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Brief History of Automata Learning

1967 Gold: Regular languages are learnable in the limit

1987 Angluin: Regular languages are learnable from queries

1993 Pitt & Warmuth: PAC-learning DFA is NP-hard

1994 Kearns & Valiant: Cryptographic hardness
Clark, Denis, de la Higuera, Oncina, others: Combinatorial methods meet statistics and
linear algebra

2009 Hsu-Kakade-Zhang & Bailly-Denis-Ralaivola: Spectral learning



Goals of This Tutorial

Goals

» Motivate spectral learning techniques for weighted automata and related models on
sequential and tree-structured data

» Provide the key intuitions and fundamental results to effectively navigate the literature

» Survey some formal learning results and give overview of some applications

» Discuss role of linear algebra, concentration bounds, and learning theory in this area
Non-Goals

» Dive deep into applications: instead pointers will be provided

» Provide an exhaustive treatment of automata learning: beyond the scope of an
introductory lecture

» Give complete proofs of the presented results: illuminating proofs will be discussed,
technical proofs omitted
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1. Sequential Data and Weighted Automata



Learning Sequential Data

» Sequential data arises in numerous applications of Machine Learning:

» Natural language processing

» Computational biology

» Time series analysis

» Sequential decision-making

» Robotics
» Learning from sequential data requires specialized algorithms

» The most common ML algorithms assume the data can be represented as vectors of a

fixed dimension

» Sequences can have arbitrary length, and are compositional in nature

» Similar things occur with trees, graphs, and other forms of structured data
» Sequential data can be diverse in nature

» Continuous vs. discrete time vs. only order information
» Continuous vs. discrete observations



Functions on Strings

» In this lecture we focus on sequences represented by strings on a finite alphabet: *
» The goal will be to learn a function f : ¥* — R from data
» The function being learned can represent many things, for example:
» A language model: f(sentence) = likelihood of observing a sentence in a specific natural
language
» A protein scoring model: f(aminoacid sequence) = predicted activity of a protein in a
biological reaction
» A reward model: f(action sequence) = expected reward an agent will obtain after
executing a sequence of actions
» A network model: f(packet sequence) = probability that a sequence of packets will
successfully transmit a message through a network

» These functions can be identified with a weighted language f € R>", an
infinite-dimensional object

» In order to learn such functions we need a finite representation: weighted automata



Weighted Finite Automata

Graphical Representation
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Weighted Finite Automaton

A WFA A with n = |A| states is a tuple A = {a, B, {As}sex) Where a, 3 € R" and A, € R"*"



Language of a WFA
With every WFA A = (a, B, {A,}) with n states we associate a weighted language
fa:¥X* — R given by

.
fala-xr) = > alq) (H A (g1, C/t)) B(ar)
t=1

G0.q1.....97€[n]

= aTAxl T AxTﬁ = aTAXﬁ

Recognizable/Rational Languages
A weighted language f : X* — R is recognizable/rational if there exists a WFA A such that
f = fa. The smallest number of states of such a WFA is rank(f). A WFA A is minimal if
|A| = rank(fa).

Observation: The minimal A is not unique. Take any invertible matrix Q € R™*", then

aTAX1 T AXTﬂ = (aTQ)(QilelQ) T (QilAXTQ)(Qilﬁ)



Examples: DFA, HMM

Deterministic Finite Automata Hidden Markov Model
» Weights in {0, 1} » Weights in [0, 1]
» Initial: o indicator for initial state » Initial: o distribution over initial state
» Final: B indicates accept/reject state » Final: B vector of ones
» Transition: A, (i,j) = 1I[i 5 j] » Transition:
» fa: 2" — {0, 1} defines regular As(ij) =P[i = j] = P[i — jIP[i ]
language » fa: X" — [0, 1] defines dynamical

system



: h
Hankel Matrices s

Given a weighted language f : ¥* — R define its Hankel matrix Hr € R* *>" as

€ a b s
| flo fa f) |
a | f(a) f(aa) f(ab)
Hf — b f(b) f(ba) f(bb)
p f(p-s)

Fliess—Kronecker Theorem

The rank of Hy is finite if and only if f is rational, in which case rank(H¢) = rank(f)



Intuition for the Fliess—Kronecker Theorem

H/, e RX"** P, e R XN S, e R
fa A A

S

fA(pl...pT.sl...sT,): aTApl...APE Asl"'AsT/ﬁ

C(/\(D) 6A<5)

