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Dielectric map of the Martian northern hemisphere and the nature
of plain filling materials
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[1] A number of observations suggest that an extended
ocean once covered a significant part of the Martian northern
hemisphere. By probing the physical properties of the sub-
surface to unprecedented depth, the MARSIS/Mars Express
provides new geophysical evidences for the former existence
of a Late Hesperian ocean. The Vastitas Borealis formation,
located inside a putative shoreline of the ancient ocean, has
a low dielectric constant compared with that of typical volca-
nic materials. We show that the measured value is only con-
sistent with low-density sedimentary deposits, massive
deposits of ground-ice, or a combination of the two. In con-
trast, radar observations indicate a distribution of shallow
ground ice in equilibrium with the atmosphere in the south
polar region. We conclude that the northern plains are filled
with remnants of a late Hesperian ocean, fed by water and
sediments from the outflow channels about 3 Gy ago.
Citation: Mouginot, J., A. Pommerol, P. Beck, W. Kofman,
and S. M. Clifford (2012), Dielectric map of the Martian north-
ern hemisphere and the nature of plain filling materials, Geophys.
Res. Lett., 39, L02202, doi:10.1029/2011GL050286.

1. Introduction

[2] The surface geology of Mars attests that water was
once flowing in abundance. The action of liquid water
deeply eroded the Martian upper crust, creating dendritic
valleys networks [Carr, 1996; Luo and Stepinski, 2009;
Di Achille and Hynek, 2010] and wide outflow channels
through which massive amounts of sediments were trans-
ported and redistributed [Carr, 1987; Baker et al., 1991].
This erosion occurred episodically from the Late Noachian
through the Early Amazonian, about 4–2 billion years ago.
[3] Based on the identification of possible paleoshorelines

surrounding the northern plains of Mars, it has been argued
that the planet may have once hosted “Oceanus Borealis”,
a hemispheric ocean that covered more than 30% of the
planet’s surface [Baker et al., 1991; Parker et al., 1993;
Clifford and Parker, 2001]. Topographic data has been cited
to both support [Head et al., 1999; Clifford and Parker,
2001] and question [Carr and Head, 2003] the consistency
of these plains margins with equipotential surfaces, poten-
tially indicative of past sea levels. More recently, it has been

demonstrated [Perron et al., 2007] that the elevations of
these proposed shorelines closely conform to past equipo-
tential surfaces that were later deformed by crustal move-
ment associated with true polar wander. Additional support
for the presence of a Noachian-age ocean comes from a
recent study of the distribution of the Martian valley net-
works and the observation of iso-altitude deltaic deposits
[Luo and Stepinski, 2009; Di Achille and Hynek, 2010].
[4] However, several workers [Malin and Edgett, 1999;

Tanaka et al., 2001; Carr and Head, 2003] have questioned
the true nature of the contacts interpreted as paleoshorelines
[Parker et al., 1989; Parker et al., 1993] as their character-
istics, revealed by MOC high resolution images, might also
be explained by a volcanic origin. In addition, long and high
ridges across the plains are interpreted as indications of the
volcanic filling of lowlands during the early Hesperian [Head
et al., 2002]. The total thickness of the volcanic materials
could exceed a kilometer and totally hide the remnants of the
hypothetical Noachian ocean. Thus, the absence of evapor-
ites and the relatively low abundance of altered minerals
found across the northern plains by orbital spectrometers may
not place a strong constraint on the former presence of a
Noachian ocean.
[5] If any remnant of a Noachian ocean still survives, it

should be deeply buried. However, potential evidence of the
last stage of the ocean’s evolution is visible on the surface.
The peak in outflow channel activity occurred around the
Hesperian-Amazonian transition, which postdates the prin-
cipal era of volcanic activity over much of the northern
plains. These events transported and deposited significant
amounts of water and sediment, which covered the
northern lowlands. Indeed, the Vastitas Borealis Formation
(VBF), has been identified [Kreslavsky and Head, 2002]
as a thin (�100 m-thick) sedimentary veneer that overlies
the volcanic ridged plains. As such, it represents the best
geologic evidence to date for the existence of a Late Hespe-
rian ocean.

2. Data and Methodology

[6] The MARSIS/Mars Express low-frequency sounding
radar was designed to probe the Martian subsurface to
depths of up to four kilometres in the ice-rich polar layered
deposits (PLD) and to depths of up to several hundred
meters in the lithic environments that characterized every-
where else, providing new insights into the nature of the
crust [Picardi et al., 2005; Mouginot et al., 2010]. These
data strongly contrast with other remote-sensing methods
that can only probe the surface to depths of �1 mm to 1 mm
in the visible and infrared; �0.5 m for neutrons, gamma- and
X-rays; and in-situ analyses by landers and rovers that can
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reach depths of �5–20 cm, e.g., Phoenix detected ice at a
depth of 5 cm [Mellon et al., 2009].
[7] Mouginot et al. [2010] derived a 3–5 MHz global

dielectric map based on the extraction of the surface reflec-
tivity from two years of MARSIS measurements that pro-
vides insights into the average composition and physical
properties of the first 60 to 80 meters below the surface.
Additional data acquired since this time have been included
to produce the updated dielectric maps shown in Figure 1
with greater spatial coverage of the northern hemisphere.
The ability of sounding radar to probe deep into the crust
provides insights into events and conditions that occurred
further back in time – which, in the context of the VBF, is
though to date back �2–3 billion years. Radar probes the
nature of planetary subsurfaces by revealing contrasts of
dielectric constant ɛ. In the case of Mars, ɛ is influenced by
two main parameters: the density of the materials and the
amount of ice in the ground. Dense volcanic materials can
have dielectric constants as high as 10 at 2 MHz. Decreasing
the density of the materials results in a decrease of ɛ. Since

pure water ice as a dielectric constant ɛ equals to 3.1 at this
frequency, increasing amount of ice in the soil will also
result in a decrease of its bulk dielectric constant.

3. Results and Discussion

[8] A quick comparison of the two hemispheric dielectric
maps reveals some fundamental differences (Figure 1). In
the south, the area corresponding to the lowest dielectric
values defines a quasi-circular aureole from the pole to
the 60°S latitude (Figure 1b). This latitudinal variation of
MARSIS dielectric value is roughly consistent with the
shallow ice limit identified by the Mars Odyssey Gamma-
Ray neutron Spectrometer (GRS) [Mitrofanov et al., 2002;
Feldman et al., 2002; Boynton et al., 2002], the observed
distribution of modern polygonal ground [Mangold et al.,
2004; Levy et al., 2009], and the theoretical stability limit
of ground ice in equilibrium with present surface tempera-
tures and the water vapour content of the atmosphere
[Schorghofer and Aharonson, 2005]. Within this range of

Figure 1. Maps of the Martian (a, c) northern and (b) southern hemisphere, from 30°S to the pole, displayed in polar
stereographic projection. The blue-red colors represent the surface dielectric values measured by MARSIS and interpolated
by spherical harmonics of order 8. Base map is a Mars Orbiter Laser Altimeter (MOLA) shaded-relief image. Low values
(blue) are best explained by low density materials and/or presence of ice, while high values (red) indicate the presence of
higher density volcanic materials. The contour-line of 10% Water Equivalent Hydrogen (WEH) in the shallow subsurface
[Feldman et al., 2002] and the current theoretical stability limit of ground ice [Schorghofer and Aharonson, 2005] are over-
laid onto the MARSIS map. Comparison between these datasets (neutrons, recent polygons, and MARSIS) shows that, in
the south, the current distribution of shallow subsurface ice is generally consistent with the theoretical stability limit of
ground ice in equilibrium with the current surface temperature and water vapour content of the atmosphere (Figure 1b).
Contrary to the southern hemisphere, the region with low dielectric value mapped by MARSIS extends equatorward far
beyond the latitudes where shallow subsurface ice is expected to be stable (Figure 1a).
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latitudes, the data from the MARSIS and GRS instruments
are both consistent with the presence of ice-rich permafrost.
However, while the GRS instrument is sensitive to the
presence of subsurface hydrogen only within the top half-
meter, the dielectric values derived from the MARSIS
reflectivity data represent the volume averaged properties of
the subsurface to a depth of 60–80 m for the range of
dielectric properties observed poleward of 60°S (Figure 1b).
The total depth of ice-rich permafrost may actually extend
much deeper than this, typically 10–20 km [Clifford et al.,
2010], depending on the thermal properties of the crust
and the inventory of subsurface H2O.
[9] In the northern hemisphere, the distribution of shallow

subsurface ice mapped by gamma-ray and neutron spec-
troscopy is also roughly consistent with theoretical predic-
tions of ground ice stability (Figure 1b) [Mitrofanov et al.,
2002; Feldman et al., 2002; Boynton et al., 2002]. How-
ever, the surface dielectric map clearly differs from the dis-
tribution of ground-ice observed by GRS (Figure 1). The
MARSIS dielectric map displays a pattern of low reflectivity
in three similarly sized lobes or branches extending toward
lower latitudes in the regions of Amazonis Planitia (150°W),
Chryse Planitia (30°W) and Utopia Planitia (100°E). This

pattern of low dielectric values is generally consistent with
the global topography but displays an even better consis-
tency with the “Deuteronilus” shoreline [Clifford and
Parker, 2001] (Figure 2), which surrounds the VBF and
extends down to encompass the three main catchment areas
of the large outflow channels that emanate from the southern
highlands. The discharges associated with these outflow
channels may have supplemented or covered any surviving
frozen remnant of the original Noachian ocean and Hespe-
rian volcanic deposits. It is likely that the episodic fluvial
evolution of the northern plains resulted in a complex stra-
tigraphy [Clifford and Parker, 2001], consisting of massive
ice deposits interbedded with layers of sediment and volca-
nic materials that may have been emplaced before the
underlying ice had sublimed away.
[10] In the southern polar region, the pattern of dielectric

constant is dominated by the presence of shallow ground ice
at equilibrium with current climate. This shallow ground ice
also exists in the Northern hemisphere, as attested by a
number of observations including in-situ observations by the
Phoenix lander and direct observations by the HiRISE and
CRISM instruments inside fresh impact craters. However,
because the terrains of the VBF already display low values

Figure 2. A pole-to-equator map of the Martian northern hemisphere, displayed in polar stereographic projections. The
map is color-coded to indicate the MARSIS mean dielectric constant of each geological unit identified by Tanaka et al.
[2005]. Units where data are biased by rough surface are excluded and represented in white.
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of dielectric constant expected of ice-rich regolith, the onset
of the shallow ground ice is not detectable on the map.
[11] To further test the apparent spatial correlation

between the dielectric map and the geology (i.e. sedimentary
vs. volcanic) of the northern plains [Tanaka et al., 2005], we
created a composite map (Figure 2) where the average
dielectric constant for each geological unit was calculated
from the MARSIS data, color-coded, and displayed. Exam-
ination of this map reveals that the geological units, which
have been identified as sedimentary in nature are associated
with low values of dielectric constant (ɛ < 5). While later
Amazonian volcanic units (e.g. Elysium rise) exhibit higher
values of ɛ, Noachian volcanic formations have the very
highest values of dielectric constant (ɛ > 9). These obser-
vations confirm the clear link between the dielectric constant
and the geological nature of these rocks.
[12] The average dielectric value we measured for the

VBF, 4.5+/�1 (see Table 1), provides further insights on the
geologic nature of the constituent materials. If the VBF is
composed of rock eroded from a source with a dielectric
constant of 9 (a value consistent with that of the Tharsis rise
basalts, see Table 1), a porosity of about 35% is required
according to the classical deLoor mixing formula [Nunes
et al., 2011]. To achieve the same observed dielectric con-
stant with a mixture of silicates and water ice, would require
a volumetric ice content of �60%. Such a mixture could be
readily explained if the deposition of sedimentary material
was accompanied by the freezing of the ocean, while the
sublimation of ice from such mixture could yield a sedi-
mentary lag deposit with a porosity of �35%. The inversion
of the dielectric constant does not point to a unique com-
position of the VBF, and may reflect contributions from
both cases. Nevertheless, the MARSIS radar data provides
the first clear geophysical evidence of an oceanic origin of
the VBF.

4. Conclusion

[13] Although much is still unknown about the evolution
and environmental context of a Late Hesperian ocean, our
observations provide persuasive evidence of its existence by
the measurement of a dielectric constant of the VBF that is
sufficiently low that it can only be explained by the wide-
spread deposition of (now desiccated) aqueous sediments or
sediments mixed with massive ice. This suggests that the

water that once filled the Late Hesperian ocean may have
suffered two potential fates – either sublimed to the atmo-
sphere (and cold-trapped elsewhere on the planet), or frozen
in place and preserved underground. There is significant
geologic evidence as dissected terrains, pedestal craters,
polygonal soils or scallops [Mustard et al., 2001; Mangold
et al., 2004; Kadish et al., 2010; Lefort et al., 2010] that
the Martian ground ice is frequently redistributed as a
response to the chaotic evolutions of Mars orbital parameters.
Ground ice in the first meters to decametres below the
surface is susceptible to be affected by these redistributions
[Schorghofer and Aharonson, 2005]. At greater depth, ice
might be stable over geological timescales and a deeply
buried cryosphere could account for a large part of the ini-
tial water budget of Mars. Rampart craters may be the best
evidences of the existence of this ice reservoir [Costard,
1989]. Because the depth of the subsurface probed by the
radar reflection process could reach 100 m, it is possible
that this ice may contribute to the low values of dielectric
constant measured by MARSIS.
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