavioral reflection to be applied even to system classes.

We describe an implementation in Smalltalk. Benchmarks validate the
practicability of our approach. In addition, we present an experimental
evaluation in which we show how the system is used for dynamic analysis.
We realize dynamic feature analysis by annotating the sub-method structure
of the system directly to denote features instead of recording full execution
traces.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problems of Reflection . 3

1.3 Contributions . 5

1.4 Structure of the Dissertation 6

2 Reflection: Context and Problems 9

2.1 Introduction . 9

2.2 Problems in Practice . 9

2.2.1 Dynamic Analysis. 9

2.2.2 Integrated Development Environments. 10

2.2.3 Language Experiments 11

2.2.4 Three Requirements for Reflective Systems 12

2.3 Reflection: A Brief Introduction 12

2.3.1 Reflection in Programming Languages 13

2.3.2 Reflection and Objects: Meta-object Architectures . . 14

2.3.3 Partial Behavioral Reflection. 16

2.3.4 Implementing Behavioral Reflection 17

2.4 Problem 1: Anticipation . 18

2.5 Problem 2: Sub-method Structure 21

2.6 Problem 3: Recursion . 22

2.7 Summary and Roadmap . 24

3 Unanticipated Partial Behavioral Reflection 27

viii Contents

3.1 Introduction . 27

3.2 BYTESURGEON: Bytecode Transformation 28

3.2.1 The Need for Bytecode Manipulation 28

3.2.2 Bytecode Transformation Approaches 28

3.2.3 BYTESURGEON: Overview 30

3.2.4 Inside BYTESURGEON 35

3.2.5 Validation . 39

3.2.6 Conclusion . 44

3.3 GEPPETTO: Unanticipated Partial Behavioral Reflection . . . 45

3.3.1 Running Example . 45

3.3.2 Solving the Running Example with GEPPETTO 48

3.3.3 GEPPETTO Design . 55

3.3.4 Implementation Issues 59

3.3.5 Evaluation . 64

3.4 Problems of the Approach . 66

3.5 Conclusion and Summary . 67

4 Sub-Method Reflection 69

4.1 Introduction . 69

4.2 Challenges for Supporting Sub-Method Reflection 69

4.2.1 Text as Sub-Method Representation 70

4.2.2 AST as Sub-Method Representation 70

4.2.3 Bytecode as Sub-Method Representation 70

4.2.4 Requirements . 72

4.3 Reflective Methods: Annotated ASTs 72

4.3.1 Dual Methods . 73

4.3.2 A Simple Example: Compile-Time Evaluated Expres-
sions . 73

4.3.3 AST and Tree Transformation API 74

4.3.4 AST Annotations . 75

4.3.5 Annotation Semantics 76

4.3.6 Characteristics of the Solution 77

4.4 Validation of Sub-Method Reflection 77

ix

4.4.1 Instrumentation using Annotations 78

4.4.2 Pluggable Type System 81

4.4.3 Performance and Memory Analysis 82

4.5 Other Systems . 84

4.6 Related Work . 85

4.7 Summary . 87

5 Behavioral Reflection Revisited 89

5.1 Introduction . 89

5.2 The Problems . 89

5.3 Partial Behavioral Reflection Revisited 90

5.3.1 Simplifications . 92

5.3.2 The Link . 93

5.3.3 Spatial Selection . 98

5.3.4 Special Meta-objects 100

5.4 GEPPETTO 2: Examples . 102

5.4.1 Code Coverage . 103

5.4.2 Method Wrappers . 104

5.4.3 Meta-class MOP . 105

5.5 Implementation . 106

5.5.1 The Transformation Plugin 107

5.5.2 Plugins for Reified Data 107

5.5.3 Code Quality . 108

5.6 Evaluation and Benchmarks 110

5.6.1 Benchmarks . 110

5.6.2 Evaluation . 112

5.7 Summary . 114

6 Modeling Meta-level Execution with Context 115

6.1 Introduction . 115

6.2 A Simple Example . 115

6.3 Infinite Meta-object Call Recursion 116

6.4 Solution: The MetaContext . 118

x Contents

6.4.1 Modeling Context . 118

6.4.2 The Problem Revisited 119

6.4.3 The Contextual Tower 120

6.4.4 MetaContext Revised 122

6.5 Implementation . 122

6.5.1 Implementation of MetaContext 123

6.5.2 Realizing Contextual Links 124

6.6 Evaluation and Benchmarks 125

6.6.1 The Problem is Solved 125

6.6.2 Benefits for Dynamic Analysis 126

6.6.3 Benchmarks . 128

6.7 Related Work . 129

6.8 Summary . 130

7 Case Study: Dynamic Feature Annotation 133

7.1 Introduction . 133

7.2 Dynamic Feature Analysis . 133

7.2.1 Feature Analysis in a Nutshell 134

7.2.2 Problems . 134

7.2.3 Summary . 135

7.3 Feature Annotation . 136

7.3.1 Dynamic Analysis with REFLECTIVITY 136

7.3.2 Feature Annotation with REFLECTIVITY 137

7.3.3 Deinstallation at Runtime 137

7.3.4 Growing Features . 137

7.3.5 Implementation . 138

7.4 Validation . 140

7.4.1 Benchmarks . 140

7.4.2 Number of Events Generated 141

7.4.3 Evaluation . 141

7.5 Summary . 142

8 Conclusions 143

xi

8.1 Contributions of the Dissertation. 143

8.2 Impact . 144

8.3 Future Work . 145

A The REFLECTIVITY System 147

A.1 Introduction . 147

A.2 Installation . 147

A.2.1 Downloading a Pre-built Version 147

A.2.2 Building from Scratch 147

A.2.3 Preferences . 148

A.3 Examples for GEPPETTO . 149

A.3.1 A Simple Counter . 149

A.3.2 Method Execution . 150

A.3.3 Message Sends . 150

A.3.4 Variables . 150

B Glossary 153

Bibliography 157

Chapter 1

Introduction

1.1 Context

Software systems are increasing in size and complexity with the growth
of the available computing resources like memory and processing power.
Furthermore, applications are seldom deployed as standalone entities:
typically they are embedded in a complex environment of interacting,
interdependent systems. Consequently, the demands placed on software
systems are changing.

A typical characteristic of an application running in a production envi-
ronment is that is it difficult to shut down one application without causing
adverse effects on the other applications. There are many complex and
mission critical applications deployed in various domains, for example
network management, air traffic control or banking. Halting a banking
application for maintenance would have massive financial repercussions.
In such cases, it is undesirable to shut down systems for maintenance. We
need mechanisms that offer support for monitoring, analyzing or even
modifying such systems while at the same time keeping them up and
running.

Not only do the demands we put on the systems change. The demands
we put on tools, environments and languages that are used to implement
the systems are changing, too. We need to be able to build tools and
develop new language features to satisfy the needs of the future. Some of
the required functionalities have already been identified and some can be
even realized within existing systems. However most of the functionality
that will be required in the future is not yet known and thus cannot be
anticipated. To address this, we need thus flexible systems that allow the

2 Introduction

programer to experiment with new tools, environments and even new
language features.

Reflection supports these needs. Reflection in programming languages
is a paradigm that supports computations about computations, so-called
meta-computations. Meta-computations and base computations are arranged
in two different levels: the meta-level and the base level [119, 56]. Because
these levels are causally connected, any modification to the meta-level
representation affects any further computations on the base level [96]. In
object-oriented reflective systems, the meta-level is formed in terms of meta-
objects: a meta-object acts on reifications of program elements (execution or
structure). If reifications of the structure of the program are accessed, then
we talk about structural reflection; if on the other hand reifications deal with
the execution of the program, then we refer to behavioral reflection.

Current object-oriented languages provide access to program structure
reifications. In some cases, for example in static languages like Java and
C#, these descriptions can be queried. Dynamic languages in addition
offer support for changing the representation: they are reflective. Examples
are CLOS [88], Ruby, Python and Smalltalk [48, 57]. In such languages,
the representation of the program is causally connected to the system
itself [97]. When the representation is changed, the running application
changes, too and conversely. Structural reflection is an interesting basis for
tools: Development environments can work directly on the representation
provided by the language. An example for such a system is Smalltalk [57].
However, structural reflection does not provide a suitable representation
for structure below the method level. For example in Smalltalk (the same
holds in Java) the only entities supporting limited sub-method structural
reflection are collections of bytes (from the compiled method) or characters
(from the textual representation of method bodies).

There are many examples of systems proving some form of behavioral
reflection. Realizing a fully behaviorally reflective system in a practical way,
though, is not a trivial problem as it is particularly difficult to introduce
behavioral reflective properties into a system without adversely affecting
the performance. An interesting strategy to provide a practical realization of
behavioral reflection is partial behavioral reflection [128]. Partial behavioral
reflection restricts the introduction of reflective capabilities to the parts of
a system where they are needed, thus not costing anything when these
capabilities are not used. Partial behavioral reflection was realized for Java
using bytecode manipulation.

Problems of Reflection 3

1.2 Problems of Reflection

In this dissertation, we take a look at existing approaches to reflection and
outline solutions for three shortcomings we identified.

Anticipation. Partial behavioral reflection needs to be anticipated.

To support the analysis of long running systems, we need to be able to
install and remove for example profilers and tracing tools at runtime.
In addition, we want to be able to install our tools only on those parts
of the system that we are interested in. Thus we need fine-grained
spatial and temporal control over behavioral reflection.

Partial behavioral reflection is in principle the answer to this problem.
The idea of partial reflection is to be able to select where and when
behavioral reflection is active. When not used, the reflective features
should not have any impact on the performance of the system. It is
important to note that this implies that the decision what to reflect on
is done at runtime: at any point in time we want to be able to change
where reflection is applied and where not.

The problem now is how to realize this in practice. We need to realize
partial behavioral reflection in a way that the system does not need to
be prepared up-front. But when we look at the existing realization, it
does not allow the decision what to reflect on to be taken at runtime.
The client is required to anticipate all future needs of reflection. The
statically defined reflective features can be enabled at runtime. The
slowdown is minimal when they are disabled. But the principle
problem of anticipation exists.

This problem comes from the implementation substrate used (namely
the static Java virtual machine). Nevertheless, realizing a completely
dynamic version of partial behavioral reflection poses a problem to
be solved.

We need unanticipated partial behavioral reflection.

Sub-method Structure. Structural reflection is limited to the granularity of a
method.

Even in the case of languages that support structural reflection, the
system does not provide a representation of the structure of methods
themselves. As a consequence, structural reflection is only useful
when we deal with program structure at the level of classes and whole
methods. This is sufficient for example for a tool like a class browser
that works at this level of abstraction. However, tools working on
more fine-grained abstractions than a complete method (for example,

4 Introduction

debuggers or tracing tools) are not provided by the system with a
representation of sub-method structure.

In addition, partial behavioral reflection needs mechanisms to control
program elements at a finer granularity than a method. Nevertheless,
even systems that support fine-grained behavioral reflection, struc-
tural reflection does not provide mechanisms to reflect on sub-method
elements of a program. Partial behavioral reflection is realized with
ad-hoc bytecode manipulation. This leads to a number of problems:

Semantic mismatch. Concepts existing at the level of the language
are not represented at the level of the bytecode.

Synthesized code. As the bytecode is transformed it is difficult to
distinguish between synthesized code and base level code, and
provide a mapping back to the program source.

Code quality. Bytecode level abstractions make it hard to generate
optimized code

To address these problems, we need sub-method reflection to support
behavioral reflection and tool-building.

Recursion Problem. Behavioral reflection cannot be applied to the whole system.

As soon as we introduce modified behavior using reflection at the
level of system classes, we run into the recursion problem: meta-level
executions have to make use of system-level classes to carry out their
functionality, which in turn triggers meta-level functionality again
[29]. In addition to the case of system classes, the recursion problem
also occurs when we try to use a meta-object on itself. This happens
for example when trying to analyze a reflection based analysis tool
using itself. This limits the use of reflection in practice. We show that
the problem is solved by modeling meta-level execution using context.

We state our thesis as follows:

Thesis:

To support unanticipated behavioral reflection, reflection needs
to be extended with sub-method structure and with the concept
of context.

This dissertation tackles the three problems step by step. We realize
partial behavioral reflection in a dynamic programming language to achieve
unanticipated partial behavioral reflection. This implementation serves as a
case-study to show the problem of a missing sub-method representation for
structure. We discuss sub-method structural reflection, provide a working

Contributions 5

implementation and show how this is beneficial for building tools. The
next step then is to go back to partial behavioral reflection and realize it
on top of sub-method structural reflection. We discuss how this solves the
problems identified with the bytecode-based solution: semantic mismatch,
code quality and synthesized code. As a last step we solve the problem
that behavioral reflection cannot be applied to the whole system. We
present an example of the problem and show how to solve it by providing
a representation for meta-level execution. The dissertation closes with a
case study that shows the use of the complete system for dynamic analysis.

1.3 Contributions

The contributions of this dissertation are:

1. Unanticipated Partial Behavioral Reflection. We extend partial behav-
ioral reflection as pioneered by Reflex [128] to support completely
unanticipated use [40, 116]. This means that the program does not
need to be prepared in any way, reifications can be introduced at
runtime, and there is no slowdown in performance of the program
when reflection is not active.

2. Sub-Method Structural Reflection. We extend the traditional model of
structural reflection to cover sub-method elements [39]. The represen-
tation is based on an abstract syntax tree (AST) that can be annotated.
We provide an extensible compiler framework for defining the seman-
tics of annotations.

3. Partial behavioral reflection based on annotations. We realize unantici-
pated partial behavioral reflection using sub-method reflection. This
solves the problems we found with bytecode-based approaches: se-
mantic mismatch, synthesized code and code quality. In addition,
the resulting system has good performance characteristics: both the
selection of reified elements and the resulting code are improved
compared to the classical bytecode based implementation.

4. MetaContext and contextual meta-object activation. We extend reflection
with the concept of meta-context to represent meta-level execution [?].
We demonstrate how this solves the problem of meta-object call re-
cursion. This allows behavioral reflection to be applied to the whole
system, including system classes and the meta objects themselves.

5. Feature Annotations and the use of sub-method reflection for dynamic
analysis [42, 43]. We describe the use of our framework for dynamic

6 Introduction

analysis in general and present a more in depth case study for dynamic
feature analysis.

6. Reflectivity, an implementation of both sub-method reflection and
partial behavioral reflection in Squeak Smalltalk. The implementa-
tion requires no changes to the virtual machine and is nevertheless
practically usable both considering memory usage and execution
performance.

1.4 Structure of the Dissertation

Chapter 2 discusses the context of this work. After a brief overview of
reflection in object oriented systems, we discuss the new demands of future
systems in the context of reflection. We analyze three shortcomings of
current reflective systems that are solved in this dissertation.

Chapter 3 focuses on unanticipated behavioral reflection. We give an
overview of BYTESURGEON, a runtime bytecode transformation framework.
Based on bytecode transformation, we realize the GEPPETTO framework
for unanticipated partial behavioral reflection. Even though we succeed in
providing unanticipated use, the decision to base the solution on bytecode
transformation proves to be problematic. The role of this chapter is thus
twofold: on the one hand, it provides a first step towards our goal (it solves
the problem of unanticipated use). On the other hand, it serves as a case
study to highlight the need for sub-method structural reflection.

Chapter 4 describes sub-method structural reflection. We analyze the prob-
lems of finding a suitable model for structural reflection that provides
support for representing program structure below the method level. We de-
scribe how to support such a high-level representation on today’s bytecode
based languages. To validate sub-method reflection, we present TREE-
NURSE, an inlinling framework that can replace typical bytecode manipu-
lation frameworks, and TYPEPLUG, a pluggable type system.

Chapter 5 discusses how we provide partial behavioral reflection on top
of sub-method reflection. We revisit the work presented in Chapter 3 and
simplify the model. We present benchmarks to validate the improved
realization of partial behavioral reflection.

Chapter 6 elaborates on the problem of meta-object call recursion and
describe how we extend partial behavioral reflection with the notion of
context to represent meta-level execution. We show how this solves the
recursion problem.

Chapter 7 shows how to use annotation-based partial behavioral reflection

Structure of the Dissertation 7

in the context of dynamic analysis. We discuss the use of annotations for
feature-analysis and show a case study.

Chapter 8 presents conclusions. We describe the impact of our work and
outline future work.

Appendix A describes the REFLECTIVITY system from a practical stand-
point. We show how to install and use the system based on examples.

Appendix B provides a glossary of terms used in the thesis.

Chapter 2

Reflection: Context and
Problems

2.1 Introduction

In this chapter, we discuss the context of our work. We first discuss practical
examples and the requirements they imply for reflection. Then we give a
brief overview of reflection in general. We discuss reflection in program-
ming languages and the theoretical model of the reflective tower. After a
short overview of reflection in object-oriented languages we elaborate on
implementation aspects.

We discuss three shortcomings of reflection in detail: anticipation, sub-
method structure and the recursion problem. We finish with a roadmap of
how this dissertation solves these problems.

2.2 Problems in Practice

2.2.1 Dynamic Analysis.

In recent years there has been a revival of interest in dynamic analysis
[70]. System analysis of runtime behavior is vital for performance analysis
to detect hotspots of activity and bottlenecks of execution or memory
allocation problems such as unnecessary object retention. In a reverse
engineering context, dynamic analysis is used is to extract high-level views
about the behavior of low-level components to facilitate the comprehension

10 Reflection: Context and Problems

of the system [64, 71, 135].

Dynamic analysis yields precise information about the runtime behavior
of systems [3]. However, the task of writing tools to abstract runtime data is
not trivial. Tool builders are faced with many options as there are numerous
techniques that address the task of collecting runtime data.

Reflection is an interesting implementation technique for dynamic anal-
ysis and has been used in the past, for example to record traces [24, 74]. The
benefit of using reflection for dynamic analysis is that we can for example
introduce tracers at runtime and retract them without the need to restart
the system. In addition, we do not need to run the program in a special
environment. For example, there is no need for a special virtual machine.

Partial behavioral reflection is especially suited as a basis for dynamic
analysis [42], as we can precisely select what to reflect on and what data
of the application to pass to the meta-object. To support dynamic analysis
for long-running systems, we need to make sure that when not used, the
reflective feature should not cost anything. We need to be able to introduce
the reflective features on-demand at runtime, we need unanticipated partial
behavioral reflection.

An important property of any technique for dynamic analysis is what
parts of the system it can be applied on. A problem with reflection based
approaches is that we face the recursion problem as soon as we reflect on core
system features, like Numbers or Arrays. These are used in the code of the
tracer itself, which leads to the problem of meta-object call recursion. In
practice, reflection-based dynamic analysis is thus restricted to application
level code. In addition, when implementing tools leveraging behavioral
reflection, it would be interesting to analyze these tools themselves. This
dynamic meta-level analysis is not practical to realize with current reflective
systems. We will show that the cause for both problems is a missing
representation of meta-level execution.

Requirements: (i) unanticipated partial behavioral reflection and (ii) we need
to apply behavioral reflection to the whole system

2.2.2 Integrated Development Environments.

Development environments (IDEs) and tools can benefit from reflection:
any IDE needs a representation of the program to work with. This rep-
resentation is then used to drive code browsers, code highlighting and
refactoring functionality. But most IDEs provide a distinct representation
separate from the reflective representation already made available by the
language [130]. With a sufficiently powerful reflective model, no special
IDE data structures for the language are needed. Instead, the tools can use

Problems in Practice 11

the one representation that is the reflective model of the language itself.

In the light of long-running systems this is especially interesting as
the boundaries between development and deployment start to blur. An
IDE working on the reflective structure of a system facilitates development
at runtime. A prime example for such a system is Smalltalk [60]. In the
Smalltalk IDE, the code browser is just a very thin user interface layer
that directly modifies the reflective structure of the language. Classes and
methods are objects, the classes are responsible to compile and install new
code as methods.

But even in systems where the IDE uses structural reflection, reflective
representation of the system does not provide any support for the structure
of methods themselves besides the low-level bytecode and source code. A
representation of complete program structure would be interesting for any
IDE feature working on sub-method abstraction, for example for debuggers,
profilers or code refactoring tools.

For tools working on the level of classes and whole methods (e.g., a class
browser), structural reflection eases tool-building as all tools use the same
representation [130]. The system should provide the same for sub-method
structure.

Requirement: sub-method reflection.

2.2.3 Language Experiments

Reflection provides means to experiment with new language features
without the need to develop completely new languages. For exam-
ple, behavioral reflection has been used to introduce new language fea-
tures in several languages, for instance multiple inheritance[16], distribu-
tion [5, 102], instance-based programming [4], active objects [25], concur-
rent objects [134], futures [105] and atomic messages [57, 99], as well as
backtracking facilities [91]

An interesting example is the existing structural reflection found in
Squeak Smalltalk. In the past, Squeak has already provided a platform
for many experiments with new language features [6]. Examples of such
language experiments include:

Traits are building blocks that can be composed to classes [52, 11]. Traits
have been realized in Squeak without the need to change the virtual
machine or the grammar of the language by using reflection.

Classboxes [10, 9, 8, 7] provide a module system that supports local re-
binding.

12 Reflection: Context and Problems

Changeboxes [41, 136] provide a mechanism for encapsulating change as a
first-class entity in a running software system. Changeboxes provide
for running different versions of code in the same system.

All these examples use either the standard reflective facilities of
Smalltalk [113] or those added to the Squeak dialect, for example the ability
to replace any method by an object that interprets the message sent [6].
These examples show that limited reflective properties are already very
useful in supporting language experiments. Improving reflective features
will help to make language experiments even easier.

Requirements: (i) sub-method reflection, (ii) unanticipated behavioral reflection.

2.2.4 Three Requirements for Reflective Systems

Reflection will play a crucial role to enable us to build both the languages
and tools for the future. We have already seen many examples of how
reflection has been useful for these kinds of experiments in the past. At
the same time, we found three shortcoming that we plan to solve in this
dissertation:

• Analyzing a long-running systems demands unanticipated use of par-
tial behavioral reflection.

• We need to extend structural reflection with sub-method support to
serve as a basis for tool building and behavioral reflection.

• We need to solve the recursion problem to be able to use tools based
on behavioral reflection on the complete system including system
classes and the code of the tool itself.

Before we discuss these requirements in detail, we give a brief overview
of reflection.

2.3 Reflection: A Brief Introduction

We first discuss reflection in programming languages in general, then
reflection in object-oriented languages in particular. This section is kept
short. For more information, we refer the reader to the literature.

Appendix B provides a glossary for easy reference.

Reflection: A Brief Introduction 13

2.3.1 Reflection in Programming Languages

In this section we define common terms that are used when describing
reflective systems, and we provide a definition for reflective systems. The
definition follows the paper of Maes [97]:

A reflective system is a system which incorporates causally
connected structures representing (aspects of) itself [97].

This definition is very general. Programming languages constitute just
one example of a reflective system. In reflective programming languages,
the system incorporates a self-representation of the language. The require-
ment of causal connection is fundamental:

A system is said to be causally connected to its domain if the in-
ternal structures and the domain they represent are linked in such
a way that if one of them changes, this leads to a corresponding
effect of the other [97].

A reflective language thus has a representation of its own structure
and behavior available from within. The representation changes if the
language changes and vice versa. It is always in sync with the system itself.
Therefore, the representation can be queried and it can even be changed.

Many programming languages provide mechanisms to query a repre-
sentation of the system. This is known as introspection. If a programming
language provides mechanisms to change the representation of itself, this
is referred to as intercession. Only when we can both query and change the
representation, we call the system reflective.

The Reflective Tower

Reflection as a concept for procedural programming languages was first
studied by Smith [119, 120, 45]. His theoretical model is that of meta-level
interpretation. A language is interpreted by an interpreter, which is in turn
interpreted by an interpreter. The result is an endless tower of reflective
interpreters as shown in Figure 2.1.

A tower-of-interpreters model as such is not yet reflective, as the inter-
preter at one level above is not available for introspection or intercession
to the program being interpreted. The ability to reflect on the interpreter
is provided by special functions: a program may request code to be inter-
preted at the level of the interpreter and thus making a switch to a higher
meta-level by calling a reflective function.

The mechanism for switching levels was further studied by Friedman

14 Reflection: Context and Problems

User Program running at level 0

Interpreter at level 1

Interpreter at level 2

Interpreter at level 3

Figure 2.1: The Reflective Tower

and Wand [59]. They present a model with the goal of eliminating a tower-
of-interpreters. They define what needs to happen for a level shift. They
describe a two step process. The first is called reification:

Reification is the conversion of an interpreter component into
an object which the program can manipulate. [59]

The inverse function of reification is called reflection, which means in-
stalling the results of the meta-calculation back into the interpreter. Today
the term reification is used in general to denote the creation of objects that
represent concepts normally not accessible at a certain level. To reify some-
thing thus means to create an object for something that normally is not
represented. An example for this is the concept of sending a message in
an object-oriented language. For performance reasons, messages are not
represented as objects.

2.3.2 Reflection and Objects: Meta-object Architectures

The main focus of Smith was the theoretical foundation of reflection, not
actual practical reflective languages. As the reflective interpreter is too slow,
other approaches are needed to provide reflective features in a language. A
solution is provided by models for reflection that are based on language
entities, not interpreter data structures. This view of reflection aligns very
well with the object-oriented paradigm: in object-oriented reflective sys-

Reflection: A Brief Introduction 15

tems, the meta-level is formed in terms of meta-objects. A meta-object acts
on reifications of program elements (execution or structure).

Computational reflection was first studied in object-oriented languages
by Maes [97]. The 3-KRS system incorporated the idea of Smith into an
object-oriented system. Here we reflect on object structure, rather than
interpreter structure. Other examples are systems like Smalltalk where the
reflective features are the result of the implementation strategy: Smalltalk
is implemented to a large extent in Smalltalk, which results in reflective
capabilities [57] as we can change the Smalltalk class structure at runtime.

Meta-object Protocols

The CLOS language developers pioneered the term meta-object protocol
(MOP) to denote the reflective features of a language [87, 88]. As the meta-
level in meta-object architecture is formulated in terms of objects, these
so-called meta-objects provide a protocol for manipulation in the style of
an Open Implementation [85, 86]:

“Metaobject protocols are interfaces to the language that give users
the ability to incrementally modify the language’s behavior and im-
plementation, as well as the ability to write programs within the
language.” [88]

Structural and Behavioral Reflection

The literature distinguishes structural and behavioral reflection [56]: struc-
tural reflection deals with program structure while behavioral reflection
deals with the execution.

Behavioral and structural reflection can be seen on the one hand as
orthogonal concepts: a language can provide functionality for behavioral
or structural reflection or both. On the other hand, they are connected:
any change of structure leads to a change of behavior and any behavioral
change needs to change structure at some level.

As a structural change can be used to change behavior, structural reflec-
tion can serve as the basis for behavioral reflection. One example for this
is MethodWrappers [24], which allows methods to be wrapped to execute
additional code before or after the method. Another example is Reflex [128]
which realizes behavioral reflection by transforming bytecode. In Section
2.4 we discuss how to realize behavioral reflection using the structural
reflection of Squeak Smalltalk.

The fact that a behavioral change leads to a structural change at some

16 Reflection: Context and Problems

level can lead to the problem that this structural change is visible to in-
trospection. We will see that this is can lead to problems when realizing
behavioral reflection using bytecode modification in Chapter 3.

Behavioral Reflection: Engineering the Meta-Level

Meta-objects are associated to base-level entities of the language. As there
are different entities, there are many different possible ways of how to
structure the meta-level.

Object. An example is the language 3-KRS [97]. Here meta-objects are asso-
ciated per object, the behavior of an object is defined by its associated
meta-object.

Class. All objects of one class share meta-object. As we have already a
structural meta-object, the meta-class, this meta-object is reused as
a behavioral meta-object. Examples are the CLOS MOP [88] and
all other meta-class based models of behavioral reflection like Meta-
ClassTalk [17].

Operation. McAffer suggests an operational decomposition of the meta-
level [100]. Reifications represent occurrences of operations denoting
the activity of the base program execution. Examples of operations
are message sending, method execution, and variable access. An oc-
currence of an operation is a particular event, for example a particular
sending of a message.

2.3.3 Partial Behavioral Reflection.

Partial behavioral reflection follows the operational decomposition of the
meta-level. It allows for flexible engineering of the meta-level, making it
possible to design a concern-based meta-level decomposition (i.e., where one
meta-object is in charge of one concern in the base application) rather than
the typical entity-based meta-level decomposition (e.g., one meta-object per
object, or one meta-object per class). Hence it is possible to reuse or compose
meta-objects of different concerns which greatly eases the engineering of
the meta-level [100, 128]. In addition, partial behavioral reflection limits
the performance impact by letting users precisely select what needs to be
reified.

With partial behavioral reflection is possible to select exactly which
operation occurrences are of interest, as well as when they are of interest.
These spatial and temporal selection possibilities are of great advantage
to limit costly reification. Furthermore, the exact communication protocol

Reflection: A Brief Introduction 17

between the base and meta-level is completely configurable: which method
to call on the meta-object, pieces of information to reify, etc. We discuss
partial behavioral reflection in detail in Section 2.4.

2.3.4 Implementing Behavioral Reflection

Interpreter-based Reflection

The tower-of-interpreters, or in general a meta-circular interpreter [1] is
in principle an implementation strategy for reflection. The problem is
practicability: such a system of multiple interpreter-stages is hard to realize
without adversely affecting performance.

A special case of the reflective interpreter is an interpreter that provides
an open implementation [85, 86]. An example is the work of Steyaert [123].
Here the interpreter provides a pre-defined subset of changeable features.

Language-based Reflection

In object-oriented languages, reflection is defined in terms of objects. Enti-
ties of the language, for example classes are controlled by meta-objects. In
these systems, the language is structured in a way that allows behavior to
be changed. Default behavior might be defined in the virtual machine for
performance reasons. Examples here are 3-KRS [97], and meta-class based
reflective systems like MetaClassTalk [17] where the meta-class of a class
determines the behavior of for example variable access. The meta-class can
be changed by inheritance or mixin-composition.

There is a tradeoff between generalization and performance: when
we support many aspects of the language to be reflectively changed (e.g.,
method lookup, instance variable storage), the performance suffers due to
the needed indirections and reifications. As the virtual machine is fixed,
the degree of reflection supported cannot be changed without changing the
virtual machine or resorting to code generation approaches as described in
the next section.

Code Transformation

In current mainstream languages, having a closed interpreter (or even no
interpreter at all) is the normal case. The absence of an open interpreter
does not prevent reflection: we can transform the program instead of the
interpreter to realize behavioral reflection.

Historically, this approach was pioneered in the context of static compile

18 Reflection: Context and Problems

time MOPs [27], it was later applied to bytecode-based systems [30, 131] as
this provides a very practical approach for realizing behavioral reflection
for languages bytecode interpreting virtual machines.

We have already discussed that structural reflection can be used to
provide behavioral reflection. The transformation approach in combina-
tion with structural reflection provides a powerful substrate for realizing
behavioral reflection: transformed code can be installed in the system by
using structural reflection at load-time or runtime. Practically, reflection
is realized by introducing small code snippets, called hooks, in the places
where meta-objects are supposed to be called. The positive aspect of code
transformation is that it is very general, we can do most things that an
interpreter-based solution can do. One can see it as a form of ad-hoc partial
evaluation of the tower-of-interpreter. Even fine-grained and partial behav-
ioral reflection can be realized, as we can control transformation down to
the level of operations. One example for this is partial behavioral reflection as
realized in Reflex [128].

There are multiple problems with the code-transformation approach
to behavioral reflection. To support run-time transformation and thus
unanticipated use of behavioral reflection, structural reflection needs to be
powerful enough to replace the methods of a class at runtime.

When we change program structure, these changes are visible via the
introspective API of the language. When transforming code on the level of
bytecode, in addition there is the problem of having to deal with a low-level
representation: concepts that have a representation in the language might
already be optimized away (e.g., jumps for control-structures instead of
message sends).

Another problem is the missing interpreter scope. The transforma-
tion is global, which leads to the problem of endless meta-call recursion,
preventing us from using behavioral reflection on the whole system.

2.4 Problem 1: Anticipation

Partial behavioral reflection needs to be anticipated.

We choose the Smalltalk [62] dialect Squeak [82] to implement a dy-
namic approach to reflection which supports unanticipated partial behavioral
reflection (UPBR), because Squeak represents a powerful and extensible
environment, well-suited to implement and explore the possibilities of
UPBR. Before presenting our proposal, we discuss the current situation of
reflective support in standard Smalltalk-80 as well as in the MetaclassTalk
extension [17, 19, 21]. We also discuss closely related proposals formulated

Problem 1: Anticipation 19

in the Java context, both for unanticipated behavioral reflection and for
partial behavioral reflection.

Smalltalk is one of the first object-oriented programming languages
providing advanced reflective support [113]. The Smalltalk approach to
reflection is based on the meta-class model and is thus inherently struc-
tural [56]. A meta-class is a class whose instances are classes, hence a
meta-class is the meta-object of a class and describes its structure and be-
havior. In Smalltalk, message lookup and execution are not defined as
part of the meta-class however. Instead they are hard-coded in the vir-
tual machine. It is thus not possible to override in a sub-meta-class the
method which defines message execution semantics. While not providing
a direct model for behavioral reflection, we can nevertheless change the
behavior using the message-passing control techniques [48], or method
wrappers [24]. Also, the Smalltalk meta-model does not support the reifica-
tion of variable accesses, so the expressiveness of behavioral reflection in
current Smalltalk is limited.

Although reflection in Smalltalk can inherently be used in an unan-
ticipated manner, the existing ad hoc support for behavioral reflection in
Smalltalk is not efficient and does not support fine-grained selection of
reification as advocated by partial behavioral reflection (PBR) [128]. For
both reasons (limited expressiveness and lack of partiality), we have to
extend the current reflective facilities of Smalltalk.

Extended Behavioral Reflection in Smalltalk: MetaclassTalk

MetaclassTalk [17, 19, 21] extends the Smalltalk model of meta-classes by
actually having meta-classes effectively define the semantics of message
lookup and instance variable access. Instead of being hard-coded in the
virtual machine, occurrences of these operations are interpreted by the meta-
class of the class of the currently-executing instance. A major drawback
of this model is that reflection is only controlled at class boundaries, not
at the level of methods or operation occurrences. This way MetaclassTalk
confines the granularity of selection of behavioral elements towards purely
structural elements. As Ferber says in [56]: “metaclasses are not meta in
the computational sense, although they are meta in the structural sense".

Besides the lack of fine-grained selection, MetaclassTalk does not allow
for any control of the protocol between the base and the meta-level: it
is fixed and standardized. It is not possible to control precisely which
pieces of information are reified: MetaclassTalk always reifies everything
(e.g., sender, receiver and arguments in case of a message send). Recent
implementations of the MetaclassTalk model limit the number of effective
reifications by only calling the meta-class methods if the metaclass indeed

20 Reflection: Context and Problems

provides changed behavior. But even then, once a metaclass defines custom
semantics for an operation, all occurrences of that operation are reified in
all instances of the class. Hence MetaclassTalk provides a less ad-hoc means
of doing behavioral reflection than standard Smalltalk-80, but with a very
limited support for partial behavioral reflection.

Unanticipated Behavioral Reflection: Iguana/J

Iguana/J is a reflective architecture for Java [108] which supports unan-
ticipated behavioral reflection and a limited form of partial behavioral
reflection.

With respect to unanticipated adaptation, with Iguana/J it is possible
to adapt Java applications at runtime without being forced to shut them
down and without having to prepare them before their startup for the use
of reflection. However to bring unanticipated adaptation to Java, Iguana/J
is implemented in form of a dynamic library integrated very closely with
the Java virtual machine via the Just-In-Time (JIT) compiler interface [108].
This means that the Iguana architecture is not portable between different
virtual machine implementations: e.g., the JIT interface is not supported
anymore on the modern HotSpot Java virtual machine. Conversely, we aim
at providing UPBR for Smalltalk in a portable manner, in order to widen
the applicability of our proposal.

With respect to partiality, Iguana/J supports fine-grained meta-object
protocols (MOPs), offering the possibility to specify which operations
should be reified. However, precise operation occurrences of interest cannot
be discriminated, nor can the actual communication protocol between the
base and meta-level be specified. This can have unfortunate impact on
performance, since a completely reified occurrence is typically around 24
times slower than a non-reified one [108].

Partial Behavioral Reflection: Reflex

A full-fledged model of partial behavioral reflection was presented in [128].
This model is implemented in Reflex, for the Java environment.

Reflex fully supports partial behavioral reflection: it is possible to select
exactly which operation occurrences are of interest, as well as when they are
of interest. These spatial and temporal selection possibilities are of great
advantage to limit costly reification. Furthermore, the exact communication
protocol between the base and meta-level is completely configurable: which
method to call on the meta-object, pieces of information to reify, etc. The
model of links adopted by Reflex, which consists of an explicit binding of a
cut (set of operation occurrences) and an action (meta-object), also gives

Problem 2: Sub-method Structure 21

total control over the decomposition of the meta-level: a given meta-object
can control a few occurrences of an operation in some objects as well as
some occurrences of other operations in possibly different objects.

Hence meta-level engineering is highly flexible, the limitation of Reflex
however lies in its implementation context: being a portable Java exten-
sion, Reflex works by transforming bytecode. Hence, although reflective
behavior occurs at runtime, reflective needs have to be anticipated at load
time. This means that Reflex does not allow a programmer to insert new
reflective behavior affecting already-loaded classes into a running appli-
cation. Instead, the programmer is forced to stop the application, define
the reflective functionality required and to reload the application to insert
this meta-behavior. Links can be deactivated at runtime, but at a certain
residual cost, because the bottom line in Java is that class definitions cannot
be changed once loaded.

2.5 Problem 2: Sub-method Structure

Structural reflection is limited to the granularity of a method.

The second problem identified is the lack of a representation of sub-
method structure. Having the structure of a method described as part of the
structural reflective capabilities of a language has many uses. We highlight
two reasons for sub-method structure: (i) sub-method reflection provides
a basis for tool-building, and (ii) the missing structural representation for
methods complicates the realization of partial behavioral reflection.

Problems of Bytecode-based Behavioral Reflection

Partial behavioral reflection has been realized both for Java and Smalltalk
by using bytecode transformation.

Behavioral reflection needs some way to deal with sub-method ele-
ments, as typical behavioral entities are for example variable access or
message sends. Nevertheless, even systems that support behavioral re-
flection, structural reflection does not provide mechanisms to reflect on
sub-method elements of a program. Partial behavioral reflection has been
realized both for Java and Smalltalk by using bytecode transformation. The
low-level nature of bytecode results in a number of problems:

Semantic mismatch. Bytecode is a representation optimized for execution.
Thus there are some optimizations made when generating bytecode,
for example in Smalltalk, control structures are not realized with
message sends. Instead, bytecode has instructions to encode jumps.

22 Reflection: Context and Problems

Concepts existing at the level of the language are not represented at
the level of the bytecode.

Code quality problem due to low level model. Transformations at the
level of bytecode make it difficult to generate optimized code.

Problem with synthesized elements. To realize behavioral reflection via
any form of code transformation, we modify the structure of the
program. This is problematic, as these changes are visible through
structural introspection. It is, for example, hard to distinguish be-
tween synthesized code and base level code.

A Structural Representation for Tools

Tools that work on sub-method abstractions are common. Examples are
trace-tools, debuggers, profilers or refactoring tools. For tools working
on the level of classes and whole methods (e.g. class browser), structural
reflection eases tool-building as all tools use the same representation. The
system should provide the same for sub-method structure. The representa-
tion should be

• causally connected and well integrated in the system.

• persistent and extensible to allow tools to communicate.

• reasonably compact with minimal performance impact.

• offer a high-level abstraction to the developers.

2.6 Problem 3: Recursion

Behavioral reflection cannot be applied to the whole system.

When we deploy behavioral reflection to analyze a system, for example
with a reflective profiling tool, we soon run into problems. Any reflective
tool will use the basic system library at runtime. If we now introduce calls
to the profiler in the library code using reflection, the result will be an
endless loop that finally leads to a system crash. This means that we cannot
apply behavioral reflection to any system library or to any other code that
is executed as part of the meta-object.

To enable reflection in mainstream languages, the tower of interpreters
is replaced with a reflective architecture [97] where meta-objects control the
different aspects of reflection offered by the language. Meta-objects provide

Problem 3: Recursion 23

the implementation of new behavior which is called at certain defined
places from the base system. It is important to note that meta-objects are
not special objects. The execution of code as part of a meta-object is not
different to any execution occurring in the base level application. As both
base and meta-computations are handled the same way, we are free to call
any part of the base-system in the meta-level code.

This means that meta-level code can actually trigger again the execution
of meta-level functionality. There is nothing to prevent the meta-level code
to request the same code to be executed again, leading to an endless loop
resulting in a system crash. This is especially a problem when reflecting
on core language features (e.g., the implementation of Arrays or Numbers)
since chances are high that such features are used to implement reflective
features themselves. These cases of spurious endless recursion of meta-
object calls have been noted in the past in the context of CLOS [29].

The ability to reflect on system classes is especially important when
using reflection for dynamic analysis. A tracing tool that is realized with
reflection should be able to trace a complete run of the system, not only the
application code. In addition to the problem of recursion, a tracer has the
problem of recording the execution of trace code itself.

If we go back to the infinite tower (the origin of meta-level architectures)
we can see that here these problems do not exist by construction: going meta
means jumping up to another interpreter. A reflective function is always
specific to one interpreter. As a function that is reflective at a meta-level In

is not necessarily reflective in In+1, the problem of infinite recursion does
not happen.

(define READ-NORHALISE-PRINT
(lambda simple [env stream]

(block (prompt&reply (normalise (prompt&road stream) env)
stream)

(road-normalise-prlnt one stream))))

(define NORMALISE
(lambda simple [str'uc e.v]

(rend [(normal struc) struc]
[(atom sLruc) (binding sLruc env)]
[(r a i l struc) (normaltse-rai l struc env)]
[(pa i r struc) (reduce (ca rs t ruc) (cd rs t ruc) env)])))

define REOUCE
(lambda slmple [proc args env]

(le t [[proc! (normalise proc env)]]
(selectq (procedure-type procl)

[simple (le t [[args! (eormaltse args env)]]
(i f (pr imi t ive procl)

(reduce-primit ive-simple
proc! argsl env)

(expand-closure procl a rgs l)))]
[intensional (i f (pr imi t ive proc!)

(reduce-primtttve-lntenslonal
proc! targs any)

(expand-closure procl targs))]
[macro (normalise (expand-closure procl targs)

env))]))))

(define NORMALISE°RAIL
(lambda simple [r a i l env]

(I f (empty r a i l)
(rears)
(prep (normalise (l s t r a i l) env)

(normaiise-rat l (rest r a i l) onv)))))
define EXPAND-CLOSURE
(lambda simple [proc! argsl]

(normalise (body, procl)
(bind (pattern procl)

argsi
(environment p roc l))))

Figure 13:ANon-C(mtinuation-Passblg 2-LISPMCP

given in the previous paragraph leads one to think of an infinite
number of levels of reflective processors, each implementing the

one below. 7 On such a view it is not coherent either to ask at

which level the tower is running, or to ask how many retlective

levels are running: in some sense they are all running at once.

Exactly the same situation obtains when you use an editor

implement, ed in APL. It is not as if the editor and the APL

interpreter are both running together, either side-by-side or

independently; rather, the one, being interior to the other,

SUl)plies the anima or agency of /.he outer one. To put this

another way, when you implement one process in another

process, you might want to say that you have two different

processes, but you don't have concurrency; it is more a

part /whole kind of relation. It is just this sense in which the

higher levels in our rcllective hierarchy are always running:

each of them is in some sense within the processor at the level

below, so that it can thereby engender it. We will not take a

principled view on which account - - a single locus of agency

stepping between levels, or an infinite hierarchy of

simultaneous processors - - is correct, since they turn out to be

behaviourally equivalent. (The simultaneous infinite tower of

levels is often the better way to understand processes, whereas

a shi|!,ing-level viewpoint is sometimes the better way to
understand programs.)

3-Lisp, as we said, is an infinite reflective tower based on

2-Lisp. The cede at each level is like; the continuation-passing 2-

Lisp MCP of Figure 14, but extended to provide a mechanism

whereby the user's program can gain access to fully articulated
descriptions of that program's operations and structures (thus

extended, and located in a reflective tower, we call this code the

3-Lisp reflective processor). One gains this access by using what

are called reflective prncedures ~ procedures that, when
invoked, arc run not at the level at which the invocation

occurred, but one level higher, at the level of the reflective
processor running the program, given as arguments those

structures being passed around in the reflective processor.

define READ-NORNALISE-PRINT
(lambda simple lone stream]

(normailse (prompt&read stream) oily
(lambda simple [resu l t]

(block (prompt&reply result stream)
(read-normalise-print env stream))))))

(define NORHALISE
(lambda simple [s t rc one cent]

(rend [(normal struc) (cent s t rc)]
[(atom sire) (cent (binding strc env))]
[(r a i l strc) (normaltse-rai l strut env cont)]
[(pa i r strc)(reduce (ca rs t r c) (cdcs t r c)envcon t)]) }

(define REDUCE
(lambda simple [proc args env coat]

(normalise proc env
(lambda slmpte [proc!]

(selectq (procedure-type procl)
[simple

(normaltse args any
(lambda simple [args!]

(i f (pr imi t ive procl)
(redece-primtttve-stmple

pratt args! env cent)
(expand-closure proc! args! cos t))))]

[intensional
(i f (pr imi t ive procl)

(reduce-primit ive- intenslonal
proc! targs env cent)

(expand-closure procl ~args cont))]
[macro (expand-closure pros! targs

(lambda simple [resu l t]
(normallse resul t any c o n t)))]))))))

(define NORMALISE-RAIL
(lambda simple [r a i l env cent]

(i f (empty r a i l)
(cent (rcons))
(normalise (l s t r a i l) env

(lambda simple [f t r s t l]
(normal ise-ral l (rest rat1) env

(iambda simple [r es t !]
(cent (prep f i r s t ! r e s t !)))))))))

define EXPAND-CLOSURE
(lambda simple [proc! ergs! cent]

(normalise (body procl)
(bind (pattern proc!) args! (one procI))
cent)))

Figure 14: A Continaation-Passing 2-LISP MCP

Reflective procedures are essentially analogues of subroutines b

be run "in tile implementation", except that they are in the

same dialect as that being implemented, and can use all the

power o(' the implemented language in carrying out their

function (e.g., reflective procedures can themselves use reflective

procedures, without limit). There is not a tower of different

languages - - there is a single dialect (3-Lisp) all the way up.

 L ve,,co . l''l J
Figure 15: The 3-LISP Reflective Tower

31 Figure 2.2: The 3-Lisp reflective tower from [119]

24 Reflection: Context and Problems

An important question then is the difference between the meta-object
and interpreter/infinite tower approach. The metaness in the case of the
tower is defined by the interpreter used. The interpreter forms a context
that determines if we are executing at the base level or at the meta-level.
Calling reflective functionality (so called reification) is always specific to one
interpreter. The meta-object approach now in contrast is lacking any mech-
anism to specify this contextual information: when executing a meta-level
program, in a meta-object based reflective system, we lack the information
that this program is executing at the meta-level. In addition, all reifications
are globally active: we cannot only trigger meta-object activation when
executing base level code. The research question is thus how to incorporate
the infinite tower property of explicitly representing the execution context
into meta-object based architectures.

2.7 Summary and Roadmap

We have presented a short overview of reflection in general and an overview
of reflection in object-oriented system in particular. We then discussed three
shortcomings identified in existing reflective systems:

1. Anticipation. Partial behavioral reflection needs to be anticipated.

2. Sub-method Structure. Structural reflection is limited to the granu-
larity of a method.

3. Recursion Problem. Behavioral reflection cannot be applied to the
whole system.

Roadmap

We now solve these three problems step-by-step

Chapter 3. We realize partial behavioral reflection in Smalltalk. As is it
based on runtime bytecode transformation, it solves the problem of
unanticipated use. In addition, this chapter shows the need for a better
representation of sub-method structure.

Chapter 4. We discuss sub-method reflection, show how to realize it in
bytecode-based languages and present examples of how sub-method
reflection supports tool building.

Chapter 5. With sub-method reflection, we can take a second look at partial
behavioral reflection. Based on sub-method reflection, the new system
does not exhibit the problems found in the bytecode based solution.

Summary and Roadmap 25

Chapter 6. We cannot apply our reflection framework to the whole system.
We analyze the problem and solve it by extending partial behavioral
reflection with the notion of meta-level execution.

Chapter 7. We provide a case-study of how to use the resulting system for
dynamic analysis.

Chapter 3

Unanticipated Partial
Behavioral Reflection

3.1 Introduction

In this chapter we present our first solution to solve the problem of antici-
pation for partial behavioral reflection. Both partial behavioral reflection
(PBR) and unanticipated behavioral reflection (UBR) have been realized
in the past, we combine both to provide unanticipated partial behavioral
reflection (UPBR).

We first give an overview of BYTESURGEON, a bytecode transformation
framework. Based on bytecode transformation we show how to realize
unanticipated partial behavioral reflection.

The research shown in this chapter focuses just on achieving unantic-
ipated use of partial behavioral reflection, but at the same time this first
solution reveals that we need a better representation for sub-method struc-
ture. Thus the role of this chapter is twofold: first, it presents a step towards
the solution by solving the problem of unanticipated partial behavioral
reflection. But second, it makes the problems resulting from a missing
sub-method structure more apparent:

• Semantic mismatch.

• Problem with synthesized code.

• Code quality problem due to low level model.

We discuss these problems in detail in Section 3.4.

28 Unanticipated Partial Behavioral Reflection

3.2 BYTESURGEON: Bytecode Transformation

3.2.1 The Need for Bytecode Manipulation

Code can be transformed either directly as text (concrete syntax) or as an ab-
stract syntax tree (abstract syntax). Furthermore, in language environments
where source code is compiled to an intermediate bytecode language which
is abstract enough, bytecode transformation is an interesting approach.

Disadvantages of AST Transformation

Transforming source code at the concrete syntax level is typically avoided
because of the lack of structure and abstraction at the text level. Transfor-
mation of abstract syntax trees (ASTs) is much more appropriate, but still
suffers from a number of limitations:

No original language warranty. Many mainstream languages today, such
as Java, Squeak and C#, are based on a virtual machine executing
bytecodes, and these virtual machines are actually used as the exe-
cution engines of various languages, other than the “original” ones.
For instance, for the Croquet environment [121], a number of ex-
perimental scripting languages have been developed, among them
languages similar to JavaScript and LOGO. Another example is the
Python language, which can be compiled to Java bytecode [84]. To
provide practical performance, these languages come with their own
custom compiler that produces bytecode for a production-quality
virtual machine. Therefore a code transformation tool working at the
AST level rebuilding the AST from bytecode would require a custom
decompiler. On the other hand, working on bytecode, although lower-
level than AST, makes it possible to uniformly apply transformations
even in the presence of non-original languages.

Recompiling is slow. Finally, transforming source code means that a com-
piling phase is necessary afterwards to regenerate bytecodes. Recom-
pilation is a slow process, much slower than manipulating bytecode;
benchmarks of Section 3.2.5 validate this statement.

3.2.2 Bytecode Transformation Approaches

A wide variety of tools have been proposed that rely on bytecode transfor-
mation. Surprisingly, most of these tools have been implemented for Java,
and we are aware of very few related proposals in the Smalltalk world.

BYTESURGEON: Bytecode Transformation 29

Java and Bytecode Transformation

The Java standard environment only allows for bytecode transformation
at load time. At runtime, it is only possible to dynamically generate
new classes from scratch, not to modify existing ones. These restrictions
have been somehow relaxed in the context of the JVM debugger interface
(JDI) [83], but relying on the debugger interface is not reasonable in a pro-
duction environment. Furthermore, the capabilities of class reloading are
strongly limited as, for instance, new members cannot be added to classes.
Using load-time transformation in Java also raises a number of subtle issues
related to class loaders and the way they define namespaces in Java [92].

Level of Abstraction

The experience gained with Java bytecode transformation tools brings a
number of insights that ought to be considered when designing a new
framework. The most fundamental one is that of the level of abstraction
provided to programmers.

Tools like BCEL [35] and ASM [26] strictly reify bytecode instructions:
as a consequence, users have to know the Java bytecode language very
well and have to deal with low-level details such as jumps and alternative
bytecode instructions (a Java method invocation can be implemented by
several bytecode instructions, depending on whether the invoked method
is from an interface, is private, etc.).

In contrast, Javassist [28] and Jinline [129] focus on providing source
code level abstractions: although the actual transformation is performed on
bytecode, the API exposes concepts of the source language. This is highly
profitable to end users. In its latest version [30], Javassist even offers a
lightweight online compiler so that injected code can be specified as a
source code string. The Javassist compiler supports a number of dedicated
meta-variables, which can be used to refer to the context in which a piece
of code is injected.

As a matter of fact, bytecode-level manipulation is more complex than
source-level manipulation because of the many low-level details one needs
to deal with. However, working at the bytecode level also makes it possible
to express code that is not directly expressable in the source language(s).
This dilemma basically motivates the need for both APIs, as is done in
Javassist: a high-level API provides source-level abstractions, and a low-
level API provides bytecode-level abstractions.

30 Unanticipated Partial Behavioral Reflection

3.2.3 BYTESURGEON: Overview

Proposals for Smalltalk

To the best of our knowledge there is no general-purpose bytecode manip-
ulation tool for a Smalltalk dialect. AOStA [104] is a bytecode-to-bytecode
translator that aims at providing higher-level, transparent, type-feedback-
driven optimizations. It was not thought to be open to end users for
bytecode manipulation1. Method wrappers [24] make it possible to wrap a
method with before/after code. They are very fast to install and remove,
as they do not need to parse bytecode or generate methods, but are not
a general-purpose transformation tool. Several extensions actually need
more power than just before/after control. AspectS [77] has been recently
proposed as an aspect-oriented interface to the reflective capabilities of
Smalltalk combined with method wrappers (to implement before/after
advices). AspectS is actually a tool that would much profit from BYTE-
SURGEON, as it would significantly raise its expressive power.

BYTESURGEON is our library for runtime program transformation in
Smalltalk, currently implemented in the Squeak environment. BYTE-
SURGEON complements the reflective abilities of Smalltalk [113] with the
possibility to instrument methods, down to method bodies.

Smalltalk provides a great deal of structural reflection: the structure
of the system is described in itself. Structural reflection can be used to
obtain the object representing any language entity. For instance, the global
variable Example stands for the class (the object representing the class)
Example, and the object describing the compiled method aMethod in class
Example is returned by the expression Example>>#aMethod.

Dynamically adding instance variables and methods to an existing class
is fully supported by any standard Smalltalk environment. However the
structural description of a Smalltalk system stops at the level of methods: a
compiled method cannot be reflected upon. BYTESURGEON adds support
for both introspection and intercession of compiled methods at the bytecode
level.

Introspecting Method Bodies

Let us first see how BYTESURGEON is used to introspect method bodies.
The following code statically counts the number of instructions that occur
in all methods of the class Example:

1Actually, BYTESURGEON could profitably use AOStA for its backend, but this study is left
as future work.

BYTESURGEON: Bytecode Transformation 31

InstrCounter reset.
Example instrument: [:instr | InstrCounter increase]

The instrument: method is implemented in class Behavior. As a parameter
it is given a block of standard Smalltalk code that takes one argument. This
block is an instrumentation block: for each instruction within all methods
of the class, the instrumentation block is evaluated with a reification of
the current instruction as parameter. We will see later what an instruction
reification is. For now, it suffices to say that for each instruction, a global
counter is increased.

There are variants of the instrument: method for each particular language
operation: constant, variable access, read and store and message sending.
For instance, instrumentSend: only evaluates the instrumentation block upon
occurrences of the message send operation. Besides sending the instrumen-
tation message to a class, thereby affecting all its methods, we can send it
to a single method:

SendMCounter reset.
(Example>>#aMethod) instrumentSend: [:send | SendMCounter increase]

Reification of Language Operations

Instructions in a method body are static occurrences of the operations of
a language. BYTESURGEON supports message send, access to instance
variables and local variables, and constants. The structural model repre-
senting language operations is shown on Figure 3.12. This structural model
is bytecode-based. It does not encode as much information as an AST does,
e.g., it is not possible to extract, from an IRSend, the instructions that corre-
spond to the arguments of the send. This is a limitation of bytecode-based
transformation as opposed to AST-based transformation.

When sending an instrumentation message (i.e., instrument:,
instrumentSend:) reification of instructions are built, as instances of
the appropriate class in the hierarchy, and passed to the instrumentation
block. The instrumentation block can then introspect and change them. For
instance, the following piece of code prints the selector of each message
send occurring within Example>>#aMethod:

(Example>>#aMethod) instrumentSend: [:send |
Transcript show: send selector printString; cr]

2The isXXX methods (e.g., isSend) are provided as a convenience to avoid the use of visitors
and double dispatch.

32 Unanticipated Partial Behavioral Reflection

isInstVarAccess

IRInstVarAccess

isInstVarWrite
IRInstVarWrite

isInstVarRead
IRInstVarRead

isTempAccess

IRTempAccess

isTempWrite
IRTempWrite
isTempRead
IRTempRead

isSend
selector
IRSend

isSuperSend
IRSuperSend

isConstantAccess
constant
IRConstantAccess

isAccess
name

offset
IRAccess

isAccess
IsInstVarAccess
isInstVarRead
isInstVarWrite
isTempAccess
isTempRead
isTempWrite
isSend
isSuperSend
isConstantAccess
method

IRInstruction

Figure 3.1: Structural model of instructions in BYTESURGEON.

Method Evaluation. A peculiar language operation is message receive (the
callee-side equivalent of a message send). Actually, a message receive
is realized by two operations: method lookup and method evaluation.
Since we are working at the bytecode level, we do not have access to
method lookup, only method evaluation. Rather than corresponding to a
bytecode instruction inside a method body, method evaluation corresponds
to a method body as a whole. Since BYTESURGEON treats all language
operations in a uniform manner, methods have the same introspection and
intercession interface as instructions.

Modifying Method Bodies

BYTESURGEON supports two ways of modifying method bodies: a
bytecode-level manner, where the user directly specifies the required trans-
formation in terms of bytecode representations, and a source-level manner,
where the transformation is specified with a string of source code. We
hereby only present the source-level API. The bytecode-level API is briefly
mentioned in Section 3.2.4.

Similar to Javassist [30], BYTESURGEON provides an online compiler
that makes it possible to specify code to be inserted as a string. The methods
to insert code before, after and instead of an occurrence of a language oper-
ation are named respectively insertBefore:, insertAfter: and replace:. They take
as argument the source code as a string, which is subsequently compiled by

BYTESURGEON: Bytecode Transformation 33

the BYTESURGEON compiler, and the resulting code is inserted at the appro-
priate position. For instance, the following code inserts a call to the system
beeper before each message send occurring within Example#>>aMethod:

(Example>>#aMethod) instrumentSend: [:send | send insertBefore: 'Beeper beep']

The code string can contain any valid Smalltalk code3, plus two kinds
of special variables: user-defined variables to refer to statically-available
information, and meta-variables for runtime information.

Accessing Static Information: User-defined Variables

Statically-known information about an instruction can be used in the con-
struction of the string. For instance, the following example records the
name of selector of each message send occurring at runtime:

(Example>>#aMethod) instrumentSend: [:send |
send insertAfter: 'Logger logSend:' , send selector printString]

Here we query the objects describing the message send operations for
the name of the message sent. To ease the construction of the string and
avoid hard-to-understand string concatenation, BYTESURGEON makes it
possible to define custom variables with the syntax <: #variable>, and
giving a list of associations from variable names to object references4:

(Example>>#aMethod) instrumentSend: [:send |
send insertAfter: 'Logger logSend: <: #sel >' using: { #sel --> send selector }].

Accessing Runtime Information: Meta-variables

The online compiler of BYTESURGEON also supports a number of prede-
fined meta-variables that refer to information available at runtime, such as
the receiver of a message send (Figure 3.2). Meta-variables are an essential
part of the expressiveness of a good bytecode transformation framework.
The exact set of available meta-variables depends on both the operation se-
lected —in the case of a message send, meta-variables are provided to refer
to the sender, the receiver and the arguments— and the transformation to
perform —when inserting after, it is possible to access the result—. Meta-
variables are denoted by the <meta: #variable> construct. For instance,

3self, super and thisContext have their usual meaning, knowing that this code will be evaluated
in the place where it is inserted.

4This is a limited sort of quasi-quoting a la Scheme; supporting true quasi-quoting (with
no needs to specify manually the associations) is left as future work.

34 Unanticipated Partial Behavioral Reflection

Operation Meta-variable Description
Message Send/ <meta: #arguments> arguments as an array

Method Evaluation <meta: #argX> Xthargument
<meta: #sender> sender object
<meta: #receiver> receiver object
<meta: #result> returned result (after only)

Temp/InstVar Access <meta: #value> value of variable
<meta: #newvalue> new value (write only)

Figure 3.2: Meta-variables supported by BYTESURGEON.

the following code replaces each message send with a call to a dispatcher
meta-object in charge of the actual method lookup [56, 48]:

(Example>>#aMethod) instrumentSend: [:send |
send replace: 'CustomDispatcher send: <: #selSymbol> to: <:meta: #receiver> with:

<:meta: #arguments>'
using: { #selSymbol --> send selector printString }].

The BYTESURGEON compiler takes care of generating the code to ac-
cess the runtime information denoted by the meta-variables, by adding a
preamble before the inlined code. The runtime overhead due to preambles
motivated us to maintain a special syntax for meta-variables (meta), to raise
the attention of users that these variables should be used conscientiously.

Altering Method Evaluation. To support transformation of method eval-
uation, method objects also support the insertBefore:, insertAfter: and replace:
messages. As an example, the following code inserts a trace before each
evaluation of a method in class Example:

Example instrumentMethods: [:m |
m insertBefore: 'Logger logExec: <: #sel > ' using: { #sel --> m selector}]

The meta-variables for method evaluation are the same as for message
sending (see Figure 3.2). The following example uses a meta-variable to
access the method evaluation result:

Example instrumentMethods:
[:m | m insertAfter: 'Logger logExec: <: #sel > result: <meta: #result>'

using: { #sel --> m selector]

BYTESURGEON: Bytecode Transformation 35

3.2.4 Inside BYTESURGEON

We now give an overview of the implementation of BYTESURGEON, in
particular the relationship to the closure compiler and the transformation
process. The low-level transformation API is also discussed.

Squeak

BYTESURGEON is currently implemented in Squeak [82], an open source
implementation of Smalltalk-80 [62]. Squeak is based on a virtual machine
that interprets bytecodes. During a normal compilation phase, method
source code is scanned and parsed, an abstract syntax tree (AST) is created
and bytecodes are generated for the corresponding methods (Figure 3.3).

Code
Generator

Scanner/
Parser

source text bytecodeAST

Figure 3.3: The standard Smalltalk compiler.

To implement BYTESURGEON in Squeak we could have directly worked
at the level of bytecode. However, rewriting bytecode is tedious and error-
prone for several reasons: the bytecode vocabulary is low-level, jumps have
to be calculated by hand, and the expression of the context where bytecodes
should be inserted is limited. Even simple modifications are surprisingly
tedious to manage. Fortunately, a new compiler for Squeak, the closure
compiler [72], has been recently proposed which offers a better intermediate
bytecode representation.

The Closure Compiler and its Intermediate Representation

The closure compiler relies on a more sophisticated bytecode generation
step (Figure 3.4): first an Intermediate Representation (IR) is created; then the
IR is used to generate the real bytecode (the raw numbers).

The IR is a high-level representation of bytecode, abstracting away
specific details: jumps are encoded in a graph structure, sequences of
bytecode-nodes form a basic block, and jump-bytecodes concatenate these
blocks to encode control flow. The main goal of IR is to abstract from specific
bytecode encodings: for instance, although the bytecode for a program in
Squeak is encoded differently than in VisualWorks, their IR is identical.

36 Unanticipated Partial Behavioral Reflection

IRTranslatorASTranslator
AST bytecodeIRScanner/

Parser

source text

Code Generator

Figure 3.4: The closure compiler.

Using IR therefore makes the porting to other bytecode sets simple.

The closure compiler has a counterpart, the decompiler, which converts
bytecode back to text. Here, the whole process works backwards: from
bytecode to IR, from IR to AST, and finally from AST to text.

As motivated in Section 3.2.2, BYTESURGEON ought to offer adequate
abstractions for both bytecode-level and source-level transformations. The
IR of the closure compiler actually represents an excellent alternative for
working at the bytecode level: it makes it possible to express code that is
not directly obtainable from Smalltalk source code, while abstracting away
many details.

All classes reifying instructions (recall Figure 3.1) are from the clo-
sure compiler IR. The low-level transformation API of BYTESURGEON is
based on these classes. In addition to the classes reifying instructions
which correspond to language operations, the IR includes classes reifying
bytecode-only instructions: IRPop, IRDup, IRJump, IRReturn, etc.

Low-level Transformation API

We have used the high-level API of BYTESURGEON to specify transforma-
tions giving a string of source code, which may contain meta-variables
to access dynamic information. The description of the new code to be
inlined can also be done by directly editing the instruction objects for the IR
hierarchy. In the following example, the selector of all sends of the message
oldMessage:with: are replaced by sends of the message newMessage:with:, by
using the selector: accessor of an IRSend object:

(Example>>#aMeth) instrumentSend: [:send | send selector = #oldMessage:with:
ifTrue: [send selector: #newMessage:with:]].

The IRInstruction class can also be used as a factory to produce new
objects describing bytecode. These objects can be used in replacement
of the original instruction or be inlined before or after it. An alternative
implementation of the code above is:

BYTESURGEON: Bytecode Transformation 37

(Example>>#aMeth) instrumentSend: [:send | send selector = #oldMessage:with:
ifTrue: [send replace: (IRInstruction send: #newMessage:with:)]].

This implementation replaces the message send bytecode by a new one
having a different selector. IRInstruction send: #newMessage:with: returns an
object that describes a message send bytecode.

Specifying the transformation at the bytecode-level makes it possible
to directly manipulate bytecode instructions and to easily specify transfor-
mations that are more complex to express with the source-level API. For
instance, using the source-level API to change the selector of a message
send, as done above, is done as follows:

(Example>>#aMeth) instrumentSend: [:send | send selector = #oldMessage:with:
ifTrue: [send replace: '<meta: #receiver> perform: #newMessage:with:

with: <meta: #arguments> ']].

Apart from being slightly more verbose and relying on the use of the
reflective message sending perform:with:, this approach requires the use of
meta-variables, which are more costly due to the associated preambles that
needs to be generated. Conversely, the low-level API makes it possible to
do this transformation directly, without requiring runtime reification.

Implementation of Meta-variables

When BYTESURGEON instruments a method, the bytecode-to-IR part of the
closure compiler generates the IR objects that are passed to the instrumen-
tation block specified by the user. If the source-level API is used, then the
code to be inserted is preprocessed to generate the IR nodes and to handle
the meta-variables, if any. For meta-variables, a preamble code is generated
to ensure that the expected values will be on the stack. Then, the preamble
and code are inserted into the IR of the method. Finally, the IR-to-bytecode
part of the closure compiler generates raw bytecodes and replaces the old
method with the new, transformed version.

In the following we explain the implementation of meta-variables which
reify runtime information. Let us consider the reification of the receiver of
a message send.

Preambles. Squeak uses a stack-based bytecode, so all arguments for a
message send are pushed on the stack before the send bytecode is executed:
first the receiver, and then the arguments. For instance, the bytecode for
the expression 3 + 4 is as follows:

pushConstant: 3
pushConstant: 4

38 Unanticipated Partial Behavioral Reflection

send: +
returnTop

Consider that we now want to provide access to the receiver (3) via a
meta-variable:

(Example>>#method) instrumentSend: [:send |
send insertBefore: 'Transcript show: <meta: #receiver> asString'].

We want to inline code that accesses meta-variables, for example we
want to log the receiver of a message send. In the above case, it is clear
that the object 3 is the receiver of the send. So one might think that we can
statically transform the code. But this is not possible in general: the receiver
itself could be the result of another expression, as for example in 1+2+3.

pushConstant: 1
pushConstant: 2
send: +
pushConstant: 4
send: +
returnTop

To be able to statically transform the code, we would need to decompile
it from the bytecode representation back into an AST like form that models
the expression as a tree. As this defeats the purpose of bytecode transforma-
tion, what is done is that we accept the fact that we only know the layout
of the stack at runtime at any bytecode instruction. To make meta-variables
available, we add code before the to-be-inlined code, the preamble, that
stores this data in temporary variables. The temporary variables then can
be easily accesses from within the inlined code.

To sum up, when we need to access any special data, like the receiver,
we take advantage of our knowledge of the stack layout at that point:
We need to add bytecode to store the necessary values, by popping them
from the stack and storing them in additional temporary variables. In our
example, we need the receiver. Since the receiver is deep in the stack, below
the arguments, we also need to store the arguments in temporary variables,
to be able to access them afterwards. In the case of before/after, it is also
necessary to rebuild the stack.

The resulting bytecode for our example is as follows:

pushConstant: 3
pushConstant: 4
popIntoTemp: 0 "put argument in temp 0"
popIntoTemp: 1 "put receiver in temp 1"
pushLit: ##Transcript "start of inserted code"

BYTESURGEON: Bytecode Transformation 39

pushTemp: 1 "push receiver for printing"
send: asString
send: show:
pop "end of inserted code"
pushTemp: 1 "rebuild the stack"
pushTemp: 0
send: + "original code"
returnTop

To access all arguments as an array, the compiler generates code to
create the array instance, to add arguments to it, and to store the array in a
temporary variable.

For performance and space reasons, preamble generation needs to be
optimized. First, the compiler only generates code for the meta-variables
that are effectively used in the inlined code. For instance, if access to the
arguments is not needed, then the array creation is avoided. The second
important optimization is to reuse temporary variables. Indeed, there are
potentially many operations for which we need to generate a preamble, in
a single method. If we used new temporary variables for each, we would
soon run out of temporary variable space (Squeak imposes a limit of 256
temporary variables per method). Therefore, BYTESURGEON remembers
the original number of temporary variables and reuses the variables added
for each preamble. This information is saved inside the compiled method
object, so that reuse of variables works even if instrument: is executed several
times on the same method.

Inlining code. Once the preamble is added, the code to inline can be in-
serted. First, the BYTESURGEON compiler generates the IR for the new code.
For meta-variables, the compiler generates code that loads the correspond-
ing temporary variables. The generated IR instructions are then added to
the original IR of the method. If necessary, jump targets are adjusted and
basic blocks renumbered. The new method IR is then given to the closure
compiler, which generates the final raw bytecodes and installs the new
method.

3.2.5 Validation

We now validate the interest of BYTESURGEON by showing how easy it is to
implement two language extensions: method wrappers [24] and a simple
runtime MOP for controlling accesses to instance variables. We complete
this validation by reporting on performance measurements.

40 Unanticipated Partial Behavioral Reflection

Method Wrappers

Method wrappers [24] wrap a method with before/after behavior. Wrap-
ping a method is implemented by swapping out the compiled method by
another one, valueWithReceiver:arguments: that calls the before method, then
the original method, and finally the after method:

MethodWrapper>>valueWithReceiver: anObject arguments: args
self beforeMethod.
^ [clientMethod valueWithReceiver: anObject arguments: args]

ensure: [self afterMethod]

The BSMethodWrapper class contains the logic to install an instance of
itself as a method wrapper, with empty before/after methods.

To define a wrapper, a subclass should be created, specifying the be-
fore/after methods. For instance, class CountingMethodWrapper wraps a
method to count invocation of calls to a given method:

BSMethodWrapper subclass: #CountingMethodWrapper
instanceVariableNames: 'count'...

CountingMethodWrapper >> beforeMethod
self count: self count + 1

To count the invocations on a method, we install the wrapper:

wrapper := CountingMethodWrapper on: #aMethod inClass: Example.
wrapper install.

The installation of a method wrapper consists in first decompiling the
before/after methods to IR (ir), stripping the return at the end (strip), then
replacing all self references to refer to the wrapper (replaceSelf:), and finally
inlining the before/after methods (insertBefore:after:):

BSMethodWrapper>>inlineBeforeAfter
| before after |
before := (self class lookupSelector: #beforeMethod) ir strip.
after := (self class lookupSelector: #afterMethod) ir strip.

self replaceSelf: before. self replaceSelf: after.
self method insertBefore: before startSequence after: after startSequence.

BSMethodWrapper>>replaceSelf: ir "replace self with pointer to me"
^ ir allInstructions do: [:instr | instr isSelf ifTrue: [

instr replaceWith: (IRInstruction pushLiteral: self)]].

BYTESURGEON: Bytecode Transformation 41

As we can see, method wrappers are straightforward to implement with
BYTESURGEON. The complete implementation included in the distribution
consists of 41 lines of code, with comments. This implementation of method
wrapper should only serve as an example of use of BYTESURGEON; it is not
meant to be a replacement yet since not all features of method wrappers are
supported. Furthermore, standard method wrappers and BYTESURGEON
method wrappers have different performance profiles.

A Simple Runtime MOP

We now show how to implement a simple runtime MOP for controlling ac-
cesses to instance variables. A meta-object can be associated to a class, and
upon accesses to instance variables of objects of the class, it gets control via
either its instVarRead:in: method (if it is a read access) or its instVarWrite:in:value:
method (if it is a write access). For instance, the following TraceMO simply
outputs to the transcript what is happening and then performs the standard
action, i.e., returning the instance variable value, or storing the new value:

TraceMO>>instVarRead: name in: object
| val |
val := object instVarNamed: name.
Transcript show: 'var read: ', val printString; cr.
^val.

TraceMO>>instVarStore: name in: object value: newVal
Transcript show: 'var store: ', newVal printString; cr.
^object instVarNamed: name put: newVal.

This meta-object can be installed on class Point as follows:

MOP install: TraceMO new on: Point

The MOP»install method uses BYTESURGEON to replace the bytecodes
that read or store instance variables with calls to the meta-object (aka.
hooks):

MOP class >> install: mop on: aClass
| dict |
dict := Dictionary newFrom: {#mo --> mop}.
aClass instrumentInstVarAccess: [:instr |

dict at: #name put: instr varname.
instr isRead

ifTrue: [instr replace: '<: #mo> instVarRead: <meta: #name> in: self' using: dict]
ifFalse: [instr replace: '<: #mo> instVarStore: <:meta #name> in: self

value: <meta: #newvalue>' using: dict]].

42 Unanticipated Partial Behavioral Reflection

The dict dictionary is used to hold the reference to the meta-object con-
trolling accesses, and for each access instruction, the name of the variable
is put in it. This makes it possible to use user-defined variables when
specifying the transformation.

Furthermore, since BYTESURGEON supports runtime bytecode manipu-
lation, we are able to completely uninstall hooks when needed:

MOP uninstall: MOExample.

Of course, this simple MOP is not complete: if methods are changed
(recompiled), the MOP is removed, there is no way to compose multiple
meta-objects on the same class, it is not possible to associate different meta-
objects to different instances, etc. But the basic features are there: a MOP
for instance variable accesses that can be installed and retracted at runtime
and completely implemented in less than 10 lines.

Benchmarks

We now report on several preliminary benchmarks5 we have performed to
evaluate the efficiency of BYTESURGEON. First, we report on transformation
vs. compilation costs, and then study the performance of the standard
implementation of method wrappers with that based on BYTESURGEON.

Transformation performance. One of the reasons for working on bytecode
instead of source is performance. We have carried out a simple set of
benchmarks, in which we compare the time to compile some code with both
the standard compiler of Squeak and the new compiler (closure compiler),
and the time taken by BYTESURGEON to transform all instructions in the
code with an empty block. Hence what we actually measure for BYTE-
SURGEON is the time it takes to decompile methods to IR, execute the block
for each instruction (which does nothing), generate a new identical method
and install it.

The first benchmark is applied to the Object class:

"Test compilers"
[Object compileAll] timeToRun

"Test ByteSurgeon"
[Object instrument: [:inst | self]] timeToRun

Class Object contains 461 methods, amounting to 2468 lines of code.
We did the same experiment on a larger code base: the whole hierarchy

5Machine used: Apple MacBook Pro, 2.4Ghz, Squeak 3.9

BYTESURGEON: Bytecode Transformation 43

Object Collections
time (ms) factor time (ms) factor

BYTESURGEON 292 1 2264 1
standard compiler 563 1.92 3940 1.74
closure compiler 1924 6.59 16267 7.19

Figure 3.5: Comparing compilation and transformation times.

of collection classes. This hierarchy consists of 79 classes, 2277 methods,
summing up to 16122 lines of code. The benchmark is run as:

"Test compilers"
[Collection allSubclasses do: [:c | c compileAll]] timeToRun

"Test ByteSurgeon"
[Collection allSubclasses do: [:c | c instrument: [:inst | self]]] timeToRun

The results of both benchmarks are presented in Figure 3.5. As ex-
pected, BYTESURGEON performs very well. The highly optimized standard
compiler is approximately twice as slow as BYTESURGEON, while the new
compiler, which is much easier to reuse and extend but less optimized, is
around 6 times slower. As the new compiler and BYTESURGEON share the
same code generator (the IR subsystem), this shows that decompiling from
bytecode to IR is indeed faster than compiling source-code to the same IR.

Method wrapper performance. We now compare the performance of the
standard implementation of method wrappers with that based on BYTE-
SURGEON. We compare both installation (transformation) time and execu-
tion time.

The test consists of a simple before/after counter manipulation wrap-
ping a straightforward method:

Bench>>run beforeMethod afterMethod
^ 3+4. BCounter inc BCounter inc

The benchmark of the installation/uninstallation is run as follows:

[10000 timesRepeat: [
w := TestMethodWrapper on: #run inClass: Bench.
w install. w uninstall]] timeToRun

The runtime performance of both implementations is compared to that
of a method that directly implements the wrapper:

44 Unanticipated Partial Behavioral Reflection

Method Wrapper Installation Runtime
implementation time (ms) factor time (ms) factor

Hancoded - - 10161 1
Standard 1102 1.0 28443 2.8

BYTESURGEON 13835 12.55 10305 1.01

Figure 3.6: Comparing installation and runtime performance of method
wrapper implementations.

Bench>>run
BCounter inc.

^ [3+4] ensure: [BCounter inc].

The benchmark for both cases is run as follows:

GPCounter reset.
b := Bench new.
[10000000 timesRepeat: [b run]] timeToRun

The results of the benchmarks (Figure 3.6) show that BYTESURGEON
is slower for installing wrappers. This was expected because method
wrappers simply swap the wrapped compiled method with the wrapper
one, while BYTESURGEON actually modifies the original method. The other
side of the coin is that BYTESURGEON-based method wrappers are more
efficient at runtime. Standard method wrappers are 2.8 times slower than
the hand-coded version, while the BYTESURGEON implementation is as
fast as the hand-coded version.

3.2.6 Conclusion

This section has presented BYTESURGEON, a framework for transforming
bytecode at runtime realized in Smalltalk. We have shown the power of this
framework by realizing method-wrappers and a small MOP. We presented
benchmarks to show that the system is practically usable.

The next step now will be to realize unanticipated partial behavioral re-
flection using BYTESURGEON as the underlying mechanism for bytecode
manipulation.

GEPPETTO: Unanticipated Partial Behavioral Reflection 45

3.3 GEPPETTO: Unanticipated Partial Behavioral
Reflection

Now that we can insert new code easily at any place in our program
at runtime using the bytecode transformation framework, we can realize
unanticipated partial behavioral reflection.

3.3.1 Running Example

Let us consider a collaborative website (a Wiki), implemented using the
Seaside web framework [50, 110]. When under high load, the system suffers
from a performance problem. Suppose users are reporting unacceptable
response times. As providers of the system, our goal is to find the source
of this performance problem and then fix it. First, we want to get some
knowledge about possible bottlenecks by determining which methods
consume the most execution time. A simple profiler shall be applied to
our Wiki application, but it is not possible to shutdown the server to install
this profiler. During profiling our users should still be able to use the
Wiki system as usual. Furthermore, once all the necessary information is
gathered, the profiler should be removed entirely from the system, again
without being forced to halt the Wiki. We have also the strict requirement to
profile the application in its production environment and context, because
unfortunately the performance bottleneck does not seem to occur in a test
installation.

To profile method execution we use simple reflective functionalities. We
just need to know the name and arguments of the method being executed,
the time when this execution started and the time when it finished to gather
statistical data, showing which methods consume the most execution time.
During the analysis of the execution time of the different methods we see
that some very slow methods can be optimized by using a simple caching
mechanism. We then decide to dynamically introduce a cache for these
expensive calculations in order to solve our performance problem.

As we see in this simple but realistic example, the ability to use reflec-
tion is of wide interest for systems that cannot be halted but nonetheless
require reflective behavior temporarily or permanently. Furthermore, this
example proves that an approach to reflection has to fulfill two important
requirements to be applicable in such a situation: first, the reflective ar-
chitecture has to allow unanticipated installation and removal of reflective
behavior into an application at runtime. A web application or any other
server-based application can often not be stopped and restarted to install
new functionality. Moreover, the use of reflection cannot be anticipated

46 Unanticipated Partial Behavioral Reflection

before the application is started, hence a preparation of the application to
support the reflective behavior that we may want to use later is not a valid
alternative here. So the reflective mechanisms have to be inserted in an
unanticipated manner. Second, in order to be able to use reflection in a
durable manner (e.g., for caching) in a real-world situation, the reflective
architecture has to be efficient. This motivates the need for partial reflection
allowing the programmer to precisely choose the places where reflection is
really required and hence minimizing the costs for reflection by reducing
the amount of costly reifications occurring at runtime. To sum up, this
example requires unanticipated partial behavioral reflection to be solved.

Partial Behavioral Reflection in a Nutshell

GEPPETTO adopts the model of partial behavioral reflection (PBR) presented
in [128], which we hereby briefly summarize. This model consists of explicit
links binding hooksets to meta-objects (Figure 3.7).

hookset

meta-object

activation
condition

links

x
x x x

x

xx

x

Figure 3.7: Links are explicit entities bindings hooksets (at the base level)
to meta-objects, possibly subject to activation conditions.

A hookset identifies a set of related operation occurrences of interest, at
the base level. A meta-object is a standard object that is delegated control
over a partial reification of an operation occurrence at runtime. A link
specifies the causal connection between a hookset (base level) and a meta-
object (meta-level). When occurrences of operations are matched by its
hookset, the link invokes a method on the associated meta-object, passing
it pieces of reified information. Exactly which method is called, and which
pieces of information are passed, is specified in the link itself. So, the link
specifies the expected meta-object protocol, and the meta-object can be any
object fulfilling this protocol.

Several other attributes further characterize a link, such as the control

GEPPETTO: Unanticipated Partial Behavioral Reflection 47

that is given to the meta-object (i.e., that of acting before, after, or around
the intercepted operation occurrence). A dynamically-evaluated activation
condition can also be attached to the link, in order to determine if a link
applies or not depending on any dynamically-computable criteria (e.g.,
the amount of free memory or the precise class of the currently-executing
object).

As mentioned earlier, PBR achieves two main goals: (1) highly-selective
reification, both spatial (which occurrences of which operation) and tempo-
ral (thanks to activation conditions), and (2) flexible meta-level engineering
thanks to fine-grained protocol specification and the fact that a hookset
can gather heterogeneous execution points (i.e., occurrences of different
operations in different entities).

The following short example illustrates the above definitions. Recall
the slow collaborative website mentioned in section 3.3.1. To profile this
application we dynamically introduce a profiler with GEPPETTO, analyz-
ing the method #toughWork which we suspect of being responsible for the
performance issues.

First, we select this method by defining a hookset. This hookset also
selects the operation to be reified, in this case the evaluation of the method
#toughWork:

toughWorks := Hookset inClass: 'WikiCore' inMethod: #toughWork.
toughWorks operation: MethodEval.

Second, we specify the link which bridges the gap between the base
level (i.e., method #toughWork) and the meta-level (i.e., the meta-object, an
instance of class Profiler). The link also describes the call to the meta-object,
i.e., which method to invoke on the meta-object, specified by passing a
meta-level selector.

profiler := Link id: #profiler hookset: toughWorks metaobject: Profiler new.
profiler control: Control around.
profiler metalevelSelector: #profile:.

After having installed this link by executing profiler install the method
#profile: of the meta-object will be executed on every call to method #tough-
Work of class WikiCore. The developer can provide an arbitrarily complex
implementation of the profiler meta-object. The next section shows a more
elaborated version of this profiling example.

48 Unanticipated Partial Behavioral Reflection

3.3.2 Solving the Running Example with GEPPETTO

To illustrate the use of GEPPETTO, we now explain how to solve the problem
introduced in Section 3.3.1. In order to find out where the performance
issue comes from, we start by elaborating a meta-object protocol to profile
the Wiki application. Once we have identified the costly methods that can
be cached, we introduce a caching mechanism with GEPPETTO.

Profiling MOP

Defining and introducing dynamically reflective behavior into an applica-
tion consists of three steps: The first step is the specification of the places
where metabehavior is required (e.g., in which classes and methods, for
which objects) by configuring a hookset. In the second step the definition
of the meta-object protocol (e.g., which data is passed to which meta-object)
is specified by setting up one or more links. Third and finally, we perform
the installation of the defined reflective functionality.

For profiling method execution of our Wiki application, we need to
define a link, binding the appropriate hookset to a Profiler meta-object. The
hookset consists of all method evalution occurrences in all classes of the
Wiki application. Hence the hookset is defined as follows:

allExecs := Hookset new.
allExecs inPackage: 'Wiki'; operation: MethodEval.

All classes of the Wiki package are of interest, and any occurrences of a
method evaluation as well.

Now we have to specify which method of the meta-object has to be
called, and when. In order to be able to determine the execution time of a
method, the profiler acts around method evaluations, recording the time at
which execution starts and ends, and computing the execution time. The
link, called profiler, knows the meta-object to invoke, an instance of class
Profiler:

profiler := Link id: #profiler hookset: allExecs metaobject: Profiler new.
profiler control: Control around.

The profiler therefore needs to receive as parameters the selector be-
ing sent, the class to which the method being evaluated belongs and
the arguments. The method to call on the profiler object is thus pro-
fileMethod:inClass:withArguments:. This protocol is described by sending the
following message to the profile link:

GEPPETTO: Unanticipated Partial Behavioral Reflection 49

x
x

x

xx

x

x

x

x

x

x
x

x
x

x x

x
x x x

xx

x
x

x x

x

x
x

Profiler meta-object

#profiler link

Wiki package

hookset

Figure 3.8: The profiler hookset affects the whole Wiki application.

profiler metalevelSelector: #profileMethod:inClass:withArguments:
parameters: {Parameter selector. Parameter methodClass. Parameter
arguments}
passingMode: PassingMode plain.

The class Parameter is used to describe exactly which information should
be reified and how to pass it to the meta-level. See Section 3.3.3 for more
information.

Profiler is a conventional Smalltalk class, whose instances are in charge
of handling the task of profiling. For the sake of conciseness, we do not
explain the implementation of such a profiler. Finally, to effectively install
the link, we just need to execute:

profiler install.

and GEPPETTO inserts all required hooks. From now on, all method execu-
tions in the Wiki application get reified and the Profiler meta-object starts
gathering data.

To better understand how the installed meta behavior changes the
execution of the Wiki application we present a sequence diagram depicting
the execution flow on the basis of a small example. This diagram shows
how the control flows from the main method (this code example) over the
base level (the Wiki application code) to the meta-level (the profiler object).

"editing a page"
page := WikiModel at: pageName.
page title: newTitle.

50 Unanticipated Partial Behavioral Reflection

doc := DocumentParser parse: wikiText.
page document: doc.

main base level meta-level

WikiModel>>at:

WikiPage>>title:

DocumentParser>>parse:

WikiPage>>document:

page := WikiModel at: pageName

page title: newTitle

doc := DocumentParser parse: wikiText

page document: doc

Figure 3.9: Execution flow in the Wiki during the editing of a page when
the profiler is installed

Now suppose that based on the gathered data, we determine that a
particular method is indeed taking much time: #visitPage: of our Wiki
Visitor objects. This method is responsible for building up recursively all
the HTML code of a wiki page. It fortunately happens that this method
can seemingly benefit from a simple caching mechanism. We can now
completely remove the profiling functionality from the Wiki, reverting
to normal execution, without any reification occurring anymore. This is
achieved simply by executing:

profiler uninstall.

GEPPETTO then dynamically removes all hooks from the application code,
hence further execution is not subject to any performance overhead.

As we use BYTESURGEON to do the actual modification to the system
(see Section 3.3.4), all change is done at the granularity of a single method.
All existing, running executions continue to execute the old code, only new
invocations are using the changed code after the method is installed. The

GEPPETTO: Unanticipated Partial Behavioral Reflection 51

introduction of links thus is atomic on a per-method basis. The clients of the
framework have to take this into account. Code executing in a concurrent
thread to the one setting the links will not see all links of the hookset
introduced in one atomic step, but one-by-one at method granularity. In
practice, this has not yet lead to problems. Nevertheless, advanced control
of which part of the system is affected by such reflective change and the
ability to do large scale change in one atomic, transactional step is an
interesting question for future research.

Caching MOP

We now explain how the caching functionality is dynamically added with
GEPPETTO. First, we define the hookset and then the link:

toughWorks := Hookset new.
toughWorks inClass: Structure inMethod: #visitPage: operation: MethodEval.

cache := Link id: #cache hookset: toughWorks metaobject: Cache new.
cache control: Control around.
cache metalevelSelector: #cacheFor:

parameters: {Parameter arg1}
passingMode: PassingMode plain.

The only piece of information that is reified is the first argument passed
to the #visitPage: method, which is the page being visited, denoted with
Parameter arg1.

x

Cache meta-object

#cache link

Wiki package

hookset

method #visitPage:

Figure 3.10: The cache hookset only affects method #visitPage:.

Cache is a Smalltalk class whose instances manage caching (based on the
single parameter value). In the #cacheFor: method, we first check if the cache
contains a value for the passed argument. If so, this value is returned by
the meta-object. Else, the meta-object proceeds with the replaced operation

52 Unanticipated Partial Behavioral Reflection

Page w/ cache (ms) w/o cache (ms) Optimization

Page 1 29 2758 95x
Page 2 35 8529 244x
Page 3 32 2461 77x

Table 3.1: Effect of the caching meta behavior for rendering one thousand
times the HTML code of three wiki pages.

of the base level, takes the result answered by this operation via #proceed
and returns this value after having stored it into the cache:

cacheFor: aPage
| result |
(self cacheContains: aPage) ifTrue: [^self cacheAt: aPage].
result := self proceed.
self cacheAt: aPage put: result.
^result

In order to be able the to proceed with the original operation the class of
the meta-object has to inherit from the generic class ProceedMO. All instances
of subclasses of ProceedMO are allowed to proceed with replaced operations.

Installing the cache is simply done by executing cache install. GEPPETTO
inserts the necessary hooks in the code, and from then on, all evaluations
of the #visitPage: method are optimized by caching.

The effect of this cache is tremendous. We compare the situation with
and without this cache installed by generating one thousand times the
HTML code of three exemplary wiki pages with complex content such as
links and tables.6 Without the active caching mechanism the HTML code is
completely built up on every single visit to a wiki page, whereas otherwise
the HTML code is taken from the cache. As Table 3.1 shows we achieve an
average optimization of almost factor 140 with an installed cache for the
result of method #visitPage:.

Although this example is pretty straightforward, it illustrates well the
point of UPBR: one can easily add reflective features at runtime, with the
possibility to completely remove them at any time. This fosters incremental
and prototypical resolution of problems such as the one we have illustrated.
For instance, if it turns out that the introduced caching is not effective
enough, it can be uninstalled, and a more elaborate caching can be devised.

6These benchmarks were executed on a MacOS X server with an Intel Core 2 Duo 2.16 GHz
processor and 1 GB of RAM.

GEPPETTO: Unanticipated Partial Behavioral Reflection 53

Persistence MOP

An another issue of our Wiki application is the persistent storage of its data.
Currently, all the data is only stored in the Smalltalk image which is not
really fail-safe: we might lose data when the image crashes. Hence we
want to store the Wiki data persistently in a relational database. To quickly
evaluate if it is possible to use a relational database without having to
change the code, we implement an experimental storage mechanism using
GEPPETTO. This persistence mechanism works simply by transforming
every store access to an instance variable such as title or text in class Page to
write-through the variable’s value into a database. On every read access to
such an instance variable we access transparently the same database to get
the value for the variable from there.

We can easily select every store access to an instance variable in class
Page with the following hookset:

storeHookset := Hookset new.
storeHookset inClass: Page; operation: InstVarAccess.
storeHookset operationSelector: [:varAccess | varAccess isInstVarStore].

We simply specify a hookset affecting the whole Page (e.g., every method
of it) and selecting every instance variable access which is a store (as defined
with the operation selector).

Next we define a link taking the above hookset and specifying the
meta-object and the invocation of it:

storeLink := Link id: #storePersistence hookset: storeHookset
metaobject: DBPersistenceMO new.

storeLink control: Control after.
storeLink metalevelSelector: #storeInstVar:withValue:of:

parameters: {Parameter varName. Parameter varNewValue. Parameter self}
passingMode: PassingMode plain.

We provide a class DBPersistenceMO holding the required behavior to
actually store the content of an instance variable into the database. The
method #storeInstVar:withValue:of: needs to know the name of the instance
variable, the value which is stored into, and the instance of Page in which
the store occurs. With this data, the meta-object is able to store the whole
content of a Wiki page transparently into a database. The code to actually
store the content of an instance variable into a database can be arbitrarily
complex. The meta-object is invoked after the original instance variable
store takes place which means that the Page object has already the cor-
rect value stored in its instance variable when the value is written to the
database.

54 Unanticipated Partial Behavioral Reflection

x

x x

x

x

x x

x
x x

xx x

x

DBPersistence meta-object
#storePersistence link

Wiki package

hookset

#readPersistence link

Figure 3.11: The persistence hookset encloses the whole Wiki application,
but only affects methods containing instance variable accesses (read or
write).

To complete this example we also present the inverse of storing instance
variables into the database, namely fetching the content of an instance
variable directly from the database on every read access.

First, we give the hookset definition:

readHookset := Hookset new.
readHookset inClass: Page; operation: InstVarAccess.
readHookset operationSelector: [:varAccess | varAccess isInstVarRead].

The only difference to the store version of this hookset is that we now
check for an instance variable read in the operation selector.

Second, we give the definition of the link between the readHookset and
the meta-object fetching the value of an instance variable out of a database:

readLink := Link id: #readPersistence hookset: readHookset
metaobject: DBPersistenceMO new.

readLink control: Control around.
readLink metalevelSelector: #readInstVar:of:

parameters: {Parameter varName. Parameter self }
passingMode: PassingMode plain.

As the inverse of the store link, this read link acts around the original
instance variable read access: it replaces the read access entirely and lets the
meta-object insert the value of the instance variable. The meta-object is still
an instance of class DBPersistenceMO, but this time the method #readInstVar:of:
is invoked, expecting the name of the instance variable and the Page object
as parameters. This method will query the database for the correct value of
the given instance variable.

GEPPETTO: Unanticipated Partial Behavioral Reflection 55

This very simple persistence mechanism can already provide us with in-
formation about the efficiency and accuracy of using a relational database as
a backend for our Wiki application. GEPPETTO also allows the programmer
to easily experiment with other persistence mechanisms, e.g., techniques
based on XML.

3.3.3 GEPPETTO Design

Hookset1

Control Scope Activation
Condition

Before

BeforeAfter

After

Around

1 1 1

1

Operation

MethodEval

MsgSend

InstVarAcces

TempAcces

selector
parameters
passingMode

CallDescriptor
1

*

metaobject
Link

Figure 3.12: Class diagram of GEPPETTO design

GEPPETTO instantiates the model of partial behavioral reflection previ-
ously presented, as summarized on Figure 3.12. A link binds a hookset to a
meta-object, and is characterized by several attributes. A hookset specifies
the operation it matches occurrences of, which can be either MethodEval,
MsgSend, InstVarAccess or TempAccess. Hooksets can also be composed as
will be explained later.

Spatial selection of operation occurrences in GEPPETTO can be done in a
number of ways, as shown in Table 3.2. Eventually, occurrences are selected
within method bodies (or boundaries), by applying an operation selector,
i.e., a predicate that can programmatically determine whether a particular
occurrence is of interest or not. Coarser levels of selection are provided
to speedup the selection process. First of all, one can eagerly specify the
operation of which occurrences may be of interest. Furthermore, one can
restrict a hookset to a given package, to a set of classes (using a class selector),
or to a set of methods (using a method selector). Convenience methods are
provided when an enumerative style of specification is preferred.

To select for instance every class in the system whose name contains the
string ’Wiki’ we use this expression:

hookset classSelector: [:class | class name includesSubString: 'Wiki'].

56 Unanticipated Partial Behavioral Reflection

Selection Level Example
Package hookset inPackage: ’Wiki’

Class hookset classSelector: [:class | class superclass = MyClass]
hookset inClasses: { MyClass. YourClass}

Method hookset methodSelector: [:meth | meth selector = #hello]
hookset inMethods: { #hello. #bye}

Operation hookset operation: MsgSend
Occurrence hookset operationSelector: [:send | send selector = #size]

Table 3.2: Spatial Selection in GEPPETTO

A class selector is evaluated for every class existing in the system, a
method selector is evaluated for all methods every selected class provides.
If the above class selector selects the classes WikiPage and WikiFolder then the
following method selector is evaluated for all methods in WikiPage as well
as for all methods in WikiFolder:

hookset methodSelector: [:meth | meth selector = #content].

To enumerate the desired classes and methods directly instead of defin-
ing a to be evaluated predicate, one can simply pass an array of classes or
methods:

hookset classes: {WikiPage. WikiFolder}.
hookset methods: {#content}.

Often it is much easier to enumerate the desired entities directly than
coming up with selectors.

Thus far, hooksets are operation-specific. Like in Reflex, GEPPETTO
supports hookset composition, so a hookset can match occurrences of
different operations. Hooksets can be composed using union, intersection,
and difference.

To get a hookset which is the union of two single hooksets, we write:

unionHookset := CombinedHookset union: hookset1 with: hookset2.

This unionHookset selects all operation occurrences that hookset1 and
hookset2 together select. The other set operations are implemented in meth-
ods called #intersection:with: and #differenceBetween:and: on the class side of
CombinedHookset.

If some hooks of different hooksets conflict with each other, e.g., more
than one hookset affects a particular occurrence of a message send in a

GEPPETTO: Unanticipated Partial Behavioral Reflection 57

given method, then these hooks are automatically composed by GEPPETTO.
In a composed hook every single hook is executed in sequence in the order
of their installation time.

See section 3.3.4 for details about hook composition.

A Link object is created by giving an identifier, the hookset, and by
specifying how the meta-object instance(s) are to be obtained.

link := Link id: #profiler hookset: hs metaobjectCreator: [Profiler new]

The block given for the meta-object creator is evaluated to bootstrap meta-
object references. As a shortcut, one can directly give a meta-object instance,
instead of a block; the given instance will then be shared among entities
affected by the link.

A link is further characterized by several attributes:

• Control defines when the meta-object associated to the link is given
control over an operation occurrence: it can be either Before, After,
BeforeAfter or Around. BeforeAfter means that the meta-object is called
before and after the original operation, whereas Around replaces the
operation. The replaced operation then can be executed by calling pro-
ceed in the meta-object, if this meta-object is an instance of a subclass
of ProceedMO.

• Scope determines the association scheme of a meta-object with respect
to base entities. For instance, if the link has object scope, then each
instance affected by the link has a dedicated meta-object for that link.
The scope can also be class (one meta-object per class), or global (a
unique meta-object for the link).

• an ActivationCondition is a dynamically-evaluated predicate that deter-
mines if a link is active (that is, whether reification and delegation to
the meta-object effectively occurs). A typical usage of an activation
condition is to obtain object-level reifications: the condition can be
used as a discriminator of instances that are affected or not by the
considered link. The predicate defining the activation condition re-
ceives the current object (i.e., the object in which the hook is executed)
as its sole parameter.

• a CallDescriptor defines the communication protocol with the meta-
object. A call descriptor embeds the selector of the message to be sent,
the parameters to pass as well as how they are passed (i.e., as plain
method arguments, packed into an array, or embedded in a wrapper
object). Table 3.3 lists all possible parameters depending on the reified
operation.

58 Unanticipated Partial Behavioral Reflection

Operation Reified Data Description
All Operations context execution context

self the object
control before, after or replace

Message Send/ arguments arguments as an array
Method Evaluation argX Xthargument

sender sender object
senderSelector sender selector
receiver receiver object
selector selector of method
result returned result (after only)

Temp/InstVar Access name name of variable
offset offset of variable
value value of variable
newvalue new value (write only)

Table 3.3: Supported reified information

Meta-objects have to be set differently depending on the scope attribute
of the link. The convenient methods mentioned above, #metaobject: and
#metaobjectCreator:, are valid for global scope where the whole link has either
one meta-object, or every reflective object has its own meta-object instance.
But one can also precisely define which reflective object should have which
meta-object when using object scope. The method #setMetaobject:forObject:
lets us specify which meta-object is valid for which reflective object. Sim-
ilarly one can use method #setMetaobject:forClass: to associate dedicated
meta-objects with reflective classes when using class scope.

To specify a dynamically evaluated activation condition we can either
pass a block holding this condition or implement a subclass of Active. For
complex activation conditions it is recommendable to implement a dedi-
cated class which also enhances the possibilities to reuse the defined condi-
tion later on. To implement such a class-based activation condition, we just
need to override #evaluate: of Active. This method expects as a parameter
the current object in which the hook is being executed. To execute a hook
only if it occurs in a certain object, (i.e., to obtain object-level reification) we
provide a very simple implementation of #evaluate::

ObjectLevelActive >> evaluate: anObject
^anObject = self predefinedObject.

With the following code we inform the link to use this activation condi-

GEPPETTO: Unanticipated Partial Behavioral Reflection 59

tion:

link active: (ObjectLevelActive object: predefinedObject).

To get the same activation predicate using a block we simply write:

link activationCondition: [:object | object = predefinedObject].

The link gets asked by the hook if it is active or not. The link itself
asks the associated activation condition if it evaluates to true for the given
object. If so, the hook is further executed to reify the necessary data and to
finally invoke the meta-object. Otherwise, the hook immediately gives the
execution to the next operation.

To use the call descriptor one can create explicitly an instance of class
CallDescriptor:

callDesc := CallDescriptor selector: #msgSend:
parameters: {Parameter arguments. Parameter receiver}
passingMode: PassingMode array

The call descriptor defines that an array containing the arguments and
the receiver of a message send has to be passed to the method #msgSend: of
the meta-object. We install this call descriptor by invoking the link method
#callDescriptor: and passing the call descriptor object to it.

The link also provides convenience methods to implicitly create the call
descriptor. The following code is equivalent to the above:

link metalevelSelector: #msgSend:
parameters: {Parameter arguments. Parameter receiver}
passingMode: PassingMode array

Finally, for a link to be effective, it has to be dynamically installed by
sending the install message to it. At any time, a link can be uninstalled via
uninstall. Links have identifiers, which can be used to retrieve them from a
global repository at any time (Link get: #linkID).

3.3.4 Implementation Issues

In this section we explain a crucial part of the implementation of GEPPETTO:
the installation of hooks in the bytecode. As explained earlier, we have
to dynamically install hooks at runtime to be able to apply reflection in
an unanticipated manner to a running system. Therefore, we require a
means to manipulate bytecode at runtime. For that purpose we use BYTE-
SURGEON, the framework for runtime manipulation of bytecode presented

60 Unanticipated Partial Behavioral Reflection

in Section 3.2. Using this tool we do not have to work directly with bytecode.
Instead we write our hooks in normal Smalltalk code, which we then pass
to BYTESURGEON. Internally, BYTESURGEON will compile our code to
bytecode and insert the resulting bytecode into compiled methods.

Adapting Method Bytecode

To adapt the bytecode of methods, we first select the method in which
we want to change the bytecode (recall that a method is defined as the
combination of a class and a selector, e.g.,WikiPage#document). Sec-
ond, we instrument this method with one of the instrumentation methods
added by BYTESURGEON to compiled methods, e.g.,#instrumentSends:
or #instrumentInstVars:, to access all the specific operations in a
method, i.e., message sends or instance variables accesses, respectively.
These instrumentation methods expect a block as single argument. In
this block we have access to a block argument which denotes the current
operation occurrence object. For a message send we get access to an in-
stance of IRSend (this is part of the intermediate representation on which
BYTESURGEON is based, see Section 3.2.3).

Below is a short example showing how BYTESURGEON can be used to
insert a simple piece of Smalltalk code into the method #document of class
WikiPage:

(WikiPage>>#document) instrumentSends: [:send |
send selector = #size ifTrue: [send replace: '7']]

In this example we replace every send of the #size message occurring
in the method #document of class WikiPage to simply return the con-
stant 7. This example shows how to access different operations in a method
(operation selection, i.e., message sending) and how to select different oper-
ation occurrences (intra-operation selection; i.e., message sends invoking
#size) in a method.

During the instrumentation of a method the defined block is evaluated
for every such operation in that method. To do intra-operation selection it
is enough to specify a condition in the block, such as asking if the selector
of an IRSend is of interest. Only if this condition is met the corresponding
operation occurrence is adapted, either by replacing it or by inserting code
before or after it. The code to be inserted is written as normal Smalltalk
code directly in a string. In this string we can refer to dynamic information
by using meta-variables, such as <meta: #receiver> or <meta: #arguments>
to reference respectively the receiver or the arguments of a method.

GEPPETTO: Unanticipated Partial Behavioral Reflection 61

Structure of a Hook

In GEPPETTO, hooks are inserted in bytecode to provoke reification and
delegation at runtime, where and when needed. The execution of a hook is
a three-step process:

• It checks if the link is active for the currently-executing object;

• It reifies dynamic information and packs this information as specified
by the call descriptor of the link;

• It performs the actual delegation to the meta-object, by sending the
message specified in the call descriptor, with the corresponding reified
information.

When a link has to be installed, GEPPETTO evaluates the static selectors
(package, class, method, etc.) and then generates an appropriate string of
Smalltalk code based on the specification of the call descriptor of the link.
This string is then compiled and inserted by BYTESURGEON. For instance,
for the cache link of Section 3.3.2, the generated Smalltalk code is:

(<meta: #link> isActiveFor: self)
ifTrue: [<meta: #link> metaobject cacheFor: <meta: #arg1>].

First, the activation condition is checked. Note that the link itself is
available as a meta-variable for BYTESURGEON. If the link is active for the
currently-executing object, then second delegation occurs: the meta-object
is retrieved from the link, and the #cacheFor: message is sent with the first
argument as parameter. Step two and three, reifying dynamic information
and performing the delegation to the meta-object, occurs in one and the
same line of code by defining a message send whose arguments are the
reified information and whose receiver is the meta-object.

The exact string generated depends on the call descriptor defining the
message name, parameters, and passing mode. For instance, if the passing
mode is by array, it is necessary to first build up the array explicitly in the
hook. The generated code also depends on the scope of the link (e.g., if the
link has object scope, then retrieving the meta-object requires passing the
currently-executing object).

The following code denotes the hook code to send a method to the
meta-object when using object scope and array passing mode:

(<meta: #link> metaobjectForObject: self) cacheMsgSend:
(Array with: self with: <meta: #selector>

with: <meta: #receiver> with: <meta: #arguments>)

62 Unanticipated Partial Behavioral Reflection

To cache a message send with a dedicated meta-object for every base
level object in which this message send occurs, we opt for object scope. The
hook hence asks the link for the meta-object associated with the current
executing object. The meta-level message is then sent to the obtained
meta-object. The single argument expected by this message is an array
which is explicitly built up in the hook. To access the different reifications
required, e.g., selector, receiver and arguments, we have again used the
meta-variables of BYTESURGEON.

Note that we optimized the look up of the meta-object by storing it
automatically into an instance variable for the current executing object
when using object scope. Subsequent executions of the same hook or
of another hook occurring in the same object can then simply read the
meta-object from this instance variable which avoids costly look ups of
meta-objects in a dictionary. Meta-objects are only valid for one single
link, hence these meta-object instance variables are specific to a certain
link to make sure that more than one link can affect a given base level
object. A similar optimizing mechanism also exists for class scope where
meta-objects are not stored in instance variables, but in class variables.

The complete hook for the more complex cache example above has the
following structure:

(<meta: #link> isActiveFor: self) ifTrue: [
(<meta: #link> metaobjectForObject: self) cacheMsgSend:

(Array with: self with: <meta: #selector>
with: <meta: #receiver> with: <meta: #arguments>)]

ifFalse: [<meta: #proceed> value]

If the link is not active for the current executing object the original
operation has to be executed as denoted in the false predicate. The proceed
statement continues the execution of the original operation around which
the installed hook acts.

The proceed statement provided by BYTESURGEON is also used for the
resumable meta-objects presented in Section 3.3.2. To be able to proceed
with the original operation in the meta-object GEPPETTO passes the value of
the proceed statement (e.g., a message send or an instance variable access)
to the meta-object. This proceed value is stored in the instance variable
proceed of the meta-object. By sending the message #proceed to a resumable
meta-object, a subclass of ProceedMO, this proceed value is evaluated and
the execution of the original operation is triggered, i.e., proceeded. Note
that only meta-objects that act around a base level operation can proceed
with the original operation.

GEPPETTO: Unanticipated Partial Behavioral Reflection 63

Hook Composition

If more than one hookset is installed in a given application, some hooks of
different hooksets may conflict with each other, for instance if two hooksets
affect the same message send of a given method. GEPPETTO is capable of
detecting and resolving such a conflict automatically at runtime during the
installation of every new link.

Detecting a hook conflict is a two-step process: First, GEPPETTO deter-
mines for every link that is being installed, if another link also manipulates a
given method, i.e., if meta-level behavior is already installed in this method.
GEPPETTO holds a global repository containing all installed links with a list
of the affected classes and methods for each link. Querying this repository
results in a collection of links affecting a given method. Second, GEPPETTO
analyzes every instruction of a method to find out where exactly in the
method body more than one link does install a hook. Concretely, the hook
installer iterates over every instruction of such a method and tests for every
conflicting link if it manipulates the current instruction. The following code
illustrates this:

conflictingLinks do: [:eachLink |
(method ir allInstructionsMatching: eachLink hookset operationSelector) do: [:instr |

"this instruction is manipulated by the given link"
self addLinkToRepository: eachLink forInstr: instr.

].

As soon as the hook installer has detected all the instructions conflicting
with already installed links as described above, it solves the conflict by
collecting first all the hooks manipulating a given instruction. Second, all
these collected hooks are installed in sequence before, after or instead of
the original instruction, depending on the control attribute specified in the
link. The order in the sequence is determined by the installation time of the
conflicting links, the first installed link will be installed first.

Note that there is not always a conflict when two links manipulate
the same instruction of a method. If one link e.g., executes meta-level
behavior before the original instruction and the second one afterwards then
these links do not conflict at this instruction. Hence the conflict detection
algorithm has to take into account the controls of the links.

Finally, note that GEPPETTO adopts a simple automatic composition
strategy; future work may include considering more advanced link com-
position strategies as supported by Reflex [124]. For example, instead of
relying on the order of installation, we want to be able to define the order
of composition explicitly.

64 Unanticipated Partial Behavioral Reflection

System slowdown factor
Geppetto 10.85
Iguana/J 24

MetaclassTalk 20

Table 3.4: Slowdowns of different reflective systems for the reification of
message sends.

3.3.5 Evaluation

We now report on preliminary micro-benchmarks that validate the per-
formance of GEPPETTO by comparing it with other reflective frameworks
and architectures. Subsequently we conduct a more complex benchmark
measuring the efficiency of the profiler we presented in Section 3.3.2 by
comparing the execution of some test suites of the Wiki application with
and without the profiler being installed in the Wiki.

Micro-Benchmarks

For the first micro-benchmark we measure the slowdown of a fully reified
message send over a non-reified message send. In Table 3.4 we compare
the reflective systems Iguana/J [108], and MetaclassTalk [18] to GEPPETTO.
The measurement for Iguana/J was taken from the paper on Iguana/J [108].
For MetaclassTalk and GEPPETTO, we performed the benchmarks on a
Windows PC with an Intel Pentium 4 CPU 3.4 GHz and 3 GB RAM. The
version of MetaclassTalk used was v0.3beta, GEPPETTO was running in
Squeak 3.9. The master’s thesis on GEPPETTO [115] contains more detailed
explanation and the source code of the benchmark.

We are comparing systems to GEPPETTO that do not provide partial
reflection. As previously mentioned, the real performance gain of partial
reflection arises from the fact that we are able to exactly control what to
reify and thus are able to minimize the reification costs. This benchmark
does not cover this use but lets GEPPETTO reify every information about a
message send to be comparable with the other systems. The benchmark
will thus only give an impression of the worst case, i.e., when GEPPETTO is
doing full reification of a message send.

Because Iguana/J uses Java, we cannot directly compare its execution
times with those of GEPPETTO. So we performed such a comparison with
MetaclassTalk, since both GEPPETTO and MetaclassTalk are running in the
same environment. We implemented for the operations message sending

GEPPETTO: Unanticipated Partial Behavioral Reflection 65

MetaclassTalk (ms) GEPPETTO (ms) Speedup

message send 108 46 2.3x
instance variable read 272 92 2.9x

Table 3.5: Speedup of GEPPETTO over MetaclassTalk for reified message
send and instance variable read access.

and instance variable access the same meta-object protocol and the same
behavior at the meta-level in both proposals to be able to compare the result-
ing execution time. The measured execution time includes the reification
as well as the processing of the meta-level behavior. For message sending
we reify the receiver, the selector and the arguments, for instance variable
access the name of the variable and its value. Table 3.5 presents the results
of the benchmark. The Windows PC mentioned above was also used to
execute this benchmark. For both operations, message send and instance
variable access, we reified almost every possible information in GEPPETTO
to get a reliable comparison with MetaclassTalk which does not support
controlling which information should be reified. Hence GEPPETTO will
perform even better than the 2-to-3 times speedup compared with Meta-
classTalk in cases where not all information about an operation occurrence
is required.

The reason why GEPPETTO is so much faster than MetaclassTalk lies in
the approach to message reification. MetaclassTalk wraps every method
(using MethodWrappers [24]) by default to allow all message receives to be
reified even when called from a class not under the control of MetaclassTalk.
GEPPETTO on the other hand does not try to provide reified message recep-
tion in this case, as we requested only a reification of message sending.

Benchmarking the Profiler

We conducted a third benchmark measuring the general slowdown caused
by reflective behavior introduced with GEPPETTO. We go back to the Wiki
example of Section 3.3.2 where we installed a profiler in this application and
compare now the execution times of the Wiki test suite with and without
the profiler being active. The test suite contains 131 unit tests. The profiler
itself acts around every method evaluation in the Wiki parts Structure as
well as Visitor and measures the time required to execute the methods in
these packages by stopping the time before and after the execution of the
methods. The execution of the original method is triggered in the profiler
meta-object by using the proceed statement explained in Section 3.3.2. The
obtained execution time is then stored in a dictionary with the profiled

66 Unanticipated Partial Behavioral Reflection

Test suite # tests w/ profiler (ms) w/o profiler (ms) Slowdown

Structure tests 111 661 76 8.7x
Decoration tests 20 23 8 2.9x

Table 3.6: Overall slowdown caused by the profiler in the meta-level

methods as a key and a collection of measured times as value. As discussed
in Section 3.3.2 we only reify the selector, the arguments and the class to
which the method belongs and pass this information in plain mode to the
profiler.

Table 3.6 contains the results obtained by running the benchmark on
the Wiki server also used in Section 3.3.2 to measure the efficiency of the
caching meta behavior. Clearly, the active profiler causes a slowdown
between factor 3 and 8. Further benchmarks show that more than 50% of
this slowdown is caused by the execution of the profiling code itself, which
means that the reification and the invocation of the meta-object is not as
much responsible for the high costs of this meta-level profiler as the profiler
implementation itself.

These benchmarks indicate that the applied model for partial behavioral
reflection is efficient compared to other models. Hence the combination of
PBR and UBR is indeed fruitful and successful, because UPBR enables us
to use unanticipated reflection in an efficient and effective manner.

3.4 Problems of the Approach

The work shown in this chapter focused on solving just one of the problems
noted for behavioral reflection: unanticipated use. We successfully realized
a system that provides unanticipated partial behavioral reflection in a very
practical manner. We have shown a number of examples and presented
benchmarks.

But not everything is perfect. The use of bytecode transformation proves
to be problematic.

Semantic mismatch. There is first the problem that not all concepts present
in the language have a suitable representation on the level of bytecode.

• Variables in bytecode. We have operation for variable read and write.
But on the level of the bytecode, we only distinguish between tempo-
rary, instance and literal variables. Literal variables represent class,
pool and global variables.

Conclusion and Summary 67

• Block Closures do not have a direct static counterpart in the bytecode.
Instead, there is code that generates blocks at runtime, making it hard
to reflect on them statically.

• Control Structures are optimized to jumps on the level of the bytecode.
Even though the user thinks about ifTrue: as a message send, it it not a
message send on the level of the bytecode and can not be reflected
upon using our framework.

Problem with synthesized elements. Since we use bytecode as our sole
representation, there is a problem: we destroy this representation when
inserting the code to call the meta-objects. After using behavioral reflection,
the structure is changed and it is not possible to distinguish original code
from added code for the links.

There is a possible solution for this: we could build up elaborate struc-
tures to remember which bytecode offset is original and which is generated,
but this will get soon very complicated in practice. The real problem is that
the representation used for structural reflection should not be modified to
realize behavioral reflection. We will see that this problem can be solved
with the help of annotations on a suitable sub-method structural model in
Chapter 5.

Code quality problem due to low level model. We have seen in the section
on BYTESURGEON that the access to runtime information like arguments
and receiver of message sends, needs quite some effort when working on
bytcode.

Bytecode manipulation is always a local change, at the point of a mes-
sage send, we just know that the stack has a certain layout. This information
we can use: we need to store information from the stack in local variables,
then we can use them. Afterwards we have to rebuild the stack again.

These problems are related to the fact that we do not use the right
representation of sub-method structure, with a higher level representation
we can generate optimized code.

3.5 Conclusion and Summary

We have shown how to realize unanticipated partial behavioral reflection.
We first described BYTESURGEON, a bytecode transformation framework
for Smalltalk. We then discussed how to realize partial behavioral reflection
and presented case-studies for its use. Benchmarks validate the practicabil-
ity of our approach.

68 Unanticipated Partial Behavioral Reflection

Nevertheless, there are problems that lead us to abandon this bytecode-
transformation based approach. The next chapter will present sub-method
structural reflection which provides a better basis for realizing partial
behavioral reflection.

Chapter 4

Sub-Method Reflection

4.1 Introduction

Now we describe sub-method structural reflection. We analyze the prob-
lems of finding a suitable model for structural reflection that does not stop
at the method level. We describe how to realize this model in a normal
bytecode-based environment and present examples of systems realized
using sub-method reflection. We discuss performance and memory con-
sumption. The chapter closes with an overview of related work.

4.2 Challenges for Supporting Sub-Method Re-
flection

To support the implementation of different tools such as a code browser, a
code coverage tool or a refactoring engine, we need a representation that is
extensible, it should allow tools to annotate the structural elements with
metadata and the use of metadata for communication between different
tools. The representation should be persistent: no re-generation should
be required for every tool. We need a high-level model of the method
that supports powerful code transformation. Finally, the representation
should be causally connected: changing the representation should change
the system with no need of explicitly calling a compiler.

Most of the time, modern OO languages provide two representations
for the method level: the text that the programmer typed, and bytecode,
the language that the virtual machine interprets. Internally, tools that

70 Sub-Method Reflection

need sub-method structure do not use the text nor the bytecode directly,
but generate a custom representation, in many cases an Abstract Syntax
Tree (AST). We now evaluate the three representations as a foundation to
support sub-method reflection.

4.2.1 Text as Sub-Method Representation

In all current major programming languages, the programmer types text [46,
54]. This text is then used by the compiler to generate executable code. Text
itself has no real structure — it is just a collection of characters. Thus text
as a sub-method representation has the following problems:

Low-level. Text does not provide any high-level interfaces: it lacks the pos-
sibility to scope information and manipulate the underlying program
elements.

Not causally connected. Changing the source code of the method has no
effect. We need to call the compiler to generate a method.

Therefore text is almost never used directly for analysis and manipulation.
Instead, tools parse the text into an intermediate format such as an AST.

4.2.2 AST as Sub-Method Representation

A commonly used and generated intermediate representation is the AST.
For example, ASTs are used by the compiling chain and refactoring engine.
Using the AST as sub-method representation has the following problems:

Not persistent. The AST is not persistent: it is generated and then used,
but not stored. While trees can be created from source code, the meta-
information, which we would like to associate to specific nodes, has
to be stored in separate structures.

Not causally connected. Changing an AST does not have an immediate
effect on the underlying run-time behavior. Depending on the com-
piler API, the AST or the method body text is passed to the compiler,
which will compile and install the method in its class.

4.2.3 Bytecode as Sub-Method Representation

In contrast to the other representations, bytecode is causally connected:
changing bytecode directly changes the behavior of the system. Bytecode

Challenges for Supporting Sub-Method Reflection 71

has been used, in both Java and Smalltalk, for a form of structural reflec-
tion (Javassist [30] and BYTESURGEON [40])1. Both provide a high-level
interface to the user, e.g., by abstracting away bytecode details such as the
different encodings for message sending or providing a way to specify
code to be inlined as a string in the host language. Nevertheless, in the
end programmers are forced to deal with bytecode level abstractions which
may be different than the programming language the methods are written
in [23]. Bytecode as a model for sub-method structure has a number of
problems:

Different representation needs. There is a dilemma: on the one hand the
execution engine (bytecode VM) requires bytecode for execution
and on the other hand programming environments or programmers
require text or an abstract and high-level representation of the source
code.

Low level abstraction. The programmer has to deal with the idiosyn-
crasies of the bytecode representation. For example, control structures
may be optimized as it is the case in Smalltalk bytecode. In addition,
there is a mismatch between the program level abstractions and its
runtime [23].

All three discussed representations have the problem of missing extensibil-
ity and lack a way to describe metadata:

Missing extensibility. Tools cannot easily extend the representation for
their needs. Thus, they often use a custom representation which leads
to a situation where tools cannot easily share meta-information, e.g.,
when one tool gathers information for others to use [130, 103].

Mixed base-level and meta-level code. Code transformation (e.g., byte-
code instrumentation [30]) is often used to reflect on method exe-
cution: small snippets of code, so called hooks, are inserted into the
original code. This leads to the problem of distinguishing code of
the original method from the code added by the instrumentation
framework.

1In the case of Javassist for Java it should be noted that it can only provide load-time
structural reflection: newly loaded code can be transformed, but once it is loaded, no fur-
ther change is possible. In contrast, BYTESURGEON provides full runtime transformation
capabilities: methods can be transformed even in a running system.

72 Sub-Method Reflection

4.2.4 Requirements

We want the best of both worlds: AST and bytecode representations. In
summary, the representation should be (i) causally connected and well
integrated in the system, (ii) persistent, (iii) extensible and (iv) reasonably
compact with minimal performance impact. Furthermore, it should support
the separation of base and annotated code and offer a high-level abstraction
to the developers.

Such a model for reflective methods makes it easier to develop and
deploy a new generation of tools that work on sub-method elements.

We have seen that bytecode is too low level for our purpose, but the
AST looks promising. We need to take practical consideration into account:
can such a high-level representation be reasonably compact and efficient?
In the next section we present a solution that satisfies these constraints.

4.3 Reflective Methods: Annotated ASTs

Our solution is based on a dual representation of methods which com-
bines an AST-based representation offering high-level manipulations with
a compact bytecode-oriented representation supporting fast execution. The
abstract syntax trees can be annotated, the semantics of annotation is de-
fined by specializing dedicated compiler plugins. The causal connection
and efficient execution is ensured by dual methods that recompile bytecode
automatically from their associated and annotated AST. In such a context,
we define three meta-objects: (1) the ASTs and their associated transforma-
tion API, (2) the annotations and their semantic definition specified by (3)
the plugins. This set of objects enables what we call a reflective method.

:ReflectiveMethod
annotation

#(12 13 45 38 98 128
84 72 42 77 22 28 59

32 7 49 51 87 64)

:CompiledMethod
compiledMethod

reflectiveMethodannotation

Tools VM

Figure 4.1: A reflective method is the meta-object of a compiled method.

Reflective Methods: Annotated ASTs 73

4.3.1 Dual Methods

We implemented the presented approach in Squeak, an open-source
Smalltalk. In Smalltalk, code is compiled to bytecode which resides in
compiled method objects (an instance of the class CompiledMethod [61]). Be-
sides bytecode, a compiled method keeps a pointer to its source and a
dictionary for additional state that is associated with a method (e.g., its
name). We enhanced the compiler to generate a reflective method instead
of a compiled method. A reflective method provides access to its AST
meta-object. Before its first execution, a compiled method is generated
from the reflective method. Such a compiled method is cached to minimize
performance loss. When the code of a method is changed the cache is
flushed and the reflective method is reinstalled in the method dictionary as
shown by Figure 4.1 and described in [98].

The system was named after Persephone, the greek goddess who spends
half of her time in the underworld and the other half in the upper world.
Like Persephone, methods are seen sometime as part of the underworld
(the virtual machine), other time as part of the upper world of high-level
abstractions.

Before going into the details of our sub-method protocol we present an
example of annotations that are visible in the source code. We show later
that some annotations may be invisible in method source code.

4.3.2 A Simple Example: Compile-Time Evaluated Expres-
sions

The following piece of code is the definition in Smalltalk of the method
calculateNinePower which evaluates and returns the result of 9 to the power
10000. Without the annotation ($<$:evaluateAtCompiletime :$>$) the execution
of such a method will at runtime send the message raisedTo: to the object 9
and then return 910000. Using annotations we can mark any abstract syntax
tree element, i.e., any expression. Here we specify that the expression
should be executed at compile-time.

calculateNinePower
^ (9 raisedTo: 10000) <:evaluateAtCompiletime:>

Semantics Definition. At compile-time, the resulting value replaces the an-
notated expression. The semantics of the annotation is defined by creating
a compiler plugin called CompiletimeEvaluator. The complete implementation
is based on two classes which specialize the meta-objects and define an
annotation and a compiler plugin (see Figure 4.2).

74 Sub-Method Reflection

Persephone Core

Compile-Time Evaluator Compiletime
Evaluator

EvaluateAtCompiletime
Annotation

NoValueAnnotation CompilerPlugin

Figure 4.2: Extension for compile-time evaluation.

EvaluateAtCompiletimeAnnotation is a subclass of NoValueAnnotation since this
annotation does not expect arguments. The class implements one method:
key that returns the annotation name (here the symbol evaluteAtCompiletime).

The compiler plugin class, named CompiletimeEvaluator, is a subclass of
CompilerPlugin. Besides that, it only has two small methods visitNode: and
evaluateNow:.

visitNode: aNode
^(aNode hasAnnotation: EvaluateAtCompiletimeAnnotation key)

ifTrue: [self evaluateNow: aNode]
ifFalse: [super visitNode: aNode]

evaluateNow: aNode
| value literalNode |
value := aNode evaluate.
literalNode := LiteralNode value: value.
aNode replaceWith: literalNode.
^self visitNode: literalNode

We check every node for the evaluteAtCompiletime annotation. If the an-
notation is present, we pass the node to evaluateNow: which does the eval-
uation. If the annotation is not set, we just continue the visiting process.
The method evaluateNow: evaluates an expression by sending the evaluate
message, a literal node is created to hold the result. We replace the original
node and the visiting process continues.

4.3.3 AST and Tree Transformation API

The AST used in PERSEPHONE is an extended version of the Smalltalk
refactoring engine AST [114]. We extended it to provide annotations for all
node objects. Reflective methods provide a comprehensive abstract syntax
tree API. Trees are easily edited and transformed (added/removed/re-

Reflective Methods: Annotated ASTs 75

placed, see Table 4.1). On top of these simple transformations, the Parse-
TreeRewriter is a rewrite engine which allows transformations to be speci-
fied at a high-level of abstraction.

Node Operation Description
any node replaceWith: replace this node

replaceNode:withNode: replace a direct child node
sequence node addNode: append a node at the end

addNodeFirst: insert in front
addNode:after: insert after a given node
addNode:before: insert before a given node
removeNode: remove a node
replaceNode:withNodes: replace one node with a collection

Table 4.1: The transformation API for nodes.

It should be noted that this API provides a way to destructively trans-
form a tree: after the transformation, the tree is changed in the same way
as if we had edited text and recompiled the method. This is useful e.g., for
refactorings. However, destructively changing a tree is not always what
we need. As we will present in Section 4.4.1, annotations provide a way
to define non destructive transformations i.e., we can always identify the
original method.

4.3.4 AST Annotations

As discussed in Section 4.2.4, reflective methods should serve as the main
method representation for many different usages. A consequence is that
users need to be able to add information about objects (nodes) directly to
those objects themselves. Adding behavior to the node classes is possible
using the class extension mechanism of Smalltalk which allows a package
to define methods on classes defined in another package [10]. For object
state extensions, our MOP provides annotation objects that are attached to
any node as shown in Figure 4.3.

Each annotation is uniquely identified by a key and each node has
a dictionary that maps keys to annotations. Annotations are instances
of one of the three subclasses of Annotation. They can have zero, one or
multiple values. To define a custom annotation we subclass from the
appropriate subclass depending on their number of values (see Figure 4.3).
The difference between multi-valued and single valued annotations is that
the former can be defined multiple times on the same expression with
different values whereas the latter cannot.

76 Sub-Method Reflection

key: Symbol
Annotation

value: Object
SingleValuedAnnotation

values: Collection
MultiValuedAnnotation

Node 1 *

NoValueAnnotation

Figure 4.3: The annotation hierarchy.

The expression anExpression <:aSelector: anArgument:> attaches an annota-
tion with one argument to the expression anExpression. Annotations are
supported on all expressions and additionally on method arguments, block
arguments and each variable name in a temporary variable definition.

The argument of an annotation can be any Smalltalk expression. In the
simplest case, when the argument is just a literal object, the value of the
annotation is set to this literal object. When the argument is an expression,
the value of the annotation is the AST of this expression. We can specify
when this AST is evaluated, either at compile time or later at run-time. In
addition we provide a reflective interface for annotations which can be
queried and set at runtime.

Annotations may or may not appear in the source code. For example,
an invisible annotation is the number of times a particular tree element has
been executed; an example for a visible annotation is a type declaration.
Non-textual annotations can be added reflectively to any node at runtime.
These annotations are kept as long as the AST is not regenerated. For
example, when a method is recompiled from source, the nodes of this
method will have no annotations, but clients can be notified of any code
change and add annotations again if needed.

4.3.5 Annotation Semantics

Without specific interpretation, annotations are pure metadata: they have
no predefined semantics. To specify annotation semantics, PERSEPHONE
defines a meta-object protocol for the compiler and bytecode generator.

The MOP is based on a plugin architecture. Before generating any
code, the compiler framework copies the AST and then calls all defined
compiler plugins by priority order. A compiler plugin is just a subclass of
CompilerPlugin. Plugins affect compilation by transforming the AST. As we
provide fully reflective access to the annotations, the compiler plugin may

Validation of Sub-Method Reflection 77

take annotations into account. We present a full example in Section 4.4.1
with the instrumentation framework TREENURSE.

4.3.6 Characteristics of the Solution

Now we analyze our approach according to the requirements presented in
Section 4.2.4.

Causal connection. The implementation ensures that the executed byte-
code is always in sync with the reflective method. The whole mech-
anism is completely transparent to the user. Thus, we provide a
causally connected and integrated model.

Persistency. Reflective methods (the AST including the annotations) are
installed in the method dictionary of a class. As reflective methods
are normal Smalltalk objects, they are written to the disk when the
system is stopped. Thus the model is persistent.

Abstraction level. We reuse the same representation and API as the
Smalltalk refactoring engine which has proven to be a usable ab-
straction for various analyses such as refactoring and general meta-
programming.

Separation of base and meta-level code. The annotation framework pro-
vides a way to structure code into data (AST) and metadata (anno-
tations). For example, instrumentations as the results of the meta-
programs are still completely identifiable since they are represented
in the AST as annotations.

Extensibility. Annotations provide a convenient way to associate metadata
with the AST nodes for storing additional state. Due to the compiler
MOP, we can use annotations to extend the language semantics.

Size and performance We will discuss memory consumption in Section
4.4.3. The provided caching scheme ensures that at runtime we gen-
erate a compiled method only once. In situations where even this
relatively low overhead is too large, we can statically generate all
bytecode before deployment.

4.4 Validation of Sub-Method Reflection

First, we present two case-studies realized with sub-method reflection:
an instrumentation framework and a pluggable type system. Second, we
discuss memory and performance aspects of the system.

78 Sub-Method Reflection

4.4.1 Instrumentation using Annotations

TREENURSE is a framework for instrumenting code. It is designed to have
an interface very similar to BYTESURGEON, the bytecode transformation
framework presented in Chapter 3. In contrast to BYTESURGEON, it works
on the AST and is implemented as a PERSEPHONE compiler-plugin.

To present TREENURSE, we start by discussing a simple example. We
have a method that does an assignment and we want to annotate the code
with trace statements that increases a counter. The original code and what
we want to actually do at runtime are shown in Figure 4.4.

Original Code Instrumented Code

a := 1 max: 3 a := 1 max: 3.
AssignmentCounter inc.

Figure 4.4: Code instrumented with a counter.

It is important to understand that we want to change the semantics of
the method, but we do not want to change the code itself. The counter is not
part of the design of the system, it is just a temporal addition for debugging.
If we transform the code with the help of the refactoring API of the AST,
the result would be a new method where the debugging code would be
indistinguishable from the original code. Bytecode instrumentation frame-
works such as BYTESURGEON or Javassist have the same problem: once the
bytecode is transformed, we do not know which statements are part of the
original method and which have been added, except at the price of tedious
bookkeeping.

An instrumentation framework built on top of PERSEPHONE does better:
we use annotations to store the instrumentations in the reflective method
and they are taken into account when generating code, as shown in Figure
4.5.

The actual code to do this annotation with our framework looks like
this:

method instrument: [:node |
node isAssignment ifTrue: [node insertAfter: [AssignmentCounter inc]]].

This code adds an after annotation to all assignments in a method with
the effect of incrementing the counter. We instrument the method by
sending instrument: passing a block with the instrumentation code. We only

Validation of Sub-Method Reflection 79

after

#[10 125 55 33 55 00 80 90 33]

#[10 125 55 00 80 90]original
bytecode

instrumented
bytecode

AST Annotation

Figure 4.5: Instrumenting a reflective method with annotations.

want to instrument assignments so we select them by sending isAssignment
to each node passed to the block.

By implementing TREENURSE using reflective methods, TREENURSE has
the following unique properties:

• It works on AST nodes and not binary code.

• The instrumentation is stored as an annotation on the AST node. The
original AST is left untouched.

• The generation of bytecode is done lazily, on need. Instrumentation
merely results in the bytecode cache to be reset. This can lead to
considerable time savings especially for large programs.

The Instrumentation API

On all the AST nodes, we support the following transformation API:

Operation Description
insertBefore: Annotate to insert code before this node
insertAfter: Annotate to insert code after this node
replace: Annotate to replace the node by the code

For an easy selection of the nodes to be instrumented, we provide
dedicated iteration interface, for example instrumentAssignments: iterates over
all assignment nodes.

80 Sub-Method Reflection

Meta-Variables

The only variables that can be directly referenced from inside the block
are self, super and thisContext, as the code of the block is to be inlined into
the instrumented method. Thus, these variables will be bound to their
values at runtime, not at instrumentation time. For everything else, block
arguments have to be used. Each kind of node provides a different set of
meta-variables that can be used as block arguments:

Node Meta-variable Description
any node node the node itself
message node receiver the receiver of the message

arguments a collection of all arguments
selector the selector of the message

method node arguments a collection of all arguments
selector the selector of the method

assignment node variable the variable to be assigned to
variableName the name of the variable
value the expression to be assigned

return node value the expression to be returned
variable node value the value of the variable
literal node value the value of the literal

The following code gives an example of a replace annotation, which
uses two meta-variables, one referencing the variable and the other the
value of the assignment:

method instrumentAssignments: [:node |
node replace: [:variable :value | variable := value + 3000]

TREENURSE replaces all assignments with a new assignment that adds
the number 3000 to the value expression of the original code.

Example: Code Coverage Analysis

Code coverage analysis per expression is conceptually a simple task. When
an expression gets executed it is marked as executed. After the program
is run the executed expressions are printed differently from the ones that
were not executed. The most convenient way to store information about a
node is by adding an annotation to it that holds the information. To keep
track of how many times a node has been executed we create a subclass
of SingleValuedAnnotation named ExecutedAnnotation. We then add a method
markExecuted to ProgramNode via a class extension:

Validation of Sub-Method Reflection 81

Node>>markExecuted
(self annotationAt: ExecutedAnnotation key) increment

If we now send markExecuted to any node, its execution count will be
incremented, which we can achieve using our instrumentation framework:

method instrument: [:eachNode |
eachNode insertBefore: [:node | node markExecuted]].

Here we iterate over all the nodes of the method, the block is evaluated
for each node, binding the node to the variable eachNode. Before each
node, we insert code. The inserted code is described by a block. This
block references the meta-variable node which references the AST node at
runtime.

Here we see a usage of the node meta-variable. It reifies the node, so we
can call the markExecuted directly on the AST nodes. To produce the final
output a pretty printer presents the status of execution.

Usage of TREENURSE

TREENURSE has seen some use by other projects, especially for dynamic
analysis. It has been used for test coverage analysis [109] as an alternative
to BYTESURGEON. Adrian Lienhard used it in an experiment that analyzes
how objects flow through an object-oriented program at runtime [95, 93, 94].

4.4.2 Pluggable Type System

TYPEPLUG [67] is an optional, pluggable type system [22] for Squeak. It
consists of a type reconstructor and inferencer that is used by a type checker
to check Squeak programs for type correctness.

A type checker is an example of a program that works on code: we
need to be able to attach metadata to expressions (the types) and be able to
reason about this metadata. Thus the realization of a type system validates
especially the extensibility of the reflective methods. We need to be able to
model metadata that describes the type of any expression in the code.

With PERSEPHONE, types are represented as annotations on nodes in
the AST. They can be declared on method and block arguments, method
and block return values and temporary variable declarations. There are
two different ways to declare types.

1. Using a special code browser to annotate the nodes. This has the
advantage that types are declared without changing the source code

82 Sub-Method Reflection

but can still be checked into a source code management system. This
is the preferred way for typing existing code especially system classes
like Boolean or Collection.

2. Textual annotations, which are placed in the source code.

The following code shows a method annotated with types:

bitFromBoolean: aBoolean <:type: Boolean :>
^ (aBoolean ifTrue: [1] ifFalse: [0]) <:type: Integer :>

The method takes a boolean as an argument and returns an integer.

The TYPEPLUG case study shows that our representation provides the
extensibility needed for extending the language with a pluggable type
system. TYPEPLUG demonstrates the usefulness of providing textual anno-
tations where the annotation itself is not limited to be a static predefined
datatype. PERSEPHONE supports annotations that contain general Smalltalk
code. The evaluation of this code can be completely controlled by the anno-
tation class itself or the compiler plugin. This allows for building complex
annotations as required e.g., for advanced type systems.

This is only a very short introduction into TYPEPLUG. The master’s
thesis of Haldimann [69] and a conference paper [67] provide more in-depth
information. A journal article is in preparation [68].

4.4.3 Performance and Memory Analysis

In this section we discuss results of performance benchmarks and report on
memory consumption. The machine used is an Apple MacBook Pro (2Ghz
Intel Core Duo, 2GB RAM).

Performance of Cache

The dual method approach works like a cache: after the first run, the
compiled method is installed in the class and thus the method can be
executed at full speed.

To analyze cache performance, we use the TinyBenchmark suite that is
part of the normal Squeak distribution (Table 4.2). The TinyBenchmark
suite tests bytecode interpretation and message send performance. For this
test, we use the runtime of the benchmarks for assessing cache performance.
First, we record the runtime for an unmodified Squeak. Then we run the
benchmark with PERSEPHONE in two cases: with and without caching the
generated bytecode.

Validation of Sub-Method Reflection 83

When running the benchmark with caching disabled, the system gets
too slow to be usable as bytecode needs to be generated for each method
execution. We had to abort the benchmark run after one hour. We see a
noticeable speedup as soon as we turn on caching: PERSEPHONE shows no
detectable slowdown compared to standard Squeak, even though bytecode
had to be generated for the benchmark methods on the first execution.

Caching Scheme runtime
unmodified Squeak 6.9 seconds
Persephone, no cache >1 hour
Persephone, cache 6.9 seconds

Table 4.2: The effect of method caching.

Thus we can see that the cache provides a substantial speedup and
enables a system using reflective method to be as fast as the standard
Squeak system.

Memory Considerations

Representing a method as an AST in which each node is an object obviously
requires a lot more memory than its corresponding compiled method which
only stores the bytecodes. Table 4.3 shows the memory consumption of the
AST of a complete Squeak system.

Name number of classes memory
Squeak 3.9 2244 20 MB
Squeak 3.9 AST 2244 123 MB

Table 4.3: Memory consumption.

We see that the system uses a lot of memory, but in a typical devel-
opment scenario, the system is already usable as is without any further
optimization. In addition to that, reflective methods are mostly only re-
ified for parts of the system, for example a single package that needs to be
analyzed.

To assess if the size is practically usable, we compare to the size of code
loaded into Eclipse, a development environment used widely in industry.
We took the source of ArgoUML2 and loaded it in Eclipse version 3.2. Ar-
goUML Version 0.24 consists of ca. 1300 classes, it is thus much smaller than

2http://argouml.tigris.org/

84 Sub-Method Reflection

Squeak. Eclipse allocates after startup ca. 90MB of memory and ca. 180MB
when having the ArgoUML source loaded. Thus the memory consumption
of PERSEPHONE is typical for a modern development environment.

Also note that those figures have to be considered as upper bounds
since we have not yet fully applied some memory related optimizations.
For example, the size of the AST data can be optimized further by not
referencing scanner-token data. In addition to that, we plan to experiment
with AST specific compression techniques [58].

4.5 Other Systems

One interesting question is how to realize sub-method reflection for other
languages than Smalltalk. We discuss two implementation strategies.

Dual methods

We used objects-as-methods [6] and the fact that we can replace methods
at runtime. Other bytecode based systems could use the same scheme if the
virtual machine would be extended to support both features. The objects-
as-methods feature can be replaced by so called stub-methods: we could
generate short methods that contain the code that is now implemented in
the run:with:in method of the ReflectiveMethod class. The use of stub-methods
would be a way to realize sub-method reflection for example in other
Smalltalk systems, for example Visualworks without the need to modify
the virtual machine.

For other systems (e.g., Java), what is needed is the possibility to replace
code of methods at runtime: the system needs to support real structural
reflection down to the level of methods. As soon as this is the case, it is
possible to realize sub-method reflection very similar to the realization
described in this chapter. The ability to change methods at runtime limits
the languages in practice to those that either are completely interpreted
or provide some form of virtual machine where we can change the code
executed at runtime.

Just-In-Time Compiler

Modern virtual machines usually are based on dynamic compilation.
Before execution, the bytecode is compiled to binary code that is executed
directly by the hardware. The dual-methods implementation strategy
works for such a virtual machine without any change: the AST is compiled
to bytecode and cached, this bytecode then is compiled to binary code by
the virtual machine. The bytecode in such a system would serve only as
the interface between the AST and the JIT compiler of the virtual machine.

Related Work 85

Sub-method Reflection replaces bytecode as the representation for sub-
method structure as far as reflection is concerned. We keep bytecode for the
sole purpose of execution: it is the representation the virtual machine works
with. For Squeak, which uses a very basic bytecode interpreter, this makes
sense. But for systems with just-in-time compiler based virtual machines
the bytecode is transformed into binary code before execution.

For such a virtual machine, bytecode is not the representation of exe-
cution, we execute only the code that the JIT-Compiler generates. Thus
for a system with a compiler-based virtual machine, there is actually no
need for bytecode: we could directly use the sub-method structure as an
input for the runtime compiler that generates binary code for execution.
The binary code would directly replace the cached bytecode of our dual
methods implementation strategy.

Our solution for Squeak was driven by the objective to actually not
change the virtual machine and by the fact that Squeak is a pure bytecode
interpreter. There has been work done in the past on a just-in-time compiler
for Squeak [38]. An interesting experiment would be to build a system
where the high-level sub-method representation is used as the input for
the runtime compiler. Such a runtime-compiler based implementation of
sub-method reflection would be an interesting implementation strategy for
many systems besides Smalltalk, but it requires extensive changes to the
virtual machine.

4.6 Related Work

Annotations

Annotations are not new. For example, Javadoc tags are a form of annota-
tion. More recently, Java 1.5 adds support for annotations to the language.
As of release 5.0, Java has a general purpose annotation (also known as
metadata) facility that permits you to define and use your own annotation
types. The facility consists of a syntax for declaring annotation types, a
syntax for annotating declarations, APIs for reading annotations, a class
file representation for annotations, and an annotation processing tool. Java
1.5 annotations are only allowed for type, field, variable and method dec-
larations and are not allowed on type parameters or method invocations.
VisualWorks and Squeak support method annotations (also called prag-
mas).

Spoon [106] is an open compiler for Java that provides compile-time re-
flection. With Spoon, the Java AST can be transformed before it is compiled
to bytecode. The processors of Spoon are similar to the compiler-plugins

86 Sub-Method Reflection

of PERSEPHONE. Spoon provides support for Java annotations, i.e., the
transformation processors can read annotations. The main difference to
our work is that Spoon works at compile-time, not runtime. The AST is
compiled to bytecode and is not available at runtime. Spoon provides an
annotation-aware compile-time transformation framework, but not causally
connected structural reflection at runtime. In addition to that, it is restricted
to the annotation model provided by Java.

Higher Level Abstraction: Beyond Text

There have been a number of proposals over the years to move away from
text as the only representation of code. Dimitriev [46] argues that programs
should no longer be text but a graph described with a meta-model built
for a certain kind of problem. The language would be mapped to another
one for execution or interpretation. Edwards [54] argues that programs
should no longer be text and the representation of a program should be the
same as its execution. His programs are trees created by copying. He also
identifies the need to customize the presentation of a program. Black [14]
makes a case to free programs from their linear structure and replace them
with a much richer abstract program structure (APS) that captures all of
the semantics, but is independent of any syntax. Conventional one and
two dimensional syntax, abstract syntax trees, class diagrams, and other
common representations of a program are all different “views” on this
rich abstraction. None of these proposals discuss the use of the high-level
representation for reflection.

Sub-method Structure

In LISP [101] source code is itself made up of lists. As a result macros
can manipulate it using the list-processing functions available in the lan-
guage. This functionality is limited to macros at compile time and cannot
be applied to functions at runtime.

In IO [37] code is a runtime inspectable and modifiable tree. Message
arguments are passed as expressions and evaluated by the receiver. Selec-
tive evaluation of arguments can be used to implement control flow. IO
does not yet provide a way to extend the representation.

KSL [81] represents all language constructs as objects. The representa-
tion described includes sub-method elements as objects, it is thus similar
to our model. But KSL is purely interpreted, the representation is not com-
piled. Another difference is that the representation is not extensible and
not used to provide behavioral reflection.

Summary 87

4.7 Summary

In this chapter we analyzed the problems of finding a suitable model
for sub-method structural reflection. With an extended AST we found a
representation that fulfills all noted requirements. We described how to
realize this model in a bytecode based environment and discussed memory
use and performance characteristics of the approach. We validated sub-
method reflection by providing examples of how it is beneficial for tool
building (code coverage) and language experiments (type system). In the
next chapter we revisit partial behavioral reflection in the context of sub-method
reflection.

Chapter 5

Behavioral Reflection
Revisited

5.1 Introduction

In this chapter, we present how we realize partial behavioral reflection on top
of sub-method structural reflection.

Initially we revisit the problems that exist with our first bytecode-based
realization (GEPPETTO 1) presented in Chapter 3. We introduce our new
model and then discuss in detail the key aspects that differentiate our new
approach from the bytecode-based solution. We provide benchmarks to
compare the new implementation (GEPPETTO 2) to the old bytecode-based
solution and conclude with a discussion how our new model solves the
problems identified in Chapter 3.

5.2 The Problems

We discussed in Chapter 2 and have shown in detail with our first version
of partial behavioral reflection (Chapter 3) that there are some problems
with realizing partial behavioral reflection with bytecode manipulation.

We identified three main problems:

Semantic mismatch. Concepts existing at the level of the language are not
represented at the level of the bytecode. In the case of Smalltalk,
examples are blocks and message sends encoding control structures.

90 Behavioral Reflection Revisited

Code quality. The stack based nature of bytecode make it hard to generate
optimized code.

Problem with synthesized elements. To realize behavioral reflection, we
modify the bytecode. It is problematic to distinguish between this
synthesized code and the base level code.

Initially we present our new approach and then show how it solves the
above problems.

5.3 Partial Behavioral Reflection Revisited

The central notion of partial behavioral reflection is the link. The link
defines the meta-object of operations and defines the protocol between the
base-level and the meta-object. In the classical Reflex model, operations are
not directly bound to the meta-object. Instead, operations are combined to
hooksets. Hooksets are sets of bytecode-level operation occurrences. They
denote the place in the bytecode where code, the so-called hook, is added
that calls the meta-object. The hookset is bound to the meta object using
the link, as shown in Figure 5.1.

hookset

meta-object

activation
condition

links

x
x x x

x

xx

x

Figure 5.1: Links, hooksets and meta-objects in the original model.

With sub-method reflection, we have a structural representation of
method bodies. Operations have a direct representation as part of the
sub-method structure: they are nodes in the AST. In addition, the AST
represents the structure of the method, for example both the block structure
and the structure of expressions are represented. We can adapt the model
of GEPPETTO to use sub-method reflection for selecting the operations
to reify instead of using hooksets. In addition to operations, as the AST

Partial Behavioral Reflection Revisited 91

represents the complete structure of the method, we can for example reify
block evaluation.

To summarize:

• We use sub-method reflection to select what to reflect on.

• Instead of defining a hookset, we annotate the AST directly with a
link.

• The hookset is implicitly defined to be all nodes with the same link
annotation.

Figure 5.2 shows how the AST, links and meta-objects work together in
the new system.

Links are annotations on the representation provided by sub-method
reflection. When we set a link, our system automatically regenerates the
bytecode the next time a method is invoked. The regeneration of bytecode
will take the link into account, as there is a compiler plugin that transforms
the code as specified in the link. We provide a more in-depth discussion of
the implementation in Section 5.5.

source code
(AST)

meta-object

activation
condition

links

Figure 5.2: Partial behavioral reflection realized with sub-method reflection.

Dynamic Properties

By realizing GEPPETTO on top of sub-method reflection, we can exploit the dy-
namic properties of the PERSEPHONE model. Any change on the structure,
in this case setting a link, will result in new code being generated on the
next run of the method. The result is that we can install or uninstall existing
or newly created links at any time, even while the system is running.

92 Behavioral Reflection Revisited

In addition, the link uses the same mechanism to report changes of itself.
All links are part of the causally connected representation.Therefore, we can
change existing links dynamically. If we change any of the attributes of the
link, for example the meta-object, all methods where this link is installed in
will be recompiled prior to the next execution.

As with GEPPETTO 1, changes are activated on a per-method basis.
After a link is set, the next invocation of the method will lead to new code
being generated. While code is generated, the old method is active, it is
atomically exchanged with the new method. So in principle, we have the
same per-method granularity of introducing links as seen in GEPPETTO 1.

5.3.1 Simplifications

This section describes the simplifications of our new approach as compared
to the bytecode-based approach described in Chapter 3. Most of the simpli-
fications are related to introducing classes only when really needed. Many
classes existing in the first version have either been merged with the class
Link or have been replaced by simple literal objects like symbols.

No hookset. The first simplification comes directly from the fact that we do
not have the concept of a hookset: links are inserted directly as annotations
on the nodes of the AST.

Symbols instead of classes. Link attributes are symbols whenever possible.
This reduces the number of classes (e.g., the Parameter class) and simplifies
the code that needs to be written when defining a link.

Condition is a block. The condition attribute can be any object that sup-
ports the protocol of the block-closure object for evaluation. In this way,
we can in most cases use a block as the condition; for more complex cases
special classes can be provided.

No id. Links do not have a human readable id.

No CallDescriptor. The CallDescriptor class has been removed as the descrip-
tion of the protocol between the base the meta is contained in the link
itself. We only support what used to be the old PassingMode plain where the
reifications requested are passed directly as arguments to the meta-object.
Passing via an array (PassingMode array) just adds unnecessary overhead due
to array creation.

Figure 5.3 shows the resulting simplified model.

In the following section, we will describe the link and its parameters,
then we briefly discuss access to reified data.

Partial Behavioral Reflection Revisited 93

RBProgramNode

metaobject
control: Symbol
selector: Symbol
parameters: Array
scope: Symbol
condition: Block
properties: Dict

Link

Link
Annotation

*

1

*

Figure 5.3: The link in GEPPETTO 2

5.3.2 The Link

In our new model, the link is an even more central abstraction than in the
original model. The link defines where reification occurs by being set as
an annotation on the AST nodes, it defines which meta-object to call and
it contains the definition for the exact protocol between the base and the
meta-level.

The parameters of the link are contained in attributes that are set when
configuring the link prior to installing it in a node. The attributes are set
via single message sends to the link object. For convenience, default values
are defined for the attributes.

To illustrate this, we show as an example a link that, when installed
on a message send node, would replace this send with an invocation of a
method #send:to:with: in the meta-object of class Sender:

link := GPLink new metaObject: Sender new;
selector: #send:to:with:;
arguments: #(selector receiver arguments);
control: #instead.

Link Attributes

In the following, we provide an overview of all the attributes that can be
configured for a link.

Meta-object. Primarily, the link defines which meta-object to use. This can

94 Behavioral Reflection Revisited

be any Squeak object. There is no special superclass or any special
structure or methods required.

link metaObject: Sender new.

Selector: The selector defines which method to call on the meta-object.
Thus, it is a symbol; the default is #value. When the selector defined
requires multiple arguments, these are defined with the #arguments:
attribute.

link selector: #send:to:with:.

Arguments. When calling a method with multiple arguments, we have to
specify which arguments to pass to the meta object. The arguments
are specified by a literal array containing symbols describing what
exactly to pass as arguments. The default is the empty array.

link arguments: #(selector receiver arguments).

We use symbols to specify which information exactly is to be passed
to the meta-level. We give a complete list later in the section on reified
data.

Control: The control attribute specifies when the call to the meta-object
should occur: i.e., before, after or instead of the original operation.
The control is specified using a symbol. Possible values are #before,
#after or #instead. The default is #before.

link control: #instead.

Condition. Optionally we may want to control the link further by spec-
ifying a condition. This condition can be any object that returns
a boolean value when being sent #value. This means we can use
Booleans, as e.g., true value returns true. Blocks are the most natu-
ral condition. In addition, the user of the framework can provide a
special object that implements #value if needed.

With blocks as conditions, link activation can be easily controlled. As
an example, the following link would only be active when tracing
would be turned on in the system-wide preferences:

link condition: [Preferences traceEnabled].

The link is active if the block evaluates to true, that is, when the
preference is enabled.

Partial Behavioral Reflection Revisited 95

For conditions that depend on reified information only available at
runtime from the base object, we provide a way to specify which
parameters to pass to the block by using #condition:arguments:. We can
pass any reified information to the condition block. The following
would restrict a link to one certain object:

link condition: [:object | object == myObject] arguments: #(object).

Meta-object Scope. As in GEPPETTO 1, we provide the concept of meta-
object scope. This enables us to have different meta objects associated
for different base level entities instead of one global meta-object per
link. We can configure a link to have meta objects per class, per method,
per object or per node.

link metaScope: #object.

When using meta-object scope, we have to create new meta-objects
at runtime. Therefore, we specify the meta-object for the link not
statically, but using a block of code:

link metaCreator: [MyMeta new].

The system takes care to create new meta-objects as required using
this block and it manages the association of meta-object to the entities
requested.

Concurrency. Optionally, we can parametrize a link to execute a meta-
object in its own thread.

link beConcurrent.

The link calling code is wrapped in a block that is then sent the
message #fork to start a new process. We have not fully explored the
potential to incorporate concurrency aspects in our MOP. We identify
a potential to address these aspects in future work.

Inlining Properties. The last set of attributes that we describe are those
related to code generation. They have no semantic meaning; they
only change performance properties.

Both the meta-object and the condition can be either inlined in the
bytecode or accessed via an indirection over the link. Either of those
options has performance properties that can be beneficial depending
on runtime usage. The default behavior is to inline both condition
and meta-object.

96 Behavioral Reflection Revisited

When we change the meta-object or the condition of existing, installed
links at runtime, all affected methods need to be recompiled. There-
fore, if we plan to change the meta-object at runtime frequently, we
can configure the link to be non-inlining. The unfortunate side-effect
of that is a slight decrease in link-call performance, as any call to the
meta-object (or the evaluation of the condition) is indirected via the
link.

link inlineMeta: false.
link inlineCondition: false.

The decision not to inline should only be taken when it is sure that
changes happen so frequently that recompiling would have a larger
effect on performance than the indirection. An interesting property of
our fully dynamic model is that we can switch the inlining behavior
at runtime. There is no need to decide this up-front or have a link
fixed to one behavior over its entire lifetime.

Access to Reified Data

We support various kinds of reified base level information that can be
passed to the meta-level. Examples are the arguments passed to the method
that is called on the meta-object. Table 5.1 shows all reifications available in
the standard system. All these are defined using a plugin based architecture
and can be thus extended by any user of the framework (see Section 5.5.2).

Many of the reifications are already mentioned in Chapter 3 such as the
receiver and arguments of a message send. We have added some that open
up interesting possibilities:

Link. We can request the link to be passed to the meta-object. In this way
we can for example deactivate links from the meta-level or reflect in
general on links.

Node. The node that the link is installed on. This allows the meta-object to
reason about or even to annotate or modify the structure of a method.
Later in this chapter we see an example how this provides an easy
way to implement a tracing tool for dynamic analysis.

Continuation. Sometimes, we want to abort the execution of the meta-level
and return to the base. We can request a continuation to be created
and passed to the meta-object. The continuation is an object that,
when sent #value will continue execution of the base level code. The
continuation is a true continuation. We based our implementation
on the realization of continuations in Seaside, a continuation-based

Partial Behavioral Reflection Revisited 97

Operation Reified Data Description

All Nodes #context current stack-frame
#object the object
#class the class of the object
#control before, after or instead
#link the link itself
#node the node that the link is installed on
#continuation a continuation object
#process the current thread executing

Message Send/ #arguments arguments as an array
Method Evaluation #argX Xthargument

#sender sender object
#senderSelector sender selector
#receiver receiver object
#selector selector of method
#operation operation as object
#result returned result (after only)

Block #arguments arguments as an array
#argX Xthargument
#result returned result (after only)

Temp/InstVar Read #varname name of variable
#offset offset of variable
#value value of variable
#operation operation as object

Assignment #varname name of variable
#offset offset of variable
#value value of variable
#operation operation as object
#newvalue new value (write only)

Table 5.1: Supported reified data.

web-framework [51, 12]. We can, for example, store the continuation
object in the meta-object before we return normally to the base level.
Later we can use the stored continuation to return from the meta-level
again as many times as we like.

We specify the information to be passed to the meta-level with literal
symbols which results in far more concise code then the dedicated Parameter
class used in Chapter 3.

Links are not created to be specific to a certain kind of node. This is im-
portant to provide the possibility of crosscutting not only class boundaries
but even operations: we want one link to be installable on both message-
sends and assignments, for example. But not all nodes support the same

98 Behavioral Reflection Revisited

reified data. For example, only message sends have a receiver. We therefore
check at the time that the link is set as an annotation on a node if the link is
compatible with the node.

5.3.3 Spatial Selection

One of the major advantages of the AST as an underlying model for behav-
ioral reflection over the bytecode-based approach is that the AST faithfully
represents every concept of the programming language, whereas at the
level of the bytecode some optimizations already have been applied.

The AST has a clear advantage in the following cases:

Variables are represented as nodes in the AST. In addition, assignments
have their own representation. We can put links on variables and
assignments. All types of variables are represented, including global
and class variables.

Blocks written in the source code are represented at the AST level, we
can annotate them with a link. When a link on a block is configured
to have the control #after, the system will use exception handling to
make sure that the after-code is even evaluated when the block is
aborted due to abnormal termination or early returns.

Control Structures like ifTrue:, whileTrue: or to:do: are not message sends
on the bytecode level anymore, they are optimized to be encoded as
jumps for performance reasons. On the level of the AST, all these are
standard message sends. For our system, this means that we can put
links on the message sends of control structure and on the blocks that
are the parameters of these control structures.

Selecting Nodes

The structural model provided by sub-method reflection has static repre-
sentations for everything that a behavioral reflection framework needs: all
operations (for example, message sends), the methods themselves and even
block objects. Therefore, we can directly use this representation for Spatial
selection.

The nodes of the sub-method AST are directly annotated with a link.
This means that we use the standard structural reflection of Smalltalk to
iterate over classes and methods. Then we iterate over the sub-method
structure, the AST. Setting the link is done by sending the message link: to a
node.

Partial Behavioral Reflection Revisited 99

Message Description

nodes all nodes
sends all message send nodes
blocks all block nodes

statements all nodes representing statements
assignments all variable assignments

variables all variable nodes
variableReads nodes of variable reads
variableWrites nodes of variable writes

instanceAssignments instance variables
instanceVariableReads
instanceVariableWrites

tempAssignments temporary variables
tempVariableReads
tempVariableWrites

Table 5.2: Convenience methods for spatial selection.

To make iteration easier, we provide convenience methods on both
methods and classes that iterate the AST and return a collection of nodes.
For example, to annotate all message sends in the method Object»#halt we
send the message sends which returns a collection of all send nodes of the
method:

(Object>>#halt) sends do: [:send | send link: myLink].

Table 5.2 shows all convenience methods supported by both classes and
methods.

Discussion

Compared to the specification of hooksets as described in Chapter 3, our
new scheme has both positive and negative aspects. On the positive side,
we can set one link across multiple kinds of operations. The fact that the
meta-object can span multiple classes and even different kinds of operations
is one of the interesting features of partial behavioral reflection. This allows,
for example, to define a counter as a meta-object and define one link that
then is installed on multiple classes, recording both variable accesses and
message sends. In GEPPETTO 1, defining hooksets that cover different
operations used composition of hooksets that where specific to one kind
of operation. With GEPPETTO 2, there is no need to build hooksets by
composition. We can set a link as an annotation on any node in the system,

100 Behavioral Reflection Revisited

as long as the link only requests those parameters to be passed to the meta
that all the nodes can provide.

On the negative side, spatial selection is procedural: we write code that
iterates over the structure and sets annotations on the selected nodes. What
used to be the hookset is implicitly defined to be those nodes where a link
is set as an annotation. The problem is that we lose the ability to easily
support the case when the system is changing. Links are not automatically
applied to changed or newly loaded code.

This is a shortcoming, but in practice, support for re-installing links in
new code can be implemented explicitly by the client using the framework.
We plan to extend spatial selection with a declarative way to specify where
links are supposed to be installed, bringing back the declarative nature of
the hookset definitions.

5.3.4 Special Meta-objects

We now discuss some special objects that can be used as meta-objects.
We discuss the notion of treating blocks as meta-objects, thus providing
a powerful code-inlining framework built on partial behavioral reflection.
The other topic is the use of reified data as meta-objects.

Blocks as Meta-objects

Meta-objects do not need to be instances of special classes: any object is
possible. One very interesting kind of object to use as a meta-object is the
Block object provided by the Smalltalk language.

Blocks define a piece of code that is evaluated later by sending the
message value. Here is an example of a link with a block as a meta-object:

link := GPLink new metaObject: [Beeper beep];
selector: #value.

The code of the block can be executed before the node where it is
installed. Blocks as meta-objects thus provide the functionality of a code-
instrumentation framework similar to the TREENURSE system as described
in Chapter 4 and to BYTESURGEON (Chapter 3).

We can easily pass runtime information to the block (what used to be
the meta-variables in TREENURSE or BYTESURGEON):

link := GPLink new
metaObject: [:object | object color = Color red ifTrue: [Beeper beep]];
selector: #value:;

Partial Behavioral Reflection Revisited 101

arguments: #(object)

The code generated for such a link is efficient (see Section 5.5). A
TREENURSE like system supporting block-semantics for to-be-inlined code
generates exactly the same bytecode. In addition, as this is a standard
link, we can control the link using a condition, allowing for easy control.
Therefore we have the full power of a code-inlining model, but in addition
full control via links and conditions.

What was once the basis for realizing behavioral reflection can in our
new system be realized trivially. Block meta-objects subsume the functional-
ity of an instrumentation framework like BYTESURGEON and TREENURSE.

Using Reified Data as Meta-objects

An interesting extension to the original model, we allow reified data to be
directly requested as a meta-object. To define such a meta-object, we put a
symbol describing the reified data as the meta-object:

link := GPLink new metaObject: #class.

The meta-object is the reified value #class, which stands for the class
of the object at runtime in whose method the link is installed on a node.
The same link thus can have different meta-objects, depending on the
parameter object requested. It can be different per link installation, or
even, as with the class parameter, different for the same installed node for
different executions.

We will now give two examples how this can be useful in practice.

Meta-class. MetaclassTalk [17] uses the CLOS [88] inspired model where
the MOP is realized by having all operations (message sends, instance
variable access) be realized by a method that is implemented in the
meta-class. This allows the behavior to be changed on a per-operation,
per class granularity. This meta-class based MOP fits well into the link-
meta way of looking at behavioral reflection: the meta-object is the
class of the method where we install a link on one of the instructions.
We pass all the information needed to the meta-object, for example for
a message send, we need the selector, the arguments and the receiver.

As an example, for message sends a link would look like this:

link := GPLink new metaObject: #class;
selector: #send:to:with:;
arguments: #(selector receiver arguments)
control: #instead.

102 Behavioral Reflection Revisited

If we install this link on all message sends, the system will always put
the class of the object where the link is installed in as the meta-object.
The method send:to:with: would have a default implementation that
implements the normal message send. By overriding this method in
a meta-class, we can change the semantics of message sending on a
per class basis.

At first glance, one could think that the feature of allowing reified data
as meta-objects is not needed. We could just statically generate a link
for each class we install the link in. This link then would reference
the class statically, a method in class Object would have Object as its
meta-object. This is problematic as soon as we consider inheritance.
When executing a method of Object as part of a subclass Beeper, the
class of this object is of course not Object, but Beeper. Therefore, when
we want to have the class of an object be the meta-object, the link
needs to dynamically assign the class of the current object at runtime,
not the class where the method is defined. The meta-object is the
result of the expression self class.

Together with additional links for instance variable read and write,
this results in a fairly complete and efficient implementation of meta-
class based MOP in the spirit of MetaClassTalk. See Section 5.4.3 for a
full implementation.

Node. An interesting meta-object is the node that the link is installed on.
Similar to meta-classes, the node is a structural meta-object. For an
operation, the node forms the natural static meta-object. For example,
it facilitates the implementation of tracing or code-coverage tools by
making it possible to invoke a method on the node itself that tags the
node that is has been executed:

link := GPLink new metaObject: #node;
selector: #markExecuted.

We show an example in Section 5.4.1.

5.4 GEPPETTO 2: Examples

We discuss three examples: implementation of code coverage, realizing
method wrappers and a full meta-class based MOP.

GEPPETTO 2: Examples 103

5.4.1 Code Coverage

In Section 4.4.1 we discussed how sub-method reflection is useful for tool-
building. We illustrated this with an example implementation of a simple
code-coverage tool using TREENURSE. Now we show how we can achieve
the same thing with partial behavioral reflection. It is possible as we can
reify the node that a link is installed on as the meta-object as shown in
Figure 5.4.

source code
(AST)

instruction is
 meta-object

links

Figure 5.4: Nodes as Meta-objects

For code-coverage, we define a link that calls markExecuted on the node
where it is installed:

link := GPLink new metaObject: #node;
selector: #markExecuted.

The method markExecuted annotates the node:

Node>>markExecuted
(self annotationAt: ExecutedAnnotation key) increment

When we install the link on the node representing methods, we can see
coverage at a method level: all methods tagged have been executed. But
with our sub-method model, we can go a level deeper and install the link
for example on all blocks or even on all nodes of the tree.

To speed up execution, it is even possible to remove the tagging-link
at runtime just after tagging the node. In this way, the method would, at
the next execution, be recompiled to only call markExecuted on those nodes
that have not yet been executed before. In addition, we can leverage the
advanced control that the link provides to only activate in special cases,
for example to only tag a node when executed, for example, when code is
executed due to the unit-test framework.

104 Behavioral Reflection Revisited

5.4.2 Method Wrappers

Method wrappers [24] are a common technique to implement behavioral
reflection. They have been used for dynamic analysis, to realize dynamic
Aspect Oriented Programming (AOP) [77] and Context Oriented Programming
(COP) [78]. We used method wrappers already as an application to validate
our BYTESURGEON framework in Section 3.2.5.

Method wrappers define before and after code to be called around the
original method execution. For this, the original method is replaced by
a stub-method sending the message #valueWithReceiver:arguments: to the
wrapper, which in turn calls the before and after method:

MethodWrapper>>valueWithReceiver: anObject arguments: args
self beforeMethod.
^ [clientMethod valueWithReceiver: anObject arguments: args]

ensure: [self afterMethod]

Users of method wrappers implement a subclass of the MethodWrapper
class and provide their own before and after methods.

Instead of generating a method that forwards to #valueWithRe-
ceiver:arguments:, when realizing method wrappers with GEPPETTO, we
can define links that call the before and after methods and install these links
on the original method:

GPMethodWrapper>>install
(self class includesSelector:: #beforeMethod) ifTrue: [

beforeLink := GPLink new metaObject: self;
selector: #beforeMethod;
control: #before.

self methodNode link: beforeLink].
(self class includesSelector:: #afterMethod) ifTrue: [

afterLink := GPLink new metaObject: self;
selector: #afterMethod;
control: #after.

self methodNode link: afterLink].

We only install a link when there is a before/after method defined in
the wrapper. This is especially important for the after method, as we wrap
the complete method in an exception handler to make sure that the after
part is executed in any case.

The resulting code is more efficient than the original MethodWrapper
implementation, as the call to the before and after methods are inlined
in the wrapped method. The code is only slightly less efficient then the
solution based on BYTESURGEON presented in Section 3.2.5. With BYTE-
SURGEON, we inline the code of the before/after methods into the wrapped

GEPPETTO 2: Examples 105

Method Wrapper Installation Runtime
implementation time (ms) factor time (ms) factor

Hancoded - - 10161 1
Standard 1102 1.0 28443 2.8

BYTESURGEON 13835 12.55 10305 1.01
GEPPETTO 2 3354 3.04 10917 1.07

Figure 5.5: Comparing installation and runtime performance of method
wrapper implementations.

methods, whereas with GEPPETTO we inline calls to these methods.

Benchmarks for MethodWrappers

To show the performance of our new solution, we repeat the benchmark
as presented in Section 3.2.5. Figure 5.5 shows the result. Our new im-
plementation is faster by a factor of four compared to the BYTESURGEON
implementation while the execution speed remains practically the same.

5.4.3 Meta-class MOP

In an MOP like MetaClassTalk [17], the meta-class is the behavioral meta-
object. It defines the semantics of message sends, for example.

To realize a meta-class based behavioral MOP with GEPPETTO, we need
to reify message sends and let the class object do the message send instead
of letting it be executed by the virtual machine. As classes are objects, they
have a meta-class that defines this behavior for the class.

We thus define a link where the meta-object is the class of the object the
link is installed in. The link calls the method send:to:with: and provides it
with all information needed to reflectively do the send:

link := GPLink new metaObject: #class;
selector: #send:to:with:
arguments: #(selector object arguments)

The class Behavior provides a default implementation for send:to:with: that
reflectively does the message send:

Behavior>>send: selector to: receiver with: arguments
^receiver perform: selector withArguments: arguments.

We can now override this method in the specific meta-class to change
the semantics of message sends. For instance variable, we have to provide

106 Behavioral Reflection Revisited

two links: one for instance-variable read access, one for assignments.

The link for reading an instance variable is defined like this:

link := GPLink new metaObject: #class;
selector: #iVarAt:In:
arguments: #(offset object)

The other link for instance variable assignments:

link := GPLink new metaObject: #class;
selector: #iVarAt:In:put:
arguments: #(offset object newvalue)

Both the methods iVarAt:In: and iVarAt:In:Put: are provided as default
method in class Behavior, we can override these methods on a concrete meta-
class, for example to make the state of all objects of this class persistent.

Optimized links for sends. There are two optimizations possible: we
should generate specific links for message sends with up to four arguments.
A link for the case of zero arguments:

link := GPLink new metaObject: #class;
selector: #send:to:
arguments: #(selector object)

Specializing links for message sends helps to reduce the number of
object allocations at runtime. In this case we do not need to create an array
for the arguments.

Leveraging partial behavioral reflection. Forwarding message sends and
instance variable accesses to the meta-class even when the default behavior
is not overridden makes no sense. MetaClassTalk, for example, only com-
piles to a reflective call for those classes with changed behavior. We can
realize this optimization by statically installing links only in those classes
with overridden behavior. In all cases where the behavior is not changed,
we use the default implementation provided by the virtual machine.

5.5 Implementation

Here we briefly discuss the implementation of partial behavioral reflection
on top of the sub-method reflection framework, called GEPPETTO 2. The
system is realized as an extension to PERSEPHONE, the open compiler
framework described in Chapter 4 that is the basis of sub-method reflection.

Implementation 107

5.5.1 The Transformation Plugin

As shown in Figure 5.6, we provide a new annotation, the LinkAnnotation.
This is a non-textual annotation referencing the link. To add semantic
meaning to this annotation, we provide a subclass of CompilerPlugin called
GPTransfomer.

Persephone Core

Geppetto 2 GP
Transformer

Link
Annotation

MultiValuedAnnotation CompilerPlugin

Figure 5.6: Extension for compile-time evaluation.

The GPTransformer transforms a copy of the AST so that the meta-object
is called as specified in the link. Details can be found in the GPTransformer
class of the REFLECTIVITY distribution1.

5.5.2 Plugins for Reified Data

GEPPETTO supports data to be passed to the meta-object at runtime. Exam-
ples for this are the receiver and arguments from a message send, or the
name of an instance variable. In addition, these reifications can be used as
parameters for the condition or even as meta-objects. We discussed reified
data in Section 5.3.2. A full list of all pre-defined reifications can be found
in Table 5.1 on page 97.

We provide a plugin-architecture to add new kinds of reified data to be
defined. All existing ones are implemented using this plugin architecture.
All these so-called parameters are defined as classes, they share the common
superclass GPParameter. To add a parameter, we add a subclass. We take
GPObjectParameter as an example. The class needs two methods on the class
side. First, a method key returning the name of the parameter:

GPNodeParameter class>>key
^#object

1http://www.iam.unibe.ch/~scg/Research/Reflectivity

http://www.iam.unibe.ch/~scg/Research/Reflectivity

108 Behavioral Reflection Revisited

The method nodes returns an array of all classes that can provide this
data. The object is available in all node objects, thus we return an array
containing the common superclass, RBProgramNode:

GPContextParameter class>>nodes
^{RBProgramNode}

The last method is responsible for code generation. It returns an AST
which, when executed, results in the data we are interested in:

genForRBProgramNode
^RBVariableNode named: 'self'

With this plugin architecture, users of the framework can easily add
reifications of data they are interested in. A typical example would be
an analysis application for web-frameworks like Seaside. Here a very
interesting piece of information is the currently executing session. With the
help of a GPSessionParameter, we can reify this information and pass it for
example to a condition of a link so that the analysis is scoped towards one
particular session.

5.5.3 Code Quality

To show that we can generate more optimized code by leveraging the AST,
we show a simple example. First we show how this is done on bytecode,
then we discuss how the code can be optimized with the AST.

We have bytecode for the expression 3+4:

pushConstant: 3
pushConstant: 4
send: +
returnTop

We already discussed in Section 3.2.4 how to access runtime data like the
receiver and arguments of a message send with bytecode transformation.
For a before on a message send, we need to do the following:

1. We store the argument in a temporary variable.

2. We store the receiver in a temporary variable.

3. We call the meta-object.

4. We rebuild the stack so that the original message send can proceed
normally.

Implementation 109

The following examples shows the bytecode of the example expression
3+4 with the hook code added just before the original send of +:

pushConstant: 3 "original code"
pushConstant: 4 "original code"
popIntoTemp: 0 "put argument in temp 0"
popIntoTemp: 1 "put receiver in temp 1"
pushConstant: Logger "push the meta--object"
pushTemp: 1 "push receiver for logging"
send: logReceiver: "invoke the meta--object"
pop "end of meta--object call"
pushTemp: 1 "rebuild the stack"
pushTemp: 0
send: + "original code"
returnTop "original code"

As can be already seen in this simple example, there is an overhead
associated with this solution.

In the case of the AST, we can do better. An easy optimization can be
done with just a little analysis of the node that we generate code for. If the
receiver is a literal or a variable, we do not need to introduce temporary
variables. In the case of the send seen in the example, the transformer has
recognized the fact that the receiver is a literal and does not generate code
to store the receiver in a temporary variable.

pushConstant: 3
pushConstant: 4
pushConstant: Logger
pushConstant: 3
send: logReceiver:
pop
send: +
returnTop

Another field where interesting optimizations are possible is cross link
optimization when there are multiple links installed on one node. For
example, when two links on the same message send are interested in the
same data (e.g., the arguments of a send as an array), it can be interesting to
store this data once in a variable to be used by the code of both meta-object
calls.

The current implementation has only some possible optimizations real-
ized, we plan to improve optimized transformations, especially the case of
cross link optimizations in the future.

110 Behavioral Reflection Revisited

5.6 Evaluation and Benchmarks

We first present benchmarks, then we discuss how our new model solves
the problems we found with the bytecode-based solution (see Chapter 3).

5.6.1 Benchmarks

We presented previously in Chapter 3 a validation of unanticipated partial
behavioral reflection. This validation has not been invalidated due to our new
realization of top of our sub-method structural representation, as the new
model is in principle the same. The only thing we need to make sure is that
the performance has not degraded. To the contrary, we emphasized code
quality (and thus execution speed) explicitly as one of the problems of the
low-level representation used in the first implementation. Thus we need to
show that our new approach is indeed better then the old. To show this, we
compare our new system to the old one focussing on two key properties:
performance of instrumentation and performance of instrumented code.

All benchmarks are run on an Apple MacBook Pro (2Ghz Intel Core
Duo, 2GB RAM).

Performance of Instrumentation

We first compare GEPPETTO 1 and GEPPETTO 2 regarding instrumentation
performance, which is the time it takes to install links on a piece of code
before execution.

We use the package Network-IRC. This is an implementation of an IRC
chat client. It consists of 39 classes, 751 methods and 2601 message sends
that are not inlined in the bytecode. We install on these operations a very
simple link: a message yourself send to the meta-object Object new.

To make both frameworks comparable, we only instrument those mes-
sage sends that exist in the bytecode and thus can be annotated with both
frameworks. As GEPPETTO 2 does on-demand code-generation, just com-
paring instrumentation time would not be entirely fair. The real transforma-
tion is done later on demand at runtime. Therefore, we modify GEPPETTO
2 to force code generation for every method where a link is installed.

Table 5.4 shows the result. When annotating without code generation,
the new system is around 10 times faster. Even when forcing code genera-
tion for all possible methods (the worst case), GEPPETTO 2 still is two times
faster.

In practice, we will not pay the price of full instrumentation at runtime,

Evaluation and Benchmarks 111

System time (msecs) factor
Geppetto 1 8489 1.0
Geppetto 2 836 10.15
Geppetto 2 code gen 3880 2.19

Table 5.3: Instrumentation performance

as only a subset of methods actually gets executed. This will result in less
time needed to generate code at runtime.

Execution Performance

To assess the performance of generated code, we use the example that we
have shown in Section 5.5.3 to show that simple optimizations do lead to
better runtime performance. The method #plus of class PlusB returns the
result of the expression 3+4:

PlusB>>plus
^3+4

We install a link on the message #+:

link := GPLink new metaObject: Logger;
selector: #logReceiver:;
arguments: #(receiver).

The link requests the receiver to be passed to the meta-object as an argu-
ments. We implemented this example in both GEPPETTO 1 and GEPPETTO
2. To assess the runtime, we execute:

b := PlusB new.
[10000000 timesRepeat: [b plus]] timeToRun

Running the above code with no links installed leads to a runtime of
1320 milliseconds. We need to deduct this from the overall runtime to get
the actual time spend on the execution of the meta-object (code of the link
and the execution of the empty method).

Table 5.4 shows the result. We record the base case of no installed links
and both GEPPETTO versions. For overall runtime, the bytecode-based
solution is slower by around 14 percent, whereas when we deduct the base
case we can see that the actual execution of meta-object behavior is slower
by 43 percent.

112 Behavioral Reflection Revisited

When we analyze the bytecode generated by GEPPETTO 1 and GEP-
PETTO 2, we see for one the effect of the optimization described in Sec-
tion 5.5.3. We do not need to store the argument and the receiver in a
temporary variable. The other optimization that helps with performance is
link inlining. With GEPPETTO 1, the meta-object was never inlined into the
bytecode but requested from the link and stored in a temporary variable.
With GEPPETTO 2, we inline the meta-object into the bytecode as a literal
object by default.

System time (msecs) factor link (msec) factor
No Links 1320 0
Geppetto 2 1977 1.0 657 1.0
Geppetto 1 2252 1.14 932 1.42

Table 5.4: Comparing runtime performance

Of course, this a micro-benchmark showing pure link-call performance.
In any normal setting, the meta-object will not consist of an empty method.
Instead, code is executed by the meta-object. This code will take a large
share of the overall runtime of a call to the meta-object, the call to the meta-
object itself is only a tiny part of the overall execution time. Nevertheless,
we have shown that the new system generates faster code than the original
realization as presented in Chapter 3 based on BYTESURGEON.

5.6.2 Evaluation

At the beginning of this chapter, we mentioned three problems of the first
realization of partial behavioral reflection (Chapter 3). In the following, we
discuss how the system described in this chapter solves the problems.

Semantic Mismatch

The AST of sub-method reflection represents the structure of a method as
a tree. All programming language concepts a programmer knows from
the language are represented in this tree. Examples are control-structures:
message sends like ifTrue: are optimized to jumps at the level of bytecode,
but they exist as message sends in the AST. Blocks are another example:
at the level of bytecode, block closures have no static representation, there
is just code to create a block at runtime, which makes it hard to reason
about the block-structure of code. The AST, however, represents blocks as
RBBlockNode, including those that are part of control structures.

Evaluation and Benchmarks 113

Code Quality

The stack model of bytecode complicates transformation at the level of
bytecode. The problem is that at a certain bytecode instruction, we only
know the layout of the stack, thus possible transformations are limited. To
call a meta-object, we insert a so-called hook, a short piece of code that does
the call to the meta-object. When we need to pass information to the meta-
object, an additional preamble is needed that gets the needed information
from the stack and stores it in a local variable.

The AST provided by sub-method reflection, in contrast, provides better
support for transformations. The method structure is encoded as a tree, we
can directly transform that tree and in many cases this means that we do
not need to introduce additional variables or stack manipulation code.

Synthesized Code

When realizing behavioral reflection by transforming structure, we have
the problem that this change is visible via introspection. For example,
when adding a call to a tracer, at the level of the bytecode, this call is
not distinguishable from base-level code. Introspection of the method,
for example counting message sends, would lead to incorrect results. It
is especially problematic for tools that work on a sub-method level like
debuggers as they need to provide a mapping from the bytecode to the
source code for the user.

This problem is not solved by performing the transformation at a higher
level. Even when moving from bytecode towards the AST, the problem
remains: transforming code for behavioral reflection destroys the original
representation.

Nevertheless, sub-method reflection provides a solution to this problem.
Sub-method reflection provides two levels of code: a high-level representa-
tion for reflection and a low-level representation for execution. The idea is
to not transform the reflective model, but only the executed code which is
never reflected on. This is realized by using the annotations combined with
compiler plugins that give meaning (in the form of transformed code) to
these annotations.

Performance and Extensibility

In principle the problems of semantic mismatch and code quality could
have already been solved in Chapter 3 by not using bytecode as the basis
for transformation. We could have used the AST as an intermediate repre-
sentation. But there are reasons for using bytecode, as we have discussed

114 Behavioral Reflection Revisited

in Section 3.2.1:

Performance. Decompiling bytecode to the AST instead of a bytecode-near
IR is costly.

No original language warranty. The bytecode we find in a method might
not have been produced by a Smalltalk compiler, but some compiler
for another language that compiles to Smalltalk bytecode.

Sub-method reflection solves both problems. The performance problem
is solved by the persistent AST and on-demand code generation. The most
expensive part of using an AST is decompilation of bytecode. With sub-
method reflection, the AST is persistent, therefore we do not pay any cost
for decompilation at all. In addition, we generate code on-demand. We
therefore save time by not generating bytecode for methods that are not
executed.

The problems of supporting other languages is solved by our PERSE-
PHONE compiler framework being an open implementation. We can, if
needed, extend the AST to support other languages. The open compiler
framework allows us to add new types of nodes for a non-Smalltalk lan-
guage and provide code generation support easily.

5.7 Summary

We have presented a second realization of partial behavioral reflection where
the links are annotations on the sub-method representation. We have sim-
plified the overall framework considerably and extended it with support to
reference reifications of method structure from the meta-objects. To show
that our system can replace the bytecode-based model presented in Chap-
ter 3, we have provided benchmarks. We have shown that our new system
solves all problems identified in Chapter 3, in particular the problem of
semantic mismatch, code quality and synthesized elements.

In the next chapter we discuss the remaining problem: we cannot apply
behavioral reflection to an entire system.

Chapter 6

Modeling Meta-level
Execution with Context

6.1 Introduction

We run into problems when applying behavioral reflection to either system
classes or the code of meta-objects themselves, for example when applying
a trace tool realized with behavioral reflection to itself. The reason for this
is that calls to meta-objects will result in endless loops as soon as code is
called from the meta-level that itself requests a call to the same meta-object.
Behavioral reflection thus cannot be applied to the whole system.

First we present a simple example to illustrate the problem of meta-object
call recursion. We then discuss the problem in detail and show that the cause
for the problem is the missing representation of meta-level execution. The
next section then provides an overview of context and contextual reflection
which can solve the presented problem. We elaborate on an implementation,
show benchmarks and after an overview of related work we conclude with
a discussion of future work.

6.2 A Simple Example

We first provide a short overview of partial behavioral reflection and discuss
how to implement a simple example, which we use in the rest of the paper.

The problem of meta-object call recursion is a known problem [29]. To
show that it is relevant in practice, we have decided to keep our example

116 Modeling Meta-level Execution with Context

as simple as possible. In Section 6.6.2 we discuss as more complex scenario
how our solution is useful for dynamic analysis in general.

Imagine that we want to trace system activity: we want the system to
beep when it executes a certain method. This audio based debugging is
an interesting technique to determine if a certain piece of code is executed
or not. In Squeak, there is a class Beeper that provides all the beeping
functionality. When calling beep, the beep sound is played via the audio
subsystem. The following example shows how to create a link that will
invoke the message beep on the Beeper class.

beepLink := Link new metaObject: Beeper.
beepLink selector: #beep

Now we can install this beepLink on a method that is part of the system
libraries. We take on purpose the method add: in OrderedCollection, a central
class part of the collection libraries that is heavily used by the system. To
set the link, we send the message link: to the AST-Node that stands for the
whole method:

(OrderedCollection>>#add:) methodNode link: beepLink.

As result, a sound should be emitted each time the method OrderedCol-
lection»#add: is called. But as soon as we install this link, the system freezes.
This clearly was not the intended outcome.

6.3 Infinite Meta-object Call Recursion

Let’s analyze the cause for the problem presented above. After a discussion
of some ad-hoc solutions, we show that the problem is caused by a missing
model for the concept of the meta-level execution.

The Problem. To ensure that the problem is not caused by our framework,
we modify the example to call a different method at the meta-object, the
method beepPrimitive which directly executes functionality defined in the
virtual machine.

beepLink := Link new metaObject: Beeper.
beepLink selector: #beepPrimitive.

When installing this link, we can see that it works as expected: we
can hear a beep for all calls to the add: method, for example when typing
characters in the Squeak IDE.

The problem thus lies in the code executed by the meta-object. The
Squeak sound subsystem uses the method add: of OrderedCollection at some

Infinite Meta-object Call Recursion 117

place to emit the beep sound. Thus, we execute the same method add: from
the meta-object that triggered the call to the meta-object in the first place.
Therefore we end up calling the meta-object again and again as shown in
Figure 6.1. This is clearly not a suitable semantics for behavioral reflection:
it should be possible to use behavioral reflection even on system libraries
that are used to implement the meta object functionality themselves.

Base Level Meta Object Meta Object

Infinite recursion

#beep send
#add: send

#add: send

#beep send
#add: send

Figure 6.1: Infinite recursive meta-object call

We present now two ad-hoc solutions.

Code Duplication. As the problem is caused by calling base level code
from the meta-object, one solution would be to never call base level
code from the meta-object, but instead provide a renamed copy for all
classes and use these from the meta-level. Duplicating the complete
system has, of course, all the standard problems of code duplication:
space is wasted. In addition, the copy can easily become out of sync
with the original. The problems could be minimized by just copying
those methods that are really needed. In practice, it is not easy to
identify these methods, especially in dynamic languages. In addition
this would cause changes in the reflective layer to become fragile
because any change would require the programmer to update the
copied version of the base level. This is clearly not a good solution.

Adding Special Tests. Another solution could be to add special code to
check if a recursion happens. The problem with this solution is that it
is ad-hoc, the code-base becomes cluttered with checking instructions.
It just patches the symptoms, the recursive call, and does not address
the real problem.

The Real Problem: Modeling Meta-level Execution. The ad-hoc solutions
are not satisfactory. The real problem exemplified by a recursive meta-call
is that when using meta-objects instead of infinite towers-of-interpresters,
the awareness that an execution occurs at the meta-level has been lost.
Normally activation of a meta-object implies a jump to the meta-level. The
problem now is that this meta-level does not really exist in meta-object-

118 Modeling Meta-level Execution with Context

based architectures: there is no way to query the system to know whether
we are at the meta-level or not.

It should be noted again that the problem we have seen is not specific
to a particular behavioral reflection framework. We observe the same
problem when applying MethodWrappers [24] to system classes. Method
wrappers wrap a method with before/after behavior. MethodWrappers are
reflectively implemented in Smalltalk and thus use lots of system library
code during the execution of the wrapped methods. The same problem
was identified for CLOS [29] and is thus present in other meta-class based
systems like for example Neoclasstalk [20], or MetaClassTalk [17].

6.4 Solution: The MetaContext

We have seen that the real cause for the problem of endless recursion lies in
the absence of a model for meta-level execution: the fact that the system is
executing meta-level code is not represented.

6.4.1 Modeling Context

At any point in the execution of some piece of code we should be able to
query whether we are executing at the meta or at the base level. Such a
property can be nicely modeled with the concept of context: the meta-level is
a context that is active or inactive.

With a way to model meta-level execution, it is possible to solve the
problem of recursive meta-object calls. A call to the meta-object can be
scoped towards the base level: a meta-call should only occur when we
are executing at the base level. If we are already at the meta-level, the
calls should be ignored. This way, meta-object calls are only triggered by
the base level computation, not the meta-level computation itself, thereby
eliminating the recursion.

We will first describe a simplified model that only provides two levels
of execution (base and meta). We describe later how to extend our model
to support multiple meta-levels.

The Metacontext. To model the meta-level, we introduce a special context,
the MetaContext. This context is inactive for a normal execution of a
program. MetaContext will be activated when we enter in the meta-level
computation and deactivate when we leave it (Figure 6.2). The meta-context
thus models meta-level execution.

A simple model with just one meta-context is enough to distinguish the
meta from the base level. We will see later that it makes sense to extend the

Solution: The MetaContext 119

Base Level Meta Level

MetaContext activation

MetaContext deactivation

Figure 6.2: The MetaContext activation

meta-context to a possibly infinite tower of meta-contexts in Section 6.4.3.

Controlling meta-object activation. Just having a way to model meta-
level execution via the meta-context is not enough to solve the problem
of recursion, it is just the prerequisite to be able to detect it. We need to
make sure that a call to the meta-object does not occur again if we are
already executing at the meta-level. Thus, the call to the meta-level needs
to be guarded so it is not executed if the execution is already occurring at
the meta-level. In the context of behavioral partial reflection (i.e., in the
link-meta-object model that we used to show the problem), this means
that the links are parameterized by the contexts in which they are active or
not-active.

6.4.2 The Problem Revisited

With both the meta-context and the contextual controlled meta-object calls,
we now can return to our example and see how our technique solves the
problem of recursion. In our example, we defined the Beeper as a meta-
object to be called when executing the add: method of OrderedCollection. The
following steps occur (see Figure 6.3):

1. The add: method is executed from a base level program.

2. A call to the meta-object Beeper is requested:

• We first check if we are at the meta-level. As we are not, we
continue with the call.

• We enable the MetaContext.

• We call the meta-object.

120 Modeling Meta-level Execution with Context

Base Level Meta Level

Stop meta-level call

Figure 6.3: Stopping infinite meta-call recursion

3. Meta-object executes the beep method.

4. Meta-object calls the method add: method again

5. A Call to the meta-object is requested

• We first check if we are at the meta-level. As we are executing
meta-level code, the call is aborted.

6. Meta-object execution continues until it is finished.

7. On return to the base level, we deactivate the MetaContext.

Thus the recursive meta-call is aborted and the danger of recursion is
eliminated. The model we described up to now with just one MetaContext
is thus enough to solve the problem, but it not complete: it does not, for
example, allow any calls to metameta-objects while already executing at
the meta-level, which would make it impossible to observe or reason about
metabehavior. In the next section, we therefore extend the model.

6.4.3 The Contextual Tower

As with the tower of interpreters, we can generalize the meta-context to
form an infinite tower of meta-contexts. With the infinite tower of reflective
interpreters, a reification is always bound to a specific interpreter. Nor-
mally, a jump from the base to the meta level means executing a reflective
function that is defined as part of the interpreter I1. But it is possible to
define a reflective function one level up: this then is only triggered by the
interpreter I2 that interprets I1, thus allowing us to reflect on the interpreter

Solution: The MetaContext 121

I1 itself. Figure 6.4 shows the reflective tower as visualized in the work of
Smith [119].

(define READ-NORHALISE-PRINT
(lambda simple [env stream]

(block (prompt&reply (normalise (prompt&road stream) env)
stream)

(road-normalise-prlnt one stream))))

(define NORMALISE
(lambda simple [str'uc e.v]

(rend [(normal struc) struc]
[(atom sLruc) (binding sLruc env)]
[(r a i l struc) (normaltse-rai l struc env)]
[(pa i r struc) (reduce (ca rs t ruc) (cd rs t ruc) env)])))

define REOUCE
(lambda slmple [proc args env]

(le t [[proc! (normalise proc env)]]
(selectq (procedure-type procl)

[simple (le t [[args! (eormaltse args env)]]
(i f (pr imi t ive procl)

(reduce-primit ive-simple
proc! argsl env)

(expand-closure procl a rgs l)))]
[intensional (i f (pr imi t ive proc!)

(reduce-primtttve-lntenslonal
proc! targs any)

(expand-closure procl targs))]
[macro (normalise (expand-closure procl targs)

env))]))))

(define NORMALISE°RAIL
(lambda simple [r a i l env]

(I f (empty r a i l)
(rears)
(prep (normalise (l s t r a i l) env)

(normaiise-rat l (rest r a i l) onv)))))
define EXPAND-CLOSURE
(lambda simple [proc! argsl]

(normalise (body, procl)
(bind (pattern procl)

argsi
(environment p roc l))))

Figure 13:ANon-C(mtinuation-Passblg 2-LISPMCP

given in the previous paragraph leads one to think of an infinite
number of levels of reflective processors, each implementing the

one below. 7 On such a view it is not coherent either to ask at

which level the tower is running, or to ask how many retlective

levels are running: in some sense they are all running at once.

Exactly the same situation obtains when you use an editor

implement, ed in APL. It is not as if the editor and the APL

interpreter are both running together, either side-by-side or

independently; rather, the one, being interior to the other,

SUl)plies the anima or agency of /.he outer one. To put this

another way, when you implement one process in another

process, you might want to say that you have two different

processes, but you don't have concurrency; it is more a

part /whole kind of relation. It is just this sense in which the

higher levels in our rcllective hierarchy are always running:

each of them is in some sense within the processor at the level

below, so that it can thereby engender it. We will not take a

principled view on which account - - a single locus of agency

stepping between levels, or an infinite hierarchy of

simultaneous processors - - is correct, since they turn out to be

behaviourally equivalent. (The simultaneous infinite tower of

levels is often the better way to understand processes, whereas

a shi|!,ing-level viewpoint is sometimes the better way to
understand programs.)

3-Lisp, as we said, is an infinite reflective tower based on

2-Lisp. The cede at each level is like; the continuation-passing 2-

Lisp MCP of Figure 14, but extended to provide a mechanism

whereby the user's program can gain access to fully articulated
descriptions of that program's operations and structures (thus

extended, and located in a reflective tower, we call this code the

3-Lisp reflective processor). One gains this access by using what

are called reflective prncedures ~ procedures that, when
invoked, arc run not at the level at which the invocation

occurred, but one level higher, at the level of the reflective
processor running the program, given as arguments those

structures being passed around in the reflective processor.

define READ-NORNALISE-PRINT
(lambda simple lone stream]

(normailse (prompt&read stream) oily
(lambda simple [resu l t]

(block (prompt&reply result stream)
(read-normalise-print env stream))))))

(define NORHALISE
(lambda simple [s t rc one cent]

(rend [(normal struc) (cent s t rc)]
[(atom sire) (cent (binding strc env))]
[(r a i l strc) (normaltse-rai l strut env cont)]
[(pa i r strc)(reduce (ca rs t r c) (cdcs t r c)envcon t)]) }

(define REDUCE
(lambda simple [proc args env coat]

(normalise proc env
(lambda slmpte [proc!]

(selectq (procedure-type procl)
[simple

(normaltse args any
(lambda simple [args!]

(i f (pr imi t ive procl)
(redece-primtttve-stmple

pratt args! env cent)
(expand-closure proc! args! cos t))))]

[intensional
(i f (pr imi t ive procl)

(reduce-primit ive- intenslonal
proc! targs env cent)

(expand-closure procl ~args cont))]
[macro (expand-closure pros! targs

(lambda simple [resu l t]
(normallse resul t any c o n t)))]))))))

(define NORMALISE-RAIL
(lambda simple [r a i l env cent]

(i f (empty r a i l)
(cent (rcons))
(normalise (l s t r a i l) env

(lambda simple [f t r s t l]
(normal ise-ral l (rest rat1) env

(iambda simple [r es t !]
(cent (prep f i r s t ! r e s t !)))))))))

define EXPAND-CLOSURE
(lambda simple [proc! ergs! cent]

(normalise (body procl)
(bind (pattern proc!) args! (one procI))
cent)))

Figure 14: A Continaation-Passing 2-LISP MCP

Reflective procedures are essentially analogues of subroutines b

be run "in tile implementation", except that they are in the

same dialect as that being implemented, and can use all the

power o(' the implemented language in carrying out their

function (e.g., reflective procedures can themselves use reflective

procedures, without limit). There is not a tower of different

languages - - there is a single dialect (3-Lisp) all the way up.

 L ve,,co . l''l J
Figure 15: The 3-LISP Reflective Tower

31 Figure 6.4: The 3-Lisp reflective tower from [119]

Transposed to our contextual model, it follows that having just one
context (the meta-context) is not enough. We need more contexts for meta-
meta, meta-3 and so on. If we have this contextual tower, we can for example
define a meta-meta object that is only called when we are executing at
meta-1. Meta-object calls need thus not only be defined to be active for the
base level, but they can optionally be defined to be active for any of the
meta-levels. This allows us to define meta*objects that reason about the
system executing at any level, as with the endless tower of interpreters.

As with all infinite structures, the most important question is how to
realize it in practice. For the case of the infinite meta-context tower, there
is an easy solution: contexts are objects, so they can have state. We can
parameterize the meta-context object with a number describing the meta-
level that it encodes. Shifting to the meta-level means shifting from a
context n to a context n + 1.

Figure 6.5 shows an example. We have three contexts: the base level,
the meta-level and meta-2. We see two links that are active at the base
level. When called, they activate the meta-context with level 1. Then in
the code of the meta-object (either the code of the meta-object itself or any
library code executed), we have a third link. This link is defined to be active
only on meta-level 1, thus it will on execution enable meta-2. We show an
example of such a level 1 link in Section 6.6.2.

An interesting and very nice property of the parameterized context
is that the meta-contexts are only created on demand, they do not exist

122 Modeling Meta-level Execution with Context

operation

meta-object

links
level 0

metameta-
object

link
level 1

base

meta

meta-2

Figure 6.5: The Contextual Tower up to the second level

as an endless tower. This means, we have a form of partial reflection for
providing a potential endless tower. If a meta-level is not needed, it does
not cost anything.

In the following, we extend our simple context representation to support
such an endless tower of contexts.

6.4.4 MetaContext Revised

The simple version of our idea with just one MetaContext is not enough
to allow us to encode the Contextual Tower. We need a slightly modified
model of MetaContext where the MetaContext is parameterized by the level.
Such a parameterized MetaContext is not simply active or inactive, it is
active for the level that it currently is set to. Thus when querying such a
MetaContext, we give as a parameter a number denoting a meta-level. We
will in the next section see how to realize such a context in practice.

6.5 Implementation

Now that we have described the solution in general, we present an imple-
mentation of that model for REFLECTIVITY, our reflection framework. We
first show how the context is implemented and then discuss contextual
links.

Implementation 123

6.5.1 Implementation of MetaContext

The MetaContext is a class that has one instance per thread (a thread-
specific singleton). The instances are created on demand and are stored per
thread. As threads are objects in Squeak, we extended them to be able to
store additional state directly in an associated dictionary. This mechanism
is then used to store the MetaContext instance.

Querying context. The MetaContext needs to model the meta-level. For
that, it has one instance variable named level. We can increase the level by
calling shiftLevelUp or decrease by shiftLevelDown. To test if the MetaContext
is active for a certain level n we can call isActive: with a parameter denoting
the level:

MetaContext current isActive: 0

Sending current to the class MetaContext will retrieve the MetaContext
singleton from the current process. If there is none yet, it will lazily create a
MetaContext with the level set to 0. Thus for a normal base level execution
of code the expression above will return true.

Executing code in the MetaContext. To change the meta-level that code
is executed at, we provide a way to run a block (an anonymous higher
order function) one meta-level higher than the code outside the block. For
example, to execute at meta-1, evaluate:

[self assert: (MetaContext current isActive: 1)] valueWithMetaContext

If code is already executing at meta-1, calling valueWithMetaContext again
will execute at meta-2:

[[self assert: (MetaContext current isActive: 2)
] valueWithMetaContext] valueWithMetaContext

The method valueWithMetaContext is implemented in the BlockClosure ob-
ject. It will first shift the level of the current MetaContext up, then the
block is executed. At the end the level of the context is shifted down to the
previous value. We make sure that the downshift happens even in case of
abnormal termination by evaluating the block using the exception handling
mechanisms of Smalltalk:

valueWithMetaContext
MetaContext current shiftLevelUp.
^self ctxtEnsure: [MetaContext current shiftLevelDown]

To make sure that the execution of the context handling code itself does
not result in endless loops, we do not call any code from system libraries in

124 Modeling Meta-level Execution with Context

this method. Instead, we carefully copy all methods executed by the context
setup code. The copied methods reside in the classes of the system library,
but they are prefixed with ctxt and edited to call only prefixed methods.
One example is the call to ctxtEnsure: seen in the method above.

Concurrent meta-objects. As the MetaContext is represented by a thread-
specific singleton, forking a new thread from the meta-level would mean
that this thread has its own MetaContext object associated which is ini-
tialized to be at level 0. We have solved this problem by changing the
implementation of threads to actually copy the meta-level information to
the newly created thread. A thread created at the meta-level thus continues
to run at the meta-level:

[[self assert: (MetaContext current isActive: 1)] fork] valueWithMetaContext

As the context information is not shared with the parent thread, the
meta-level of the new thread is independent. It can continue to run at the
meta-level even when the parent thread has already returned to the base
level.

6.5.2 Realizing Contextual Links

Now that we have a suitable way to represent the meta context, we need
to make the links and the code that is generated to call them context-aware.
For that, we need to solve three problems:

1. the link needs to be defined to be specific to a certain meta level.

2. link activation should occur only when code is executing at the right
meta-level.

3. link activation should increase the meta-level.

The first problem is solved by a simple extension of the Link class,
whereas the other two are concerned with the code that our system gener-
ates for link activation. We will now show the required changes in detail.

Meta-level Specific Links. To allow the programmer to specify that a link
is specific to a certain meta-level, we extend the link with a parameter
called level. If level is not set, the link is globally active over all links (the
standard behavior). The level can be set to any integer to define a link to
only be active at that specific meta level. For our example, a link that is
active only when executing base level code looks like this:

beepLink := Link new metaObject: Beeper.
beepLink selector: #beep;

Evaluation and Benchmarks 125

beepLink level: 0.

Context-Aware Link Activation. To jump up one meta-level on link acti-
vation, we make sure that the code generated for a link is wrapped in a
send of valueWithMetaContext. The resulting code will look like this:

[... code of the link ...] valueWithMetaContext

In addition to that, we need to make sure that the link is only called
when we are on the correct meta level. This is done by checking if the
current MetaContext is executing on the same level as the level that the link
is defined to be active. Only if this is true, we activate the link and call the
meta-object. The code we need to generate looks like this:

(MetaLevel current isActive: link level) ifTrue: [
[... code of the link ...] valueWithMetaContext

].

We will not go into the detail of how exactly the code is generated.
The code can be found in the class GPTransformer of the REFLECTIVITY
distribution1.

6.6 Evaluation and Benchmarks

We first show that our solution solves the recursion problem, then we
discuss how meta-context is useful for dynamic analysis. We describe
dynamic meta-level analysis and realize an example. We present benchmarks
to show the practicability of our approach.

6.6.1 The Problem is Solved

We show that we can really solve the practical problem. For that, we define
the link that activates the Beeper to be specific to level 0:

beepLink := Link new metaObject: Beeper.
beepLink selector: #beep;
beepLink level: 0.

Now we can install the link:

(OrderedCollection>>#add:) methodNode link: beepLink.

1http://www.iam.unibe.ch/~scg/Research/Reflectivity

http://www.iam.unibe.ch/~scg/Research/Reflectivity

126 Modeling Meta-level Execution with Context

As soon as the link is installed, the next call to the add: method will
trigger code-generation for that method. The code-generator will take the
link into account and generate code as described earlier. Thus the recursive
call to the add: method will not occur. We will thus hear a beep for every
call to the add: method from the base level only.

6.6.2 Benefits for Dynamic Analysis

Our initial reason for modeling meta-level execution was to solve the
problem of meta-object call recursion, and thus making reflection easier to
use. But the solution we presented, modeling meta-level execution with
the help of a meta-context, is useful far beyond just solving the problem
of recursion. In this section, we will discuss what it means for dynamic
analysis. We show how it allows the programmer to analyze the code
executed by meta-objects by enabling dynamic meta-level analysis.

Dynamic Analysis. One of the applications for behavioral reflection is
dynamic analysis. For example, with reflection, it is fairly easy to intro-
duce tracers or profilers into a running program [42] that normally require
changes at the level of the virtual machine. One problem, though, with
using reflection to introduce analysis code is that it is not clear which of
the recorded events are resulting from the base level program execution
and which from the code of the tracer itself. As long as we only trace
application code, we can easily restrict the reflective tracer to the code of
the application. But as soon as we want a complete system trace, we start
to get into problems: recursion can occur easily (the problem we solved
earlier), but even after working around recursion, we face another problem:
how do we distinguish events that originated from the application from
those that only occur due to the code executed by the tracer itself?

With our meta-level execution context, the problem described does not
occur at all. The tracer (or any other tool performing dynamic analysis) is
actually a meta-level program. A simple tracer would be the meta-object
itself. More complex analysis tools would be called from a meta-object
reifying the runtime event we are interested in. Thus, the code that performs
the dynamic analysis is executing at the meta-level, while the links that
trigger it are only active when executing a base level computation. This
way we make sure that the infrastructure performing our analysis never
affects the trace itself.

Dynamic Meta-level Analysis. An interesting challenge for dynamic anal-
ysis is that of analyzing the meta-level execution itself. Meta-level code
should be lean and fast to not slow down the base computation more then
really necessary. We thus are very interested in both tracing and profiling
meta-level execution.

Evaluation and Benchmarks 127

Our explicitly modeled meta-level execution makes this easy: we can
define a link to be only active when executing at the meta-level. Therefore,
we can install for example a trace-tool that exactly provides a trace of only
those methods executed by a meta-object, even though the same methods
are are called by the base level at the same time. We can thus as easily
restrict the tracer towards meta-level execution as we restrict it to trace base
level programs.

For our example, this means that we can use dynamic meta-level analy-
sis to find the place in the sound-subsystem where the recursion problem
happens when not using contextual links. In Section 6.3 we discuss that
recursion happens, but we do not know where exactly the recursive call
happens.

We define a link that is only active when we are executing code at
level 1:

loggerLink := GPLink new metaObject: logger;
selector: #log:;
arguments: #(context);
level: 1.

This link sends the message log: to the logger. The logger is an instance
of class MyLogger:

logger := MyLogger new.

The method log: records the stack-frame that called the method where
the link is installed on:

MyLogger>>log: aContext
contexts add: aContext home sender copy

We install both a link calling the Beeper that is specific to level 0 and our
link that is specific to level 1 on the method add:.

beepLink := Link new metaObject: Beeper.
beepLink selector: #beep;
beepLink level: 0.

(OrderedCollection>>#add:) methodNode link: beepLink.
(OrderedCollection>>#add:) reflectiveMethod methodNode link: loggerLink.

We can now inspect the logger object and see that it is recording the
execution of SoundPlayer class»startPlayingImmediately: for every beep. Looking
at this method, we find the code ActiveSounds add: aSound., which is the one
spot in the sound system that calls the method add: of OrderedCollection. Thus

128 Modeling Meta-level Execution with Context

we found with the help of dynamic meta-level analysis the exact call that
causes the recursion problem as shown in Section 6.2.

6.6.3 Benchmarks

To assess if the system as presented is practically usable, we have carried
out some benchmarks. Without the additional code for context activation,
there is no overhead at all for calling a meta-object besides the call itself.
The link specifies the meta-object and which method to call. The system
generates from that information code that just calls the meta as specified.
The problem now for analyzing the new context-enabled system is that the
context code will, compared to the standard link activation, take a lot of
time. In practice, though, meta-objects are usually there to do something:
there is always code executed at the meta-level. So to make a practical
comparison of the additional percentage of slowdown introduced by the
context code, we need to compare the context-setup code not only to the
link activation of an empty meta-object, but to a meta-object that actually
executes code.

We will benchmark the slowdown of the context handling for the exe-
cution of different meta-objects. The variation between the meta-objects is
the number of sends done at the meta-level. For the benchmark, we create
a class Base with just one empty method bench. To play the role of a meta-
object, we create a class Meta with one method in which we call an empty
method in a loop. This method thus simulates a meta-object doing some
work. We can easily change the amount of work done by changing the
loop. To know how this simple benchmark compares to real code executed,
we added a meta-object calling the Beeper and one converting a float to a
string.

We install a link on the method in Base to call the method in Meta. We
call the base method now in a loop and measure the time:

[100000 timesRepeat: [Base new bench]] timeToRun

Table 6.1 shows the result when comparing both the original GEPPETTO
and the context-enabled GEPPETTO for different meta-objects2:

As expected, the slowdown in the case of an empty meta-object is
substantial. But as soon as the meta-object itself executes code, the overhead
starts to be acceptable. For calling the Beeper (from our running example),
we have found an overhead of 63%. We are down to 17% on when executing
500 empty methods, and at 6.4% on 1000 methods.

2The benchmark was run on an Apple MacBook Pro, 2.4Ghz Intel Core 2 Duo with 2GB
RAM on Squeak Version 3.9

Related Work 129

meta-object context (msecs) standard (msecs) slowdown
0 message sends 614 34 1’705.88%
10 message sends 723 165 338.18%
50 message sends 1040 470 121.28%
Beeper 1543 942 63.80%
100 message sends 1406 856 64.25%
200 message sends 2236 1621 37.94%
1234.345 printString 2534 1920 31.98%
500 message sends 4580 3907 17.23%
1000 message sends 8543 8029 6.40%

Table 6.1: Slowdown of meta-object calls with context

It should be noted that this does not mean that the overhead observed
for meta-object calls translate directly into a slowdown of a program using
reflection. In a real program, the overall slowdown depends on how often
meta-objects are called and how much time the program spends at the base
level and meta-level compared to switching meta-levels.

6.7 Related Work

Context-Oriented Programming. ContextL [33, 78] is a language to sup-
port Context-Oriented Programming (COP). The language provides a notion
of layers, which package context-dependent behavioral variations. In prac-
tice, the variations consist of method definitions, mixins and before and
after specifications. COP has no first-class notion of context, it is implicitly
defined by the layers that are activated. The topic of reflection has been
discussed for COP [34]. But the topic discussed is reflective layer activation,
not a reflective model of context or the use of context to structure or control
reflection itself.

Aspects. The concept of context has seen some use in AOP [127]. As context
specific behavior tends to crosscut base programs, it can be implemented
advantageously as aspects. This leads to the notion of context-aware as-
pects, i.e., aspects whose behavior depends on context. The work has been
continued in the direction of supporting reasoning on contexts and context
history on the level of the pointcuts [75, 76].

Deployment strategies [126] provide full control over dynamic aspect
deployment both related to the call stack and to created objects and func-

130 Modeling Meta-level Execution with Context

tions. AspectBoxes [13] is another example where aspects are controlled via
a context, in this case defined by the classbox model [10]. A good overview
and discussion on the many mechanisms for dynamically scoping crosscut-
ting in general is described in the work of Tanter [125].

Stratified Aspects [15] define an extension to AOP that identify spurious
recursion to be a problem and present the concept of meta-advice and
meta-aspects as a solution. This idea has some similarities to contextual
reifications, with the exception that meta-level execution is not modeled
explicitly.

The MetaHelix. The problem of unwanted meta-level call recursion has
been mentioned by Chiba and Kiczales [29]. The problem discussed is first
the structural problem that e.g., fields added by reflection to implement
changed behavior show through to any user of introspection. The other
problem mentioned is recursion, as any use of changed behavior can trigger
a reification again. As a solution, the authors present the MetaHelix. All
meta-objects have a field implemented-by that points to a version of the code
that is not reflectively changed.

This approach is both more general and restrictive than our context
based solution. It is more general, as it tries to solve the problem of the
visibility of structural change. And it is more restrictive, as it does not model
meta-level execution. The programmer has to call the right code explicitly,
thus it can be seen as a controlled way to support the code copying solution
presented in Section 6.3. The problem of structural changes is a very
interesting one. As future work we plan to apply the ideas of the meta-
context to structural reflection.

Subjective Programming. Us [122] is a system based on Self that supports
subject-oriented programming [73]. Message lookup depends not only on
the receiver of a message, but also on a second object, called the perspective.
The perspective allows for layer activation similar to ContexL. Thus subjec-
tivity is applied to the problem of controlling the access to reflection APIs,
subjectivity is not used for controlling behavioral reflection.

6.8 Summary

In this chapter we have analyzed the problem of the missing representation
of meta-level execution in meta-object architectures. We have shown that
the problem of infinite meta-object call recursion can be solved by introduc-
ing a representation for meta-level execution. We proposed to model the
execution at the meta-level as a first class context and presented an imple-
mentation. Benchmarks show that the implementation can be realized in a
practical manner.

Summary 131

With this extension, the last of the three problems we noted in Chapter 2
is fixed. We have extended structure to cover sub-method elements, added
support for behavioral reflection using annotations and made sure that
behavioral reflection can be used everywhere in the system, including
system classes and meta-object code itself.

In the next chapter, we show as a case study how to use the resulting
complete system, named REFLECTIVITY, in practice. We take dynamic feature
analysis as an example.

Chapter 7

Case Study: Dynamic
Feature Annotation

7.1 Introduction

In this chapter, we present a use-case for our REFLECTIVITY system. We
discuss how to use annotation-based partial behavioral reflection in the
context of dynamic analysis. First we give a brief introduction to feature
analysis and the problem of trace-based approaches. Then we present
feature annotation as a solution: instead of recording complete traces, we
directly annotate at runtime the static sub-method structure with information
about features.

The goal of this chapter is to show that the annotatable static model
of the system provided by sub-method reflection is not only useful as
the implementation basis of behavioral reflection. In addition, we can, at
runtime, access the static structure from the behavioral meta-objects and
annotate it with dynamic information. The annotations are then available
to tools, for example for visualization.

7.2 Dynamic Feature Analysis

We give a brief introduction to dynamic feature analysis before we dis-
cuss the problems with trace-based approaches that we solve with feature
annotation.

134 Case Study: Dynamic Feature Annotation

7.2.1 Feature Analysis in a Nutshell

Traditionally, reverse engineering techniques focused on analyzing source
code of a system [31]. In recent years, researchers have recognized the
significance of centering reverse engineering activities around the behavior
of a system, in particular, around features [55, 90, 118]. Reasoning about
object-oriented systems in terms of features is difficult, as they are not
explicitly represented in the source code. The first step therefore is to define
what is meant by a feature, establish a feature representation and to locate
the relevant parts of the source code that participate in its behavior.

The goal of feature analysis is to reason about a system in terms of its
features. A fundamental step of any feature analysis approach is to first
apply a feature identification technique to locate features in source code. As
a basis for feature analysis we use a model which expresses features as first
class entities and their relationships to the source entities that implement
their behavior [63]. Once the representation of a feature is established, we
can reason about a system in terms of its features. Furthermore, we can
enrich the static source code perspective with knowledge of the roles of
classes and methods in the set of modeled features.

The generally adopted definition of a feature is a unit of observable
behavior of a system triggered by a user [2, 55, 89, 132, 133]. Techniques
for feature identification through dynamic analysis typically instrument
a system, capture traces of feature behavior and establish links to source
code. However, capturing dynamic data to represent features raises many
issues that need to be taken into consideration.

7.2.2 Problems

Large Amounts of Data. The volume of trace data generated represents
a threat to the scalability of any feature analysis approach. As the
granularity required for an experiment increases, so too does the
volume of information generated.

Dynamic analysis approaches adopt different strategies to deal with
large amounts of data. Some of the most popular strategies adopted
by researchers to tackle and analyze dynamic data are: (1) summa-
rization through metrics [49], (2) filtering and clustering techniques
[71, 135], (3) visualization [32, 65] (4) selective instrumentation and (5)
query-based approaches [112]. Many techniques apply a combination
of these strategies.

Fine-grained Analysis. Traditionally, dynamic analysis techniques for fea-
ture analysis focused on execution traces consisting of a sequence

Dynamic Feature Analysis 135

of method executions [55, 133]. Some dynamic analysis approaches
trace additional properties of behavior such as the message receiver
and arguments or instance creation events [36, 66]. Most existing fea-
ture analysis techniques capture traces of method events but they do
not capture behavioral data of sub-method elements such as variable
assignments [118, 90].

However very little work in feature analysis has focused on a means
to model which sub-method entities are part of a feature.

Link to Source-code. Trace-based techniques result in large amounts of
data which are extracted for post-mortem analysis. As a result it is
difficult to maintain a link between the behavioral data corresponding
to a feature and the source code. We would like to embed the high-
level knowledge of features directly in the source code and perform
feature analysis in this context. Unfortunately, the text-based format
of source code does not facilitate such needs.

Variations. Moreover the definition of what behavior constitutes a feature
is not clear. Questions like how many paths of execution and how
much variation of inputs arise. Ideally we would like to grow features
over a series of runs of a system. We capture different variations of
a user scenario or feature and attribute the resulting behavior to the
same feature.

Performance. Gathering traces at runtime always slows the system down
considerably. The additional code inserted is costly. In addition,
creating the trace data-structure will put pressure on the memory
management.

7.2.3 Summary

We can see the following problems with trace-based dynamic feature analy-
sis approaches:

• Dynamic feature analysis implies a need to manipulate large amounts
of trace data.

• Current feature analysis techniques do not consider analysis to the
granularity of sub-method elements (i.e., variable assignments).

• It is hard to support multiple runs to grow features (to take different
execution paths into account).

• There is no easy way to embed information about features in the
source code.

136 Case Study: Dynamic Feature Annotation

• Trace-based approaches slow down the execution of the system.

7.3 Feature Annotation

Feature identification (i.e., locating which parts of the code implement a
feature) by dynamic analysis is done at runtime: the feature is executed
and the execution path is recorded. For example, when exercising Login
feature of an application, we record all methods that are called as a result
of triggering this feature. This trace of called methods then encompasses
exactly all those methods that are part of the login feature.

7.3.1 Dynamic Analysis with REFLECTIVITY

Trace-based feature analysis can be easily implemented using partial be-
havioral reflection. In a standard trace-based system, the tracer is the object
responsible for recording the feature trace. This tracer is the meta-object
(see Figure 7.1). We define a link that calls this meta-object with the desired
information passed as a parameter (e.g., the name and class of the executed
method). The link then is installed on the part of the system that we want
to analyze. When we then exercise the feature, the trace meta-object will
record a trace.

The resulting system is very similar to existing trace-based systems,
with one exception: tracing now can easily cover sub-method elements, if
required.

source code
(AST)

tracer meta-object

links

Figure 7.1: A tracer realized with partial behavioral reflection.

Feature Annotation 137

7.3.2 Feature Annotation with REFLECTIVITY

In contrast to traditional dynamic feature analysis approaches, our sub-
method reflection based approach does not need to retain a trace. The
goal of feature identification is to map features to the source code. With
the annotatable representation provided by sub-method reflection, we can
annotate every statement that participates in the behavior of a feature.
Instead of recording traces, we tag all the AST nodes that are executed as
part of a feature with a feature annotation at runtime.

We install the link on all the AST nodes of the system that we plan
to analyze. Exercising the feature subsequently annotates all methods or
instructions that take part in a feature execution. In this way we do not
need to retain traces, resulting in less data to be managed.

7.3.3 Deinstallation at Runtime

Performance is a major issue when using dynamic analysis. Our goal is
therefore to limit both where and when we use behavioral reflection. The
where we can control by installing the link only on those places in the system
that we are interested in analyzing. For the when, we leverage the fact that
we can deinstall links at runtime from the meta-object.

When we tag a node to be part of a feature for the first time, there is
no need to retain the link to the tagging meta-object. Any subsequent call
as part of the feature just would set the annotation again. A call that is
not part of the feature would have no influence on the feature annotation,
therefore, we can remove the link after annotating the node. This removal
will result in new code being generated on the next call of the method. This
generated code then does not call the meta-object on all those nodes that
already are tagged to be part of the feature, resulting in less slowdown of
the application.

7.3.4 Growing Features

Our feature annotation approach can easily support many of the existing
feature analysis approaches. For example, we could exercise a feature
multiple times with different parameters to obtain multiple paths of execu-
tion. This can be important, as the traces obtained can very considerably
depending on the input data.

For trace-based approaches this results in a many-to-one mapping be-
tween features and traces. Using our approach, if the execution path differs
over multiple runs, newly executed instructions will be tagged in addition

138 Case Study: Dynamic Feature Annotation

to those already tagged. Thus we can use our approach to iteratively build
up the representation of a feature covering multiple paths of execution.

The link-condition is inlined into the bytecode of the method. The
systems detects the special case when the condition is statically true or false
and optimizes the generated code. When it is set to be false, our framework
will not generate any code for the link, not even a call to the condition itself.
The code generated is the same as if the link would be de-installed. This
makes it possible to let the tagging link be installed after a first feature
analysis. We can at any point in the future enable the link again if we want
to do an additional run to grow the feature.

7.3.5 Implementation

In the following, we describe the implementation of feature annotation
using REFLECTIVITY. The following classes have been implemented:

FeatureAnnotation A subclass for defining the annotation #feature. The an-
notation references the symbol describing the features.

FeatureTagger This is the meta-object. Its main responsibility is to annotate
the node for which it is set as a meta-object. In addition, it creates the
link that is used to call it.

FeatureController This class provides a simple user interface. It supports
to define a name and to stop and restart feature annotation. The
controller is instantiated for the package to be analyzed.

We now give a brief overview of the implementation of the FeatureTagger,
the link and the FeatureController.

FeatureTagger. The FeatureTagger is the meta-object that we call to annotate
a node. The name of the feature that it annotates is stored in an
instance variable. The message sent is tagNode:link: with both the node
and the link as parameters. With these, it sets the annotation and
removes the link:

FeatureTagger>>tagNode: aNode link: link
aNode addFeatureAnnotation: feature.
aNode removeLink: link.

Link. The link is created when instantiating a new feature tagger:

FeatureTagger class>>linkFor: aFeature
^GPLink new

Feature Annotation 139

metaObject: (self newFor: aFeature);
selector: #tagNode:link:;
arguments: #(node link).

The FeatureTagger is created and managed by the class FeatureController.

FeatureController. We provide a very basic way to control the feature tag-
ger and its link. The class FeatureController provides a basic command
interface. This interface supports to create a controller for a feature,
to set the package to analyze, to install the link as well as starting and
stopping feature analysis itself:

controller := FeatureController for: #open
controller package: 'Network--IRC'.
controller installLinks.
controller featureStart.
controller featureStop.

An interesting implementation aspect is how the FeatureController man-
ages link activation. The control attribute of the link is set to the
instance variable of the FeatureController:

FeatureController>>taggerLink
^link ifNil: [

link := FeatureTagger linkFor: feature.
link condition: [active]].

As we reference the instance variable in a block, we can enable or
disable the links by setting the instance variable active of the controller.

In addition, when we plan to disable feature analysis for a longer
period but plan to grow the feature later, we can set the condition to
false:

FeatureController>>deactivate
link condition: false.

This will result in all methods being recompiled and the link calling
code being completely removed. The links are retained, though,
as annotations. As soon as we want to continue analyzing for this
feature, we can activate the controller again:

FeatureController>>activate
link condition: [active].

140 Case Study: Dynamic Feature Annotation

7.4 Validation

We validate feature annotations on the one hand by presenting benchmarks
to show that the deinstallation directly after annotation results in far supe-
rior performance. On the other hand, we present an experiment to show the
difference of the amount data gathered between a trace-based approach and
the annotation based approach. We use the content-management system
Pier [110] as a case-study.

7.4.1 Benchmarks

The goal of the benchmark is to show that de-installing links at runtime
saves time. Pier has an extensive test-suite. We install the feature annota-
tions system on the Pier classes that are in the sub-package Pier-Model (59
classes, 418 methods). We analyze method granularity:

ui := FeatureController for: #test
ui package: 'Pier--Model'.
ui installLinks.
ui featureStart.

Then we run the tests of Pier three times (see Table 7.1):

No feature annotation. We execute the tests without feature annotation as
the base case.

Feature annotation remove. Feature tagging is enabled, the link is re-
moved after setting the annotation.

Feature annotation no remove. We use a modified version of the feature
tagging code where the link is not removed.

time (msecs) factor
No feature annotation 1897 1.0
Feature annotation remove 3787 2.00
Feature annotation no remove 7290 3.84

Table 7.1: Performance of Annotation

We can see that deinstalling the link improves performance, even
though the bytecode needs to be regenerated for all the methods where
links are removed.

Validation 141

7.4.2 Number of Events Generated

To assess the possible space saving due to annotating the static structure as
opposed to recording traces, we show the difference in events generated in
both cases. To measure the size of a trace, we install a counter that records
method invocations while exercising a feature. When we annotate features,
the result are annotations on the static structure. Therefore, we count the
resulting annotations.

The program used is again the content-management system Pier. We
only annotate the package Pier-Model (59 classes, 418 methods).

Table 7.2 shows both numbers for different features:

Feature Number of events Number of annotations Factor
Display Page 2655 150 17.7
Call Page Editor 2797 168 16.65
Save Page 3020 222 13.60
Page Settings 2515 143 17.59

Table 7.2: Dynamic events compared to number of annotations

The number of dynamic events that a tracer would record is thus far
larger than the resulting entities annotated with feature annotation.

7.4.3 Evaluation

We revisit the problems identified at the beginning of the chapter.

Large Amounts of Data. Due to annotating features instead of recording
complete traces, we reduce the amount of data.

Fine-grained Analysis. Sub-Method Reflection provides support for sub-
method abstractions.

Variations We can grow features, as we can control the tagging links.

Link to Source-code. Annotations of sub-method structure can be read
from any tool for analysis and visualization.

Performance. As we can deinstall the code after the first call, we do not
slow down the execution of the complete run.

142 Case Study: Dynamic Feature Annotation

7.5 Summary

In this chapter we have presented dynamic feature annotation, a technique
that solves some issues found in traditional trace-based dynamic feature
analysis approaches. Feature annotation support the analysis on a sub-
method level and does not require to store complete trace data.

With feature annotation we have presented an example of the interplay
of sub-method structural reflection and behavioral reflection. The structure is
used for on the one hand as the basis for behavioral reflection, on the other
hand we use the structural model for storing the result, i.e., which part of
the system is used by which feature. The annotated sub-method structure
then can be used directly as an input for other tools or to visualize features.

In the next chapter, we conclude the dissertation by reviewing contribu-
tions and impact of the work presented and we discuss future work.

Chapter 8

Conclusions

In this chapter we briefly summarize the contributions of the thesis, discuss
the impact and possible future work.

8.1 Contributions of the Dissertation.

The contributions of the thesis are:

Unanticipated partial behavioral reflection. We realized partial behavioral
reflection in the context of a dynamic language so that it can be deployed at
runtime.

Sub Method Reflection. We have extended the standard model of struc-
tural reflection to cover sub-method elements.

Annotation based partial behavioral Reflection. We have presented how
partial behavioral reflection can be realized on top of sub-method structural
reflection.

Contextual Reification. We extended partial behavioral reflection with the
concept of context and have shown how this solves the problem of infinite
meta object call recursion.

Dynamic Analysis and Feature Annotations. We discussed the use of
our solution for dynamic analysis. In detail we presented a case-study of
dynamic feature analysis using feature annotations.

Implementation. Both sub-method reflection and unanticipated partial
behavioral reflection have been implemented in Squeak Smalltalk. We
have presented the implementation in detail and shown its practicability
by realizing examples and presenting benchmarks.

144 Conclusions

8.2 Impact

REFLECTIVITY has already seen some use in research, both at the University
of Bern and other research groups. We briefly survey the relevant projects.
Publications are cited where they already exist.

HistOOry. Frédéric Pluquet (deComp, Universite Libre de Bruxelles). The
goal of the project is to experiment with partial persistence following the
fat node model as proposed by Tarjan [47] in the context of object oriented
languages. A first paper [107] outlines more information on the general
goal the project. The results shown in this paper are obtained an early Java
based prototype. A new implementation of partial persistence has been
build using GEPPETTO.

Transactional Memory. Lukas Renggli (Software Composition Group, Uni-
versity of Bern) has used Reflectivity for an experimental implementation
of Software Transactional Memory [111]. It was realized with no change to
the virtual machine using the system as presented in this thesis.

Freezable Traits. A prototype of freezable traits [53] uses BYTESURGEON.
Traits provide groups of methods that can be composed with other traits
and used by classes. One problem with traits is the resolution of naming
conflicts: if two traits provide methods with the same name, we need to
select which one to use. Freezable traits provide an expressive composition
mechanism to solve such conflicts.

Object Flow Analysis. Adrian Lienhard (Software Composition Group,
University of Bern). TREENURSE was used in an experiment that analyzes
how objects flow through an object-oriented program at runtime [95, 93, 94].
The work was done prior to the existence of a full implementation of
partial behavioral reflection. Despite this, the less powerful inlining model
provided by TREENURSE proved to be very valuable.

Back-In-Time Debugger. Chrisoph Hofer used BYTESURGEON to realize
an omniscient debugger [80, 79].

Pluggable Types. Nik Haldiman used annotations on sub-method struc-
ture to implement pluggable types [67, 68, 69].

Test Coverage Analysis. Stefan Reichhart (Software Composition Group,
University of Bern). The TREENURSE instrumentation framework has been
used to implement a code coverage tool that provides line-by-line coverage
analysis. Code coverage then was the basis for a tool to asses test coverage
of a system and an automatic test smell analyzer [109].

Dynamic IDEs. David Röthlisberger (Software Composition Group, Uni-
versity of Bern) is working on development environment that show dy-
namic information as part of the traditional view of classes and methods to

Future Work 145

support code understanding [117].

Aspects. Ongoing work at the Software Composition Group aims at realiz-
ing AOP on top of partial behavioral reflection as pioneered by Reflex [127].
The goal is to explore advanced scoping of aspects to continue of our earlier
work on Context Aware Aspects [127].

8.3 Future Work

We now discuss future work. Initially we discuss work related to the sub-
method structural representation and subsequently those specific to partial
behavioral reflection.

Sub-method Structural Reflection

Compactness of the representation is an interesting field for future work.
For our experiments, memory consumption has never posed a major prob-
lem. Nevertheless, we plan to research how to improve storage by optimiz-
ing the AST representation leveraging transparent AST compression [58].

Our current implementation of the annotation framework could be ex-
tended to support not only sub-method elements, but all structural entities
like classes and packages.

Another interesting research direction is to consider the use of reflective
methods to replace the text-based storage of source code. The human-
readable code could be reconstructed from the reflective representation
instead. The current version provides some support for recovering for-
matting, but it needs to be improved and integrated with the tools to be
useful.

Behavioral Reflection

There is scope for improving link composition. The current scheme is very
simple and does not provide for any control of how links are composed in
the case where multiple links need to be installed at the same node. The
order of installation of the links defines the order in which the meta-object
is activated. As a first step, we plan to realize the link composition features
found in Reflex [124]. These allow both ordering and nesting of links to be
defined by the client using the framework.

The selection of nodes where a link is to be installed (spatial selection)
is done in the current version by iterating the structure. We think that
a declarative form for specifying sets of nodes is needed. In the current

146 Conclusions

system, the client using GEPPETTO 2 has to deal with newly loaded or
changed code. A declarative form of spatial selection will provide a general
way to deal with new and changed code. The ongoing work on AOP will
be interesting in this context: we plan to explore the work that is currently
done to support AOP pointcuts to improve spatial selection.

Meta-context

For now, we have used the concept of context just to make the meta compu-
tation distinguishable from the base computation. We plan to extend the
notion of contextual control of reification to other kinds of contexts then the
meta-context. We are working on an implementation of Context-Oriented
Programming [78] based on the work presented in the dissertation. We have
experimented in the past with the idea of a first class model of change
for programming languages [41]. We will explore the idea of context for
structural reflection to model change.

Virtual machine support for meta-contexts is interesting for two reasons.
First, we hope to be able to improve performance by realizing all context
setup code in the virtual machine. The current implementation is realized
without any change to the virtual machine. As the link-calling code is
potentially executed at any operation, it is important to make it as efficient
as possible. Code executed by the virtual machine is faster by an order of
magnitude. Second, as we explained in Section 6.5, the setup code executed
when dealing with contexts has to be managed in a particular way: we
provide copies of all that code. We plan to implement all this special code
in the virtual machine so that it is not part of the structure of the system
that is visible to reflection.

An interesting question is how a context-aware reflective language
kernel would look like and what the consequences for the language runtime
and especially the reflective model would be. We plan to explore this notion
of a context-aware reflective language kernel in the future.

Appendix A

The REFLECTIVITY System

A.1 Introduction

The chapter gives a practical, hands-on introduction to the REFLECTIVITY
System. We first show how to obtain a running system. We explain the
preferences existing for enabling/disabling and configuring REFLECTIVITY,
at the end we show some basic examples of using GEPPETTO 2.

A.2 Installation

A.2.1 Downloading a Pre-built Version

The easiest way to obtain a ready-to-run version is to download the pre-
built Squeak image from:

http://www.iam.unibe.ch/~scg/Research/Reflectivity/

Besides the image file, a current VM is needed. This can be obtained
from http://www.squeak.org.

A.2.2 Building from Scratch

REFLECTIVITY can be installed in an existing Squeak 3.9 image. To rebuild
an image for REFLECTIVITY, the following steps have to be made:

• First install md patches by

http://www.iam.unibe.ch/~scg/Research/Reflectivity/
http://www.squeak.org

148 The REFLECTIVITY System

– downloading SqueakPatches-md.zip1 unpacking and copying
the content to your squeak directory.

– load the patches in Squeak using the filelist browser to navigate
to the patches directory, select the file 000-INSTALL.txt. Then
execute the contents of the file in the current image. This takes a
while.

• In the Monticello Browser, open the SqueakSource repository of RE-
FLECTIVITY:

MCHttpRepository
location: 'http://www.squeaksource.com/Reflectivity'
user: ''
password: ''

Then install the ReflectivityLoader from the Monticello Browser and
execute:

ReflectivityLoader new loadStablePackages

to load the dependencies. Two debugger windows will show up,
these are not errors, but the system asking if you want to add variables
to base classes. Proceed by pressing ’proceed’ in the debugger window.

• If you want the complete image to use reflective methods, the im-
age needs to be recompiled. This can be done by using the class
PERecompiler. Execute the following code from the class comment:

[PERecompiler new inspect; recompileImage] forkAt: 30

A.2.3 Preferences

A REFLECTIVITY image provides a number of preferences to customize the
working of the system. These can be set via the Preference Browser as shown
in Figure A.1.

For Reflectivity, one important category in the preferences browser to
look at is named compiler. Here the compileUseNewCompiler preference needs
to be enabled, as we build on top of the NewCompiler framework.

The preferences governing REFLECTIVITY are found in the reflectivity cat-
egory. In addition, the category reflectivitydemo contains preferences related
to demos for PERSEPHONE.

The following preferences can be set:

1http://www.iam.unibe.ch/~scg/Research/Reflectivity/SqueakPatches-md.zip

http://www.iam.unibe.ch/~scg/Research/Reflectivity/SqueakPatches-md.zip

Examples for GEPPETTO 149

Figure A.1: The preference browser.

compileDoitWithPersephone Evaluate doit-expressions with PERSEPHONE.
Experimental.

compileReflectiveMethods Enable PERSEPHONE. All new code is compiled
as reflective methods.

A.3 Examples for GEPPETTO

We present some simple examples for the use of GEPPETTO 2. First we
show a simple counter and how to count method invocations. Then we
look at how to reify message sends and instance variable accesses.

A.3.1 A Simple Counter

The system provides a very trivial counter called GPCounter. It can be
instantiated when multiple counters are needed. Alternatively, it provides
a simple global counter as a class object:

GPCounter reset.
GPCounter inc.
GPCounter count.

150 The REFLECTIVITY System

To use this counter with GEPPETTO, we have to define a link to call the
inc method on the counter as a meta-object:

link := GPLink new metaObject: GPCounter;
selector: #inc

This link now can be installed in the system. As the link does not request
any execution related data, it is compatible with any AST node. We show
how it is used on methods, message sends and variable reads.

A.3.2 Method Execution

For example, we can count method invocations. Let’s install the counter on
a the method + of class Integer:

(Integer>>#+) methodNode link: link.

The result should be a counter that is counting up slowly while we use
our Squeak system. The reason this method is not called very often is that
addition of all integers that fit into 31 bits is handled by the class SmallInte-
ger. Addition of big numbers is handled by for example LargePositiveInteger.
What we are counting is therefore only the case when a SmallInteger is con-
verted into a large number. Operations on large numbers are slower than
SmallInteger calculations and therefore lead to a substantial decrease in per-
formance. The code presented can be used to detect unwanted calculations
with large integers.

A.3.3 Message Sends

The GPCounter link can be used to count message sends. We install it on
all sends to self in the SystemWindow class:

SystemWindow sends do: [:send | send isSelfSend ifTrue:[send link: link]].

When inspecting the GPCounter, we can see the counter being incre-
mented when, for example, we click on a window to activate it.

A.3.4 Variables

We can put the link on variables. For example, for counting all read accesses
of instance variables. For the following, it is advisable to make sure that
the two preferences regarding the meta-context are actually enabled. Code
from the class SystemWindow is called quite frequently from the system, and

Examples for GEPPETTO 151

we can see the problem of meta-call recursion in action as soon as we open
an inspector on the counter.

SystemWindow instanceVariableReads do: [:var | var link: link].

After installing the link, we can see the instance variable accesses to
objects of class SystemWindow as they happen.

Appendix B

Glossary

Behavioral Reflection. Reflection that is concerned with runtime abstrac-
tions, for example message sends or variable accesses, is called behav-
ioral reflection.

BYTESURGEON. A runtime bytecode transformation system for Smalltalk.
The first version of GEPPETTO uses BYTESURGEON to insert hooks into
the bytecode of methods. More information in Chapter 3 or the paper
on runtime bytecode transformation [40].

Causally connected. A system is said to be causally connected to its domain
if the internal structures and the domain they represent are linked in
such a way that if one of them changes, this leads to a corresponding
effect of the other and vice versa [97].

GEPPETTO. The realization of Reflex in Squeak Smalltalk is called GEP-
PETTO. It provides partial behavioral reflection. There are two versions:
the first was based on bytecode transformation (using BYTESURGEON)
and closely follows the original Reflex implementation. The second
version leverages sub-method reflection. Links are annotations on the
sub-method structure.

Hook. A short piece of code inserted in the bytecode that realizes the call to
the meta-object. Hooks are inserted using a bytecode instrumentation,
e.g., Javassist [28] for Java or BYTESURGEON [40] for Smalltalk.

Hookset. A collection of operation occurrences where hooks are installed. A
Hookset is bound to a meta-object with a link. Hooksets support gath-
ering of heterogeneous execution points, i.e., occurrences of different
operations in different classes and methods.

154 Glossary

Intercession. The ability of a system to provide a causally connected repre-
sentation of itself that can be changed from within the system is called
intercession. A system providing introspection and intercession is called
reflective.

Introspection. The ability of a system to provide a representation of itself
that can be queried from within the system is called introspection. Only
when this representation can in addition be changed (see intercession)
we call a system reflective.

Link. In general, the term link denotes the connection of the base with
the meta-level. It is reified in partial behavioral reflection as an object.
The link here has multiple functions: it defines the meta-object and
the protocol between the base and the meta (which method to call
and which information to pass as arguments). In addition, the link is
controlled by a condition. See Chapter 3 and Chapter 5.

MetaclassTalk. A CLOS-style meta-class oriented MOP for Smalltalk [17].

Meta-object Protocol. “Metaobject protocols are interfaces to the language
that give users the ability to incrementally modify the language’s
behavior and implementation, as well as the ability to write programs
within the language.” [88]

MOP. see Meta-object Protocol.

PBR. see Partial Behavioral Reflection.

Partial Behavioral Reflection. A fine-grained and efficient MOP. The reifi-
cations are precisely selectable in spatial and temporal dimensions.
The meta-level behavior is flexibly engineered by means of fine-
grained protocols, selection can span different operations over mul-
tiple classes (heterogeneous operation occurrences). Provided by
GEPPETTO (Smalltalk, see Chapter 3 and 5) or Reflex [128] (for Java).

Reification. The conversion of an interpreter component into an object
which the program can manipulate [59] is called reification

Reflection. A reflective system is a system which incorporates causally con-
nected structures representing (aspects of) itself [97].

Reflex. The implementation of partial behavioral reflection for Java [128]. It
realizes behavioral reflection with bytecode transformation provided
by Javassist [28]. Reflex is the original implementation of partial
behavioral reflection.

155

Structural Reflection. Reflection concerned with the structure of a system
is called structural reflection. Examples are object-oriented systems
where classes and methods are objects.

Sub-method Reflection. Reflection on a sub-method abstraction level, for
example instance variable accesses is called sub-method reflection. In
this thesis the term sub-method reflection is often used synonymously
with sub-method structural reflection, that is the availability of a
structural representation of the method bodies.

TREENURSE. An instrumentation framework in the spirit of BYTE-
SURGEON, but works on the AST provided by sub-method reflection.
The code to be inserted is represented as annotations on the sub-
method structure. TREENURSE is a case-study to validate sub-method
reflection (see Chapter 4). It has been replaced by a sub-method ver-
sion of GEPPETTO, see Chapter 5.

TYPEPLUG. A Pluggable type-system [22] for Smalltalk. It uses annota-
tions provided by sub-method reflection and servers as an example
(See Section 4.4.2) of how the extended reflective representation is
used for language experiments. The master’s thesis of Haldimann [69]
and a conference paper [67] provide more in-depth information.

Unanticipated Partial Behavioral Reflection. Partial behavioral reflection
that allows the definition and retraction of reflective features at run-
time is called unanticipated partial behavioral reflection. See GEP-
PETTO.

UPBR. see Unanticipated Partial Behavioral Reflection.

Bibliography

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure
and interpretation of computer programs. MIT electrical engineering and
computer science series. McGraw-Hill, 1991.

[2] Giuliano Antoniol and Yann-Gaël Guéhéneuc. Feature identification:
a novel approach and a case study. In Proceedings IEEE International
Conference on Software Maintenance (ICSM’05), pages 357–366, Los
Alamitos CA, September 2005. IEEE Computer Society Press.

[3] Thomas Ball. The concept of dynamic analysis. In Proceedings Euro-
pean Software Engineering Conference and ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (ESEC/FSC 1999),
number 1687 in LNCS, pages 216–234, Heidelberg, sep 1999. Springer
Verlag.

[4] Kent Beck. Instance specific behavior: Digitalk implementation and
the deep meaning of it all. Smalltalk Report, 2(7), May 1993.

[5] John K. Bennett. The design and implementation of distributed
Smalltalk. In Proceedings OOPSLA ’87, ACM SIGPLAN Notices, vol-
ume 22, pages 318–330, December 1987.

[6] Alexandre Bergel and Marcus Denker. Prototyping languages, related
constructs and tools with Squeak. In Proceedings of the Workshop on
Revival of Dynamic Languages (co-located with ECOOP’06), July 2006.

[7] Alexandre Bergel and Stéphane Ducasse. Scoped and dynamic as-
pects with Classboxes. Revue des Sciences et Technologies de l’Information
(RSTI) — L’Objet (Numéro spécial : Programmation par aspects), 11(3):53–
68, November 2005.

[8] Alexandre Bergel and Stéphane Ducasse. Supporting unanticipated
changes with Traits and Classboxes. In Net.ObjectDays (NODE’05),
pages 61–75, Erfurt, Germany, September 2005.

158 Bibliography

[9] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Class-
box/J: Controlling the scope of change in Java. In Proceedings of 20th
International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’05), pages 177–189, New York, NY,
USA, 2005. ACM Press.

[10] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel
Wuyts. Classboxes: Controlling visibility of class extensions. Jour-
nal of Computer Languages, Systems and Structures, 31(3-4):107–126,
December 2005.

[11] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel
Wuyts. Stateful traits and their formalization. Journal of Computer
Languages, Systems and Structures, 34(2-3):83–108, 2008.

[12] Alexandre Bergel, Stéphane Ducasse, and Lukas Renggli. Seaside –
advanced composition and control flow for dynamic web applica-
tions. ERCIM News, 72, January 2008.

[13] Alexandre Bergel, Robert Hirschfeld, Siobhàn Clarke, and Pascal
Costanza. Aspectboxes — controlling the visibility of aspects. In
Markus Helfert Joaquim Filipe, Boris Shiskov, editor, In Proceedings of
the International Conference on Software and Data Technologies (ICSOFT
2006), pages 29–38, September 2006.

[14] Andrew P. Black and Mark P. Jones. Perspectives on software. In
OOPSLA 2000 Workshop on Advanced Separation of Concerns in Object-
oriented Systems, 2000.

[15] Eric Bodden, Florian Forster, and Friedrich Steimann. Avoiding
infinite recursion with stratified aspects. In Robert Hirschfeld, An-
dreas Polze, and Ryszard Kowalczyk, editors, GI-Edition Lecture Notes
in Informatics "NODe 2006 GSEM 2006", volume P-88, pages 49–64.
Gesellschaft für Informatik, Bonner Köllen Verlag, 2006.

[16] Alan H. Borning and Daniel H.H. Ingalls. Multiple inheritance in
Smalltalk-80. In Proceedings at the National Conference on AI, pages
234–237, Pittsburgh, PA, 1982.

[17] Noury Bouraqadi. Un MOP Smalltalk pour l’étude de la composition
et de la compatibilité des métaclasses. Application à la programmation par
aspects (A Smalltalk MOP for the Study of Metaclass Composition and
Compatibility. Application to Aspect-Oriented Programming - In French).
Thèse de doctorat, Université de Nantes, Nantes, France, jul 1999.

[18] Noury Bouraqadi. Concern oriented programming using reflection.
In Workshop on Advanced Separation of Concerns — OOPSLA 2000, 2000.

159

[19] Noury Bouraqadi. Safe metaclass composition using mixin-based
inheritance. Journal of Computer Languages, Systems and Structures,
30(1-2):49–61, April 2004.

[20] Noury Bouraqadi, Thomas Ledoux, and Fred Rivard. Safe metaclass
programming. In Proceedings OOPSLA ’98, pages 84–96, 1998.

[21] Noury Bouraqadi, Abdelhak Seriai, and Gabriel Leblanc. Towards
unified aspect-oriented programming. In Proceedings of 13th Interna-
tional Smalltalk Conference (ISC’05), 2005.

[22] Gilad Bracha. Pluggable type systems, October 2004. OOPSLA
Workshop on Revival of Dynamic Languages.

[23] Gilad Bracha and David Ungar. Mirrors: design principles for meta-
level facilities of object-oriented programming languages. In Pro-
ceedings of OOPSLA ’04, ACM SIGPLAN Notices, pages 331–344, New
York, NY, USA, 2004. ACM Press.

[24] John Brant, Brian Foote, Ralph Johnson, and Don Roberts. Wrap-
pers to the rescue. In Proceedings European Conference on Object Ori-
ented Programming (ECOOP’98), volume 1445 of LNCS, pages 396–417.
Springer-Verlag, 1998.

[25] Jean-Pierre Briot. Actalk: A testbed for classifying and designing
actor languages in the Smalltalk-80 environment. In S. Cook, edi-
tor, Proceedings ECOOP ’89, pages 109–129, Nottingham, July 1989.
Cambridge University Press.

[26] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code
manipulation tool to implement adaptable systems. In Proceedings of
Adaptable and Extensible Component Systems, Grenoble, France, Novem-
ber 2002.

[27] Shigeru Chiba. A metaobject protocol for C++. In Proceedings of
OOPSLA ’95, volume 30 of ACM SIGPLAN Notices, pages 285–299,
October 1995.

[28] Shigeru Chiba. Load-time structural reflection in Java. In Proceedings
of ECOOP 2000, volume 1850 of LNCS, pages 313–336, 2000.

[29] Shigeru Chiba, Gregor Kiczales, and John Lamping. Avoiding con-
fusion in metacircularity: The meta-helix. In Kokichi Futatsugi and
Satoshi Matsuoka, editors, Proceedings of ISOTAS ’96, volume 1049 of
Lecture Notes in Computer Science, pages 157–172. Springer, 1996.

160 Bibliography

[30] Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit for
efficient Java bytecode translators. In In Proceedings of the second
International Conference on Generative Programming and Component
Engineering (GPCE’03), volume 2830 of LNCS, pages 364–376, 2003.

[31] Elliot Chikofsky and James Cross II. Reverse engineering and design
recovery: A taxonomy. IEEE Software, 7(1):13–17, January 1990.

[32] Bas Cornelissen, Danny Holten, Andy Zaidman, Leon Moonen,
Jarke J. van Wijk, and Arie van Deursen. Understanding execution
traces using massive sequence and circular bundle views. In Pro-
ceedings of the 15th International Conference on Program Comprehension
(ICPC), pages 49–58. IEEE Computer Society, 2007.

[33] Pascal Costanza and Robert Hirschfeld. Language constructs for
context-oriented programming: An overview of ContextL. In Proceed-
ings of the Dynamic Languages Symposium (DLS) ’05, co-organized with
OOPSLA’05, pages 1–10, New York, NY, USA, October 2005. ACM.

[34] Pascal Costanza and Robert Hirschfeld. Reflective layer activation
in ContextL. In SAC ’07: Proceedings of the 2007 ACM Symposium on
Applied Computing, pages 1280–1285, New York, NY, USA, 2007. ACM
Press.

[35] M. Dahm. Byte code engineering. In Proceedings of Java-Informations-
Tage (JIT’99), pages 267–277, Düsseldorf, Deutschland, sep 1999.

[36] Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman.
Execution patterns in object-oriented visualization. In Proceedings
Conference on Object-Oriented Technologies and Systems (COOTS’98),
pages 219–234. USENIX, 1998.

[37] Steve Dekorte. Io: a small programming language. In Ralph Johnson
and Richard P. Gabriel, editors, Companion to the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2005, October 16-20, 2004, San Diego,
CA, USA, pages 166–167. ACM, 2005.

[38] Marcus Denker. Entwurf von optimierungen für squeak, 2002. Studi-
enarbeit, Universität Karlsruhe.

[39] Marcus Denker, Stéphane Ducasse, Adrian Lienhard, and Philippe
Marschall. Sub-method reflection. Journal of Object Technology,
6(9):231–251, October 2007.

[40] Marcus Denker, Stéphane Ducasse, and Éric Tanter. Runtime byte-
code transformation for Smalltalk. Journal of Computer Languages,
Systems and Structures, 32(2-3):125–139, July 2006.

161

[41] Marcus Denker, Tudor Gîrba, Adrian Lienhard, Oscar Nierstrasz,
Lukas Renggli, and Pascal Zumkehr. Encapsulating and exploiting
change with Changeboxes. In Proceedings of the 2007 International
Conference on Dynamic Languages (ICDL 2007), pages 25–49. ACM
Digital Library, 2007.

[42] Marcus Denker, Orla Greevy, and Michele Lanza. Higher abstrac-
tions for dynamic analysis. In 2nd International Workshop on Program
Comprehension through Dynamic Analysis (PCODA 2006), pages 32–38,
2006.

[43] Marcus Denker, Orla Greevy, and Oscar Nierstrasz. Supporting
feature analysis with runtime annotations. In Proceedings of the 3rd
International Workshop on Program Comprehension through Dynamic
Analysis (PCODA 2007), pages 29–33. Technische Universiteit Delft,
2007.

[44] Marcus Denker, Mathieu Suen, and Stéphane Ducasse. The meta in
meta-object architectures. In Proceedings of TOOLS EUROPE 2008,
volume 11 of LNBIP, pages 218–237, 2008. To appear.

[45] Jim des Rivières and Brian Cantwell Smith. The implementation of
procedurally reflective languages. In LFP ’84: Proceedings of the 1984
ACM Symposium on LISP and functional programming, pages 331–347,
New York, NY, USA, 1984. ACM.

[46] Sergey Dimitriev. Language oriented programming: The next pro-
gramming paradigm. onBoard Online Magazine, 1(1), November 2004.

[47] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.
Making data structures persistent. Journal of Computer and System
Sciences, 38(1):86–124, February 1989.

[48] Stéphane Ducasse. Evaluating message passing control techniques in
Smalltalk. Journal of Object-Oriented Programming (JOOP), 12(6):39–44,
June 1999.

[49] Stéphane Ducasse, Michele Lanza, and Roland Bertuli. High-level
polymetric views of condensed run-time information. In Proceedings
of 8th European Conference on Software Maintenance and Reengineering
(CSMR’04), pages 309–318, Los Alamitos CA, 2004. IEEE Computer
Society Press.

[50] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside
— a multiple control flow web application framework. In Proceed-
ings of 12th International Smalltalk Conference (ISC’04), pages 231–257,
September 2004.

162 Bibliography

[51] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside: A
flexible environment for building dynamic web applications. IEEE
Software, 24(5):56–63, 2007.

[52] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts,
and Andrew Black. Traits: A mechanism for fine-grained reuse.
ACM Transactions on Programming Languages and Systems (TOPLAS),
28(2):331–388, March 2006.

[53] Stéphane Ducasse, Roel Wuyts, Alexandre Bergel, and Oscar Nier-
strasz. User-changeable visibility: Resolving unanticipated name
clashes in traits. In Proceedings of 22nd International Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’07), pages 171–190, New York, NY, USA, October 2007.
ACM Press.

[54] Jonathan Edwards. Subtext: uncovering the simplicity of program-
ming. In Ralph Johnson and Richard P. Gabriel, editors, Proceedings of
the 20th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2005, October
16-20, 2004, San Diego, CA, USA, pages 505–518. ACM, 2005.

[55] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating
features in source code. IEEE Computer, 29(3):210–224, March 2003.

[56] Jacques Ferber. Computational reflection in class-based object-
oriented languages. In Proceedings OOPSLA ’89, ACM SIGPLAN
Notices, volume 24, pages 317–326, October 1989.

[57] Brian Foote and Ralph E. Johnson. Reflective facilities in Smalltalk-80.
In Proceedings OOPSLA ’89, ACM SIGPLAN Notices, volume 24, pages
327–336, October 1989.

[58] Michael Franz and Thomas Kistler. Slim binaries. Commun. ACM,
40(12):87–94, 1997.

[59] Daniel P. Friedman and Mitchell Wand. Reification: Reflection with-
out metaphysics. In LFP ’84: Proceedings of the 1984 ACM Symposium
on LISP and functional programming, pages 348–355, New York, NY,
USA, 1984. ACM.

[60] Adele Goldberg. Smalltalk 80: the Interactive Programming Environment.
Addison Wesley, Reading, Mass., 1984.

[61] Adele Goldberg and Dave Robson. Smalltalk-80: The Language. Addi-
son Wesley, 1989.

163

[62] Adele Goldberg and David Robson. Smalltalk 80: the Language and its
Implementation. Addison Wesley, Reading, Mass., May 1983.

[63] Orla Greevy. Enriching Reverse Engineering with Feature Analysis. PhD
thesis, University of Berne, May 2007.

[64] Orla Greevy and Stéphane Ducasse. Correlating features and code
using a compact two-sided trace analysis approach. In Proceedings
of 9th European Conference on Software Maintenance and Reengineering
(CSMR’05), pages 314–323, Los Alamitos CA, 2005. IEEE Computer
Society.

[65] Orla Greevy, Stéphane Ducasse, and Tudor Gîrba. Analyzing soft-
ware evolution through feature views. Journal of Software Maintenance
and Evolution: Research and Practice (JSME), 18(6):425–456, 2006.

[66] Thomas Gschwind and Johann Oberleitner. Improving dynamic data
analysis with aspect-oriented programming. In Proceedings of the
Seventh European Conference on Software Maintenance and Reengineering
(CSMR’03), page 259, Washington, DC, USA, 2003. IEEE Computer
Society.

[67] Niklaus Haldiman, Marcus Denker, and Oscar Nierstrasz. Practical,
pluggable types. In Proceedings of the 2007 International Conference on
Dynamic Languages (ICDL 2007), pages 183–204. ACM Digital Library,
2007.

[68] Niklaus Haldiman, Marcus Denker, and Oscar Nierstrasz. Practi-
cal, pluggable types for a dynamic language. Journal of Computer
Languages, Systems and Structures, 2008. Accepted for publication, to
appear.

[69] Niklaus Haldimann. TypePlug — pluggable type systems for
Smalltalk. Master’s thesis, University of Bern, April 2007.

[70] Abdelwahab Hamou-Lhadj. The concept of trace summarization.
In Proceedings of PCODA 2005 (1st International Workshop on Program
Comprehension through Dynamic Analysis). IEEE Computer Society
Press, 2005.

[71] Abdelwahab Hamou-Lhadj and Timothy Lethbridge. A survey of
trace exploration tools and techniques. In Proceedings IBM Centers for
Advanced Studies Conferences (CASON 2004), pages 42–55, Indianapo-
lis IN, 2004. IBM Press.

[72] Anthony Hannan. Squeak Closure Compiler.
http://minnow.cc.gatech.edu/squeak/ClosureCompiler.

164 Bibliography

[73] William Harrison and Harold Ossher. Subject-oriented program-
ming (a critique of pure objects). In Proceedings OOPSLA ’93, ACM
SIGPLAN Notices, volume 28, pages 411–428, October 1993.

[74] Jurgen Herczeg Heinz-Dieter Bocker. What tracers are made of. In
Proceedings of OOPSLA/ECOOP ’90, pages 89–99, October 1990.

[75] Charlotte Herzeel, Kris Gybels, and Pascal Costanza. A temporal
logic language for context awareness in pointcuts. In Proceeding of the
Workshop on Revival of Dynamic Languages, 2006.

[76] Charlotte Herzeel, Kris Gybels, Pascal Costanza, and Theo D’Hondt.
Modularizing crosscuts in an e-commerce application in lisp using
halo. In Proceeding of the International Lisp Conference (ILC) 2007, 2007.

[77] Robert Hirschfeld. AspectS — aspect-oriented programming with
Squeak. In M. Aksit, M. Mezini, and R. Unland, editors, Objects,
Components, Architectures, Services, and Applications for a Networked
World, number 2591 in LNCS, pages 216–232. Springer, 2003.

[78] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3), March 2008.

[79] Christoph Hofer. Implementing a backward-in-time debugger. Mas-
ter’s thesis, University of Bern, September 2006.

[80] Christoph Hofer, Marcus Denker, and Stéphane Ducasse. Design and
implementation of a backward-in-time debugger. In Proceedings of
NODE’06, volume P-88 of Lecture Notes in Informatics, pages 17–32.
Gesellschaft für Informatik (GI), September 2006.

[81] Mamdouh H. Ibrahim and Fred A. Cummins. Ksl: A reflective object-
oriented programming language. In Proceedings of the International
Conference on Computer Languages, pages 186–193. IEEE, October 1988.

[82] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan
Kay. Back to the future: The story of Squeak, a practical Smalltalk
written in itself. In Proceedings of the 12th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications
(OOPSLA’97), pages 318–326. ACM Press, November 1997.

[83] Java debug interface (jdi). http://java.sun.com/j2se/1.4.2/docs/-
jguide/jpda/jarchitecture.html.

[84] Jython. http://www.jython.org/.

[85] Gregor Kiczales. Towards a new model of abstraction in the engi-
neering of software. In Proc. of IMSA ’92 Workshop on Reflection and
Meta-Level Architecture, 1992.

165

[86] Gregor Kiczales. Beyond the black box: Open implementation. IEEE
Software, January 1996.

[87] Gregor Kiczales, J.Michael Ashley, Luis Rodriguez, Amin Vahdat,
and Daniel G. Bobrow. Metaobject protocols: Why we want them
and what else they can do. In Object-Oriented Programming: the CLOS
Perspective, pages 101–118. MIT Press, 1993.

[88] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of
the Metaobject Protocol. MIT Press, 1991.

[89] Rainer Koschke and Jochen Quante. On dynamic feature location.
International Conference on Automated Software Engineering, 2005, pages
86–95, 2005.

[90] Jay Kothari, Trip Denton, Spiros Mancoridis, and Ali Shokoufandeh.
On computing the canonical features of software systems. In 13th
IEEE Working Conference on Reverse Engineering (WCRE 2006), October
2006.

[91] Wilf R. LaLonde and Mark Van Gulik. Building a backtracking
facility in Smalltalk without kernel support. In Proceedings OOPSLA
’88, ACM SIGPLAN Notices, volume 23, pages 105–122, November
1988.

[92] Sheng Liang and Gilad Bracha. Dynamic class loading in the Java vir-
tual machine. In Proceedings of OOPSLA ’98, ACM SIGPLAN Notices,
pages 36–44, 1998.

[93] Adrian Lienhard, Stéphane Ducasse, and Tudor Gîrba. Object flow
analysis — taking an object-centric view on dynamic analysis. In
Proceedings of the 2007 International Conference on Dynamic Languages
(ICDL’07), pages 121–140, New York, NY, USA, 2007. ACM Digital
Library.

[94] Adrian Lienhard, Tudor Gîrba, Orla Greevy, and Oscar Nierstrasz.
Exposing side effects in execution traces. In Andy Zaidman, Ab-
delwahab Hamou-Lhadj, and Orla Greevy, editors, Proceedings of
the 3rd International Workshop on Program Comprehension through Dy-
namic Analysis (PCODA’07), pages 11–17. Technische Universiteit
Delft, 2007.

[95] Adrian Lienhard, Orla Greevy, and Oscar Nierstrasz. Tracking objects
to detect feature dependencies. In Proceedings International Conference
on Program Comprehension (ICPC’07), pages 59–68, Washington, DC,
USA, June 2007. IEEE Computer Society.

166 Bibliography

[96] Pattie Maes. Computational Reflection. PhD thesis, Laboratory for
Artificial Intelligence, Vrije Universiteit Brussel, Brussels Belgium,
January 1987.

[97] Pattie Maes. Concepts and experiments in computational reflection.
In Proceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages
147–155, December 1987.

[98] Philippe Marschall. Persephone: Taking Smalltalk reflection to the
sub-method level. Master’s thesis, University of Bern, December
2006.

[99] Jeff McAffer. Meta-level programming with coda. In W. Olthoff,
editor, Proceedings ECOOP ’95, volume 952 of LNCS, pages 190–214,
Aarhus, Denmark, August 1995. Springer-Verlag.

[100] Jeff McAffer. Engineering the meta level. In G. Kiczales, editor,
Proceedings of the 1st International Conference on Metalevel Architectures
and Reflection (Reflection 96), San Francisco, USA, April 1996.

[101] John McCarthy. Recursive functions of symbolic expressions and
their computation by machine, part I. CACM, 3(4):184–195, April
1960.

[102] Paul L. McCullough. Transparent forwarding: First steps. In Proceed-
ings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 331–341,
December 1987.

[103] Scott Meyers. Difficulties in integrating multiview development
systems. IEEE Softw., 8(1):49–57, 1991.

[104] Eliot Miranda. A Sketch for an Adaptive Optimizer for Smalltalk
written in Smalltalk. unpublished, 2002.

[105] Geoffrey A. Pascoe. Encapsulators: A new software paradigm in
Smalltalk-80. In Proceedings OOPSLA ’86, ACM SIGPLAN Notices,
volume 21, pages 341–346, November 1986.

[106] Renaud Pawlak. Spoon: annotation-driven program transformation
— the aop case. In AOMD ’05: Proceedings of the 1st workshop on Aspect
oriented middleware development, New York, NY, USA, 2005. ACM
Press.

[107] Frédéric Pluquet and Roel Wuyts. Evolution persistence for objects.
In Proceedings of the ERCIM Working Group on Software Evolution (2006),
2006.

167

[108] Barry Redmond and Vinny Cahill. Supporting unanticipated dy-
namic adaptation of application behaviour. In Proceedings of European
Conference on Object-Oriented Programming, volume 2374, pages 205–
230. Springer-Verlag, 2002.

[109] Stefan Reichhart. Assessing test quality — TestLint. Master’s thesis,
University Bern, April 2007.

[110] Lukas Renggli. Magritte — meta-described web application develop-
ment. Master’s thesis, University of Bern, June 2006.

[111] Lukas Renggli and Oscar Nierstrasz. Transactional memory for
Smalltalk. In Proceedings of the 2007 International Conference on Dy-
namic Languages (ICDL 2007), pages 207–221. ACM Digital Library,
2007.

[112] Tamar Richner and Stéphane Ducasse. Using dynamic information
for the iterative recovery of collaborations and roles. In Proceedings of
18th IEEE International Conference on Software Maintenance (ICSM’02),
page 34, Los Alamitos CA, October 2002. IEEE Computer Society.

[113] Fred Rivard. Smalltalk: a reflective language. In Proceedings of RE-
FLECTION ’96, pages 21–38, April 1996.

[114] Don Roberts, John Brant, Ralph E. Johnson, and Bill Opdyke. An
automated refactoring tool. In Proceedings of ICAST ’96, Chicago, IL,
April 1996.

[115] David Röthlisberger. Geppetto: Enhancing Smalltalk’s reflective
capabilities with unanticipated reflection. Master’s thesis, University
of Bern, January 2006.

[116] David Röthlisberger, Marcus Denker, and Éric Tanter. Unanticipated
partial behavioral reflection: Adapting applications at runtime. Jour-
nal of Computer Languages, Systems and Structures, 34(2-3):46–65, July
2008.

[117] David Röthlisberger and Oscar Nierstrasz. Combining development
environments with reverse engineering. In Proceedings of FAMOOSr
2007 (Ist International Workshop on FAMIX and Moose in Reengineering),
2007.

[118] Maher Salah and Spiros Mancoridis. A hierarchy of dynamic software
views: from object-interactions to feature-interacions. In Proceedings
IEEE International Conference on Software Maintenance (ICSM 2004),
pages 72–81, Los Alamitos CA, 2004. IEEE Computer Society Press.

168 Bibliography

[119] Brian Cantwell Smith. Reflection and semantics in a procedural
language. Technical Report TR-272, MIT, Cambridge, MA, 1982.

[120] Brian Cantwell Smith. Reflection and semantics in lisp. In Proceedings
of POPL ’84, pages 23–3, 1984.

[121] David A. Smith, Alan Kay, Andreas Raab, and David P. Reed. Cro-
quet, a collaboration system architecture, 2003. in: Proceedings of the
First Conference on Creating, Connecting and Collaborating through
Computing.

[122] Randall B. Smith and Dave Ungar. A simple and unifying approach
to subjective objects. TAPOS special issue on Subjectivity in Object-
Oriented Systems, 2(3):161–178, 1996.

[123] Patrick Steyaert. Open Design of Object-Oriented Languages. A Founda-
tion for Specialisable Reflective Language Frameworks. PhD thesis, Vrije
Universiteit Brussel, Belgium, 1994.

[124] Éric Tanter. Aspects of composition in the Reflex AOP kernel. In Welf
Löwe and Mario Südholt, editors, Proceedings of the 5th International
Symposium on Software Composition (SC 2006), volume 4089 of LNCS,
pages 98–113, Vienna, Austria, March 2006. Springer.

[125] Éric Tanter. On dynamically-scoped crosscutting mechanisms. ACM
SIGPLAN Notices, 42(2):27–33, February 2007.

[126] Éric Tanter. Expressive scoping of dynamically-deployed aspects. In
Proceedings of the 7th ACM International Conference on Aspect-Oriented
Software Development (AOSD 2008), Brussels, Belgium, April 2008.
ACM Press. To appear.

[127] Éric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel.
Context-aware aspects. In Proceedings of the 5th International Sympo-
sium on Software Composition (SC 2006), volume 4089 of LNCS, pages
227–242, Vienna, Austria, March 2006.

[128] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial
behavioral reflection: Spatial and temporal selection of reification. In
Proceedings of OOPSLA ’03, ACM SIGPLAN Notices, pages 27–46, nov
2003.

[129] Éric Tanter, Marc Ségura-Devillechaise, Jacques Noyé, and José Pi-
quer. Altering Java semantics via bytecode manipulation. In Proceed-
ings of GPCE’02, volume 2487 of LNCS, pages 283–89. Springer-Verlag,
2002.

169

[130] Daniel Vainsencher and Andrew P. Black. A pattern language for
extensible program representation. In Proceedings of PLoP 2006, 2006.

[131] Ian Welch and Robert J. Stroud. Kava — using bytecode rewriting to
add behavioural reflection to Java. In Proceedings of the 6th USENIX
Conference on Object-Oriented Technology (COOTS’2001), pages 119–
130, San Antonio, Texas, USA, February 2001.

[132] Norman Wilde and Michael Scully. Software reconnaisance: Mapping
program features to code. Software Maintenance: Research and Practice,
7(1):49–62, 1995.

[133] Eric Wong, Swapna Gokhale, and Joseph Horgan. Quantifying the
closeness between program components and features. Journal of
Systems and Software, 54(2):87–98, 2000.

[134] Yasuhiko Yokote and Mario Tokoro. Experience and evolution of
ConcurrentSmalltalk. In Proceedings OOPSLA ’87, ACM SIGPLAN
Notices, volume 22, pages 406–415, December 1987.

[135] Andy Zaidman and Serge Demeyer. Managing trace data volume
through a heuristical clustering process based on event execution
frequency. In Proceedings IEEE European Conference on Software Main-
tenance and Reengineering (CSMR’04), pages 329–338, Los Alamitos
CA, March 2004. IEEE Computer Society Press.

[136] Pascal Zumkehr. Changeboxes — modeling change as a first-class
entity. Master’s thesis, University of Bern, February 2007.

Curriculum Vitae

Personal Information

Name: Marcus Denker

Date of Birth: September 02, 1975
Place of Birth: Siegen, Germany
Nationality: German

Education

2004 - 2008: Ph.D. in Computer Science in the Software Composition
Group, University of Bern, Switzerland
Thesis title: Sub-method Structural and Behavioral Reflection

1996 - 2004: University of Karlsruhe, Germany
Master’s degree in Computer Science, May 2004
Thesis title: Erweiterung eines statischen Übersetzers zu einem
Laufzeitübersetzungssystem

1995: Abitur, Siegen, Germany

Complete Curriculum Vitae :
http://www.marcus-denker.de/CV.html

http://www.marcus-denker.de/CV.html

	1
	Introduction
	Context
	Problems of Reflection
	Contributions
	Structure of the Dissertation

	Reflection: Context and Problems
	Introduction
	Problems in Practice
	Dynamic Analysis.
	Integrated Development Environments.
	Language Experiments
	Three Requirements for Reflective Systems

	Reflection: A Brief Introduction
	Reflection in Programming Languages
	Reflection and Objects: Meta-object Architectures
	Partial Behavioral Reflection.
	Implementing Behavioral Reflection

	Problem 1: Anticipation
	Problem 2: Sub-method Structure
	Problem 3: Recursion
	Summary and Roadmap

	Unanticipated Partial Behavioral Reflection
	Introduction
	ByteSurgeon: Bytecode Transformation
	The Need for Bytecode Manipulation
	Bytecode Transformation Approaches
	ByteSurgeon: Overview
	Inside ByteSurgeon
	Validation
	Conclusion

	Geppetto: Unanticipated Partial Behavioral Reflection
	Running Example
	Solving the Running Example with Geppetto
	Geppetto Design
	Implementation Issues
	Evaluation

	Problems of the Approach
	Conclusion and Summary

	Sub-Method Reflection
	Introduction
	Challenges for Supporting Sub-Method Reflection
	Text as Sub-Method Representation
	AST as Sub-Method Representation
	Bytecode as Sub-Method Representation
	Requirements

	Reflective Methods: Annotated ASTs
	Dual Methods
	A Simple Example: Compile-Time Evaluated Expressions
	AST and Tree Transformation API
	AST Annotations
	Annotation Semantics
	Characteristics of the Solution

	Validation of Sub-Method Reflection
	Instrumentation using Annotations
	Pluggable Type System
	Performance and Memory Analysis

	Other Systems
	Related Work
	Summary

	Behavioral Reflection Revisited
	Introduction
	The Problems
	Partial Behavioral Reflection Revisited
	Simplifications
	The Link
	Spatial Selection
	Special Meta-objects

	Geppetto 2: Examples
	Code Coverage
	Method Wrappers
	Meta-class MOP

	Implementation
	The Transformation Plugin
	Plugins for Reified Data
	Code Quality

	Evaluation and Benchmarks
	Benchmarks
	Evaluation

	Summary

	Modeling Meta-level Execution with Context
	Introduction
	A Simple Example
	Infinite Meta-object Call Recursion
	Solution: The MetaContext
	Modeling Context
	The Problem Revisited
	The Contextual Tower
	MetaContext Revised

	Implementation
	Implementation of MetaContext
	Realizing Contextual Links

	Evaluation and Benchmarks
	The Problem is Solved
	Benefits for Dynamic Analysis
	Benchmarks

	Related Work
	Summary

	Case Study: Dynamic Feature Annotation
	Introduction
	Dynamic Feature Analysis
	Feature Analysis in a Nutshell
	Problems
	Summary

	Feature Annotation
	Dynamic Analysis with Reflectivity
	Feature Annotation with Reflectivity
	Deinstallation at Runtime
	Growing Features
	Implementation

	Validation
	Benchmarks
	Number of Events Generated
	Evaluation

	Summary

	Conclusions
	Contributions of the Dissertation.
	Impact
	Future Work

	The Reflectivity System
	Introduction
	Installation
	Downloading a Pre-built Version
	Building from Scratch
	Preferences

	Examples for Geppetto
	A Simple Counter
	Method Execution
	Message Sends
	Variables

	Glossary
	Bibliography