Note: We call Hf = PS4 the forward-backward factorization induced by A
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2. WFA Reconstruction and Approximation



From Hankel to WFA researg’h

f(pl "'stl"'ST’) — aTApl "'AD/A51 "'AST/ﬁ

S

Y | =:::[:::::]
p-~f(p$)~- e o o || - - e - -

f(pr--prosy---sp) =o' Ay Ay AA - As B

s

| [

Algebraically: Factorizing  lets us solve for

H=PS — H,=PA,S — A,=P"TH,S"




Aside: Moore—Penrose Pseudo-inverse

For any M € R"*"™ there exists a unique pseudo-inverse M e R™*" satisfying:
»MM™M =M, MTMM™ = M*, and M™M and MM™ are symmetric
» If rank(M) = n then MM™ = I, and if rank(M) = m then M*M = |
» If M is square and invertible then M+ = M~!

Given a system of linear equations Mu = v, the following is satisfied:

Mfv = argmin |u]> .
ueargmin |[Mu—v|»
In particular:
» If the system is completely determined, M*v solves the system
» If the system is underdetermined, M™v is the solution with smallest norm

» If the system is overdetermined, M™v is the minimum norm solution to the
least-squares problem min |[Mu — v|»



Finite Hankel Sub-Blocks

Given finite sets of prefixes and suffixes 77, S < X* and infinite Hankel matrix Hf €
we define the sub-block H € R”*® and for o € ¥ the sub-block H, € RS

aa

=~ ab

ba
bb

e o o 0

e o o o

e o o T

aa

RZ* xX*



WFA Reconstruction from Finite Hankel Sub-Blocks
Suppose f : ¥* — R has rank n and € € P, S © ¥* are such that the sub-block H € R”*S of
H satisfies rank(H) = n.
Let A= {(a,B,{As,}) be obtained as follows:
1. Compute a rank factorization H = PS; i.e. rank(P) = rank(S) = rank(H)
2. Let a' (resp. B) be the e-row of P (resp. e-column of S)
3. Let A, = PTH,S™, where H, € RP9%S is a sub-block of Hy

Claim The resulting WFA computes f and is minimal

Proof
» Suppose A = (&,, {A,}) is a minimal WFA for f.
» It suffices to show there exists an invertible Q € R"*” such that a' = &' Q,
A, =Q 'A,Qand 8 =Q 6.
» By minimality A induces a rank factorization H = PS and also H, = PA,S.
» Since Ay, = P*H,S* = P*PA,SS", take Q = SS+.
Check Q! = P*P since P*PSS* = P*HS* = P*PSS* = I.

v



WFA Learning Algorithms via the Hankel Trick

Hankel
Matrix

~

Data > WFA

1. Estimate a Hankel matrix from data
» For stochastic automata: counting empirical frequencies
» In general: empirical risk minimization
» Inductive bias: enforcing low-rank Hankel will yield less states in WFA
» Parameters: rows and columns of Hankel sub-block
2. Recover a WFA from the Hankel matrix

» Direct application of WFA reconstruction algorithm

Question: How robust to noise are these steps? Can we the learned WFA is a good
representation of the data?



Norms on WFA

Weighted Finite Automaton

A WFA with n states is a tuple A = {(a,B, {As}sex) Where o, € R" and A, € R™"

Let p, g € [1, 0] be Holder conjugate % + % =1.
The (p, g)-norm of a WFA A is given by

[Allp.q = max {Ialp, IBllg. max IIAalq}
oeEL

where [As|q = sup|y|,<1 [AsV|q is the g-induced norm.

Example For probabilistic automata A = (a, 8, {A.,}) with a probability distribution, 8
acceptance probabilities, A, row (sub-)stochastic matrices we have ||Al1 » =1



Perturbation Bounds: Automaton—Language [Bal13]

Suppose A = {(a,B, {A,}) and A" = (o', B, {AL}) are WFA with n states satlsfylng
[Alp.g < o [Allpg < p. max{a =o', [B —B'lq maxses [As — AGllq} <

Claim The following holds for any x € L*:

1fa(x) — far(x)] < (Jx] + 2)pXF1A

Proof By induction on |x| we first prove |A, — AL, < [x|o*~TA:

[Axe = Alollg < [Ax = AlllglAclq + AL glