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Anonymization Fiascos

Disturbing Headlines and Paper Titles

§ “A Face Is Exposed for AOL Searcher No. 4417749” [Barbaro & Zeller ’06]

§ “Robust De-anonymization of Large Datasets (How to Break Anonymity of the Netflix
Prize Dataset)” [Narayanan & Shmatikov ’08]

§ “Matching Known Patients to Health Records in Washington State Data” [Sweeney ’13]

§ “Harvard Professor Re-Identifies Anonymous Volunteers In DNA Study” [Sweeney et al. ’13]

§ ... and many others

In general, removing identifiers and applying anonymization heuristics is not always enough!



Why is Anonymization Hard?

§ High-dimensional/high-resolution data is essentially unique:

office department date joined salary d.o.b. nationality gender

London IT Apr 2015 £### May 1985 Portuguese Female

§ Lower dimension and lower resolution is more private, but less useful:

office department date joined salary d.o.b. nationality gender

UK IT 2015 £### 1980-1985 — Female
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Managing Expectations

Unreasonable Privacy Expectations

§ Privacy for free? No, privatizing requires removing information (ñ accuracy loss)

§ Absolute privacy? No, your neighbour’s habits are correlated with your habits

Reasonable Privacy Expectations

§ Quantitative: offer a knob to tune accuracy vs. privacy loss

§ Plausible deniability: your presence in a database cannot be ascertained

§ Prevent targeted attacks: limit information leaked even in the presence of side knowledge



The Promise of Differential Privacy

Quote from [Dwork and Roth, 2014]:

Differential privacy describes a promise, made by a data holder, or curator, to a data
subject: “You will not be affected, adversely or otherwise, by allowing your data to
be used in any study or analysis, no matter what other studies, data sets, or
information sources, are available.”

Quotes from the 2017 Gödel Prize citation awarded to Dwork, McSherry, Nissim and Smith:

Differential privacy was carefully constructed to avoid numerous and subtle pitfalls
that other attempts at defining privacy have faced.

The intellectual impact of differential privacy has been broad, with influence on the
thinking about privacy being noticeable in a huge range of disciplines, ranging from
traditional areas of computer science (databases, machine learning, networking,
security) to economics and game theory, false discovery control, official statistics and
econometrics, information theory, genomics and, recently, law and policy.
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Differential Privacy

Ingredients

§ Input space X (with symmetric neighbouring relation »)

§ Output space Y (with σ-algebra of measurable events)

§ Privacy parameter ε ě 0

Differential Privacy [Dwork et al., 2006, Dwork, 2006]

A randomized mechanism M : X Ñ Y is ε-differentially private if for all neighbouring inputs
x » x 1 and for all sets of outputs E Ď Y we have

PrMpxq P E s ď eεPrMpx 1q P E s

Intuitions behind the definition:

§ The neighbouring relation » captures what is protected

§ The probability bounds capture how much protection we get
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DP before DP: Randomized Response

The Randomized Response Mechanism [Warner, 1965]

§ n individuals answer a survey with one binary question

§ The truthful answer for individual i is xi P t0, 1u

§ Each individual answers truthfully (yi “ xi ) with probability eε{p1` eεq and falsely
(yi “ x̄i ) with probability 1{p1` eεq

§ Let’s denote the mechanism by py1, . . . , ynq “ RRεpx1, . . . , xnq

Intuition: Provides plausible deniability for each individual’s answer

Claim: RRε is ε-DP (free-range organic proof on the whiteboard)

Utility: Averaging the (unbiased) answers ỹi from RRε satisfies w.h.p.
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The Laplace Mechanism (for computing the mean)

Private Mean Computation

§ A curator holds one bit xi P t0, 1u for each of n individuals
§ The curator proceeds by

1. Computing the mean µ “ 1
n

řn
i“1 xi ,

2. Sampling noise Z „ Lapp 1
εn q, and

3. Revealing the noisy mean µ̃ “ µ` Z

§ Let’s denote the mechanism by µ̃ “MLappx1, . . . , xnq

Claim: MLap is ε-DP (free-range organic proof on the whiteboard)

Utility: The answer returned by the mechanism satisfies w.h.p.

|µ´ µ̃| ď O

ˆ

1

εn

˙
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Approximate Differential Privacy
Ingredients

§ Input space X (with symmetric neighbouring relation »)

§ Output space Y (with sigma-algebra of measurable events)

§ Privacy parameters ε ě 0, δ P r0, 1s

Approximate Differential Privacy
A randomized mechanism M : X Ñ Y is pε, δq-differentially private if for all neighbouring
inputs x » x 1 and for all sets of outputs E Ď Y we have

PrMpxq P E s ď eεPrMpx 1q P E s ` δ

Interpretation

§ δ accounts for “bad events” that might result in high privacy losses

§ Mechanism Mpx1, . . . , xnq “ xUnifprnsq is p0, 1{nq-DP (ñ should take δ ! 1{n)
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Output Perturbation Mechanisms

The Laplace mechanism is an example of a more general class of mechanisms

Global Sensitivity: for any function f : X Ñ Rd define ∆p “ supx»x 1 }f pxq ´ f px 1q}p

Output Perturbation (with Laplace and Gaussian noise)

§ A curator holds one vector xi P Rd for each of n individuals

§ The curator computes a function f px1, . . . , xnq of the data,

§ samples noise Z „ Lapp∆1
ε q

d or Z „ Np0,σ2qd with σ “
∆2

?
C logp1{δq

ε , and

§ reveals the noisy value f px1, . . . , xnq ` Z

§ Let’s denote the mechanisms Mf ,Lap and Mf ,N respectively

§ Note the mechanism of the previous slide is Mf ,Lap for f px1, . . . , xnq “
1
n

řn
i“1 xi

Claim: Mf ,Lap is ε-DP and Mf ,N is pε, δq-DP
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Fundamental Properties

§ Robustness to post-processing: M is pε, δq-DP, then F ˝M is pε, δq-DP

§ Composition: if Mj , j “ 1, . . . , k, are pεj , δjq-DP, then ~x ÞÑ pM1p~xq, . . . ,Mkp~xqq is
p
ř

j εj ,
ř

j δjq-DP. In the homogeneous case this yields pkε, kδq-DP

§ Advanced composition: if Mj , j “ 1, . . . , k, are pε, δq-DP, then ~x ÞÑ pM1p~xq, . . . ,Mkp~xqq
is pε

a

k logp1{δ 1q ` εpeε ´ 1qk , kδ` δ 1q-DP for any δ 1 ą 0

§ Group privacy: if M is pε, δq-DP with respect to x » x 1, then M is ptε, tetεδq with
respect to x »t x 1 (ie. t changes)

§ Protects against side knowledge: if attacker has prior Pxi
prior and computes Pxi

posterior after

observing Mp~xq from ε-DP mechanism, then distpPxi
prior ,Pxi

posterior q “ Opεq
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The Exponential Mechanism

The Laplace and Gaussian mechanisms are examples of a more general class of mechanisms

Densities of output perturbation mechanisms

pMf ,Lappxqpyq9 exp

ˆ

´ε}y ´ f pxq}1
∆1

˙

pMf ,Npxqpyq9 exp

ˆ

´ε2}y ´ f pxq}22
C∆2

2 logp1{δq

˙

Exponential Mechanism

§ Prior distribution over outputs with density π

§ Scoring function q : X ˆ Y Ñ Rě0 provides scores for each output y w.r.t. input x

§ The exponential mechanism Mπ,qpxq outputs a sample from the distribution with density

pπ,qpyq9πpyq exp p´βqpx , yqq
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Calibrating The Exponential Mechanism

Properties of the Scoring Function

§ Sensitivity: supx»x 1 supy |qpx , yq ´ qpx 1, yq| ď ∆

§ Lipschitz: supx»x 1 |pqpx , yq ´ qpx 1, yqq ´ pqpx , y 1q ´ qpx 1, y 1qq| ď L}y ´ y 1}

Properties of the Prior

§ Strong log-concavity: πpyq “ e´W pyq for some κ-strongly convex W

Privacy Guarantees for the Exponential Mechanism

Assumptions β Privacy Reference

q bounded sensitivity O
`

ε
∆

˘

pε, 0q [McSherry and Talwar, 2007]

q Lipschitz + convex
π strongly log-concave O

ˆ

ε
?
κ

L
?

logp1{δq

˙

pε, δq [Minami et al., 2016]
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Differentially Private Empirical Risk Minimization

Setup: A curator has features and labels ~z “ ppx1, y1q, . . . , pxn, ynqq about n individuals and
wants to train a model by minimizing over θ P Θ

Lp~z , θq “
1

n

n
ÿ

i“1

`pxi , yi , θq `
Rpθq

n

Examples: logistic regression, SVM, linear regression, DNN, etc.

Private ERM Algorithms

§ Output Perturbation: add some noise Z to θ̂ “ argminθPΘ Lp~z , θq

§ Objective Perturbation: reveal the optimum of Lp~z , θq ` xθ,Zy for some noise Z

§ Gradient Perturbation: optimize Lp~z , θq using mini-batch SGD with noisy gradients



Differentially Private Empirical Risk Minimization

Setup: A curator has features and labels ~z “ ppx1, y1q, . . . , pxn, ynqq about n individuals and
wants to train a model by minimizing over θ P Θ

Lp~z , θq “
1

n

n
ÿ

i“1

`pxi , yi , θq `
Rpθq

n

Examples: logistic regression, SVM, linear regression, DNN, etc.

Private ERM Algorithms

§ Output Perturbation: add some noise Z to θ̂ “ argminθPΘ Lp~z , θq

§ Objective Perturbation: reveal the optimum of Lp~z , θq ` xθ,Zy for some noise Z
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DP-ERM: Method Comparison

Perturb Optimization Privacy Assumptions Excess Risk Reference

Objective Exact pε, δq
linear model

convexity Õ
´

1
ε
?
n

¯

[Jain and Thakurta, 2014]

Output Exact pε, δq
linear model

convexity O
´

1
ε
?
n

¯

[Jain and Thakurta, 2014]

Output SGD ε
linear model

convexity O
´

d
ε
?
n

¯

[Wu et al., 2016]

Output SGD ε
linear model

strong convexity O
`

d
εn

˘

[Wu et al., 2016]

Gradient SGD pε, δq convexity Õ
´?

d
εn

¯

[Bassily et al., 2014]

Gradient SGD pε, δq strong convexity Õ
`

d
ε2n2

˘

[Bassily et al., 2014]

See also [Talwar et al., 2014, Abadi et al., 2016]



Private Bayesian Learning

One-Posterior Sample (OPS) Mechanism [Wang et al., 2015]

§ Curator has a prior Pprior pθq and a model Pmodelpxi |θq

§ Given a dataset ~x the curators computes the posterior Pposterior pθ|~xq, and

§ reveals a sample θ̂ „ Pposterior pθ|~xq

Claim: If the model satisfies supx ,x 1,θ | logPmodelpx |θq ´ logPmodelpx
1|θq| ď ε{2 then OPS is

ε-DP

See also: [Wang et al., 2015, Foulds et al., 2016, Minami et al., 2016] for DP with approximate
inference, [Park et al., 2016] for DP with variational Bayes, and [Zhang et al., 2016] for Bayesian
network mechanisms
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Privacy Losses

Let M : X Ñ Y be a randomized mechanism with density function pMpxqpyq

Privacy Loss (function)

LM,x ,x 1pyq “ log

ˆ

pMpxqpyq

pMpx 1qpyq

˙

Privacy Loss (random variable)

LM,x ,x 1 “ LM,x ,x 1pMpxqq

Lemma (Sufficient Condition)
A mechanism M : X Ñ Y is pε, δq-DP if for any x » x 1 we have PrLM,x ,x 1 ě εs ď δ
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Analysis of the Gaussian Mechanism
1. Setup: Mpxq “ f pxq ` Z with Z „ Np0,σ2I q with σ “ ∆2

ε

a

C logp1{δq (for ε ď 1)
2. Compute the distribution of the privacy loss random variable:

LM,x ,x 1pyq “
}y ´ f px 1q}22 ´ }y ´ f pxq}22

2σ2
“
}f pxq ´ f px 1q}22

2σ2
`
xy ´ f pxq, f pxq ´ f px 1qy

σ2

LM,x ,x 1 “
}f pxq ´ f px 1q}22

2σ2
`
xZ , f pxq ´ f px 1qy

σ2
„ N

ˆ

}f pxq ´ f px 1q}22
2σ2

,
}f pxq ´ f px 1q}22

σ2

˙

3. Use a concentration bound for Gaussian random variables. With probability ě 1´ δ:

Npη, 2ηq ď η`
a

C0η logp1{δq ď ε

4. Assuming ε ď 1, a bit of algebra shows PrLM,x ,x 1 ě εs ď δ if:

η ď
´

a

ε` C1 logp1{δq ´
a

C1 logp1{δq
¯2
ď

ε2

C2 logp1{δq

5. Substitute the definition of σ2 and verify the condition is satisfied:

η “
}f pxq ´ f px 1q}22

2σ2
“
ε2}f pxq ´ f px 1q}22

2∆2
2C logp1{δq

ď
ε2

C2 logp1{δq
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Differential Privacy as a Concentration Property

§ Let M : X Ñ Y be a randomized mechanism with privacy loss r.v. LM,x ,x 1

§ Define the cumulant generating function of M as ϕM,x ,x 1psq “ logEresLM,x ,x 1 s

Name Definition Reference

Concentrated DP
pµ, τq-CDP

x » x 1, s ą 0

ϕM,x ,x 1psq ď sµ` s2τ2

2 [Dwork and Rothblum, 2016]

Zero-Concentrated DP
pξ, ρq-zCDP

x » x 1, s ą 0
ϕM,x ,x 1psq ď spξ` ρq ` s2ρ [Bun and Steinke, 2016]

Rényi DP
pα` 1,βq-RDP

x » x 1

ϕM,x ,x 1pαq ď αβ [Mironov, 2017]

§ Gaussian: For L „ Npη, 2ηq the c.g.f. is ϕpsq “ sη` s2η, i.e. p0,ηq-zCDP

§ Markov: If Ds ą 0 such that supx»x 1 ϕM,x ,x 1psq ` logp1{δq ď sε, then M is pε, δq-DP

§ Moment accountant: Let ϕi psq be c.g.f. for mechanism Mi . The mechanism
Mpxq “ pM1pxq, . . . ,Mkpxqq has c.g.f. ϕMpsq “

řk
i“1ϕi psq [Abadi et al., 2016]
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Differential Privacy Without a Trusted Curator
Issues with the Trusted Curator Assumption

§ Single point of failure: a DP curator might have other security vulnerabilities

§ Conflicting incentives: valuable the data provides incentives for the curator to misbehave

§ Requires agreement: a large number of individuals need to agree on who to trust

Randomized response: recall in py1, . . . , ynq “ RRεpx1, . . . , xnq each yi depends only on xi

Multi-Party and Local Differential Privacy

§ Dataset x distributed among m parties, party i owns ~xi
§ Analyst initiates randomized protocol Π : X Ñ Y that interacts with the parties

§ All the outputs produced by party i during Πpxq determine a mechanism Mi p~xi q

§ Π is multi-party pε, δq-DP if each Mi is pε, δq-DP

§ When each ~xi has size one we talk about local DP

§ Utility loss: the difference between Op1{nq (Laplace) and Op1{
?
nq (RR) is characteristic

of local DP
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Beyond This Tutorial...

Additional Results

§ More basic mechanisms: sparse vector technique and other selection mechanisms, private
data structures

§ General theorems: everything is randomized response, lower bounds on utility,
computational hardness, optimal mechanisms, connections to generalization

§ Database perspective: answering multiple queries on the same data, adaptive vs.
non-adaptive queries

§ When global sensitivity is atypical: smoothed sensitivity, randomized DP

§ Other privacy definitions: location privacy, pan DP, pufferfish privacy

Suggested Readings

§ “The Algorithmic Foundations of Differential Privacy” [Dwork and Roth, 2014]

§ “The Complexity of Differential Privacy” [Vadhan, 2017]



Some Open Research Directions

Bounds vs. Algorithms

§ Few privacy analysis are tight: randomized response, Laplace mechanism, ε-DP
exponential mechanism

§ Most complex mechanisms add too much noise (constants in bounds matter!)

§ Alternative: calibrate noise using “exact” numerical computations instead of bounds

§ Challenges: concentration bounds vs. exact densities, compositions, sub-sampling and
other mixtures, approximate sampling

Correctness and Attacks

§ Given a mechanism, it is not possible to test empirically if it is DP

§ We can only resort to mathematical proofs to establish correctness (can be automated?)

§ But we should have sanity-check to tools to break DP of candidate implementations

§ Challenge: from pseudo-code to implementation things can go wrong (floating-point ‰ R)



Conclusion

§ Differential privacy provides a formal notion of privacy satisfying many desirable
properties

§ Precise quantification of the privacy-utility trade-off
§ Robustness against powerful adversaries (eg. in the presence of side knowledge)
§ Applicable to a wide range of data analysis problems

§ Mature research field with a rich toolbox of mechanism design strategies

§ Natural starting point for application-specific privacy guarantees
§ Several real-world deployments and open source tools

§ Google Chrome’s RAPPOR
§ Apple’s iOS 10
§ U.S. Census Bureau
§ GUPT, Microsoft’s PINQ, Uber’s FLEX
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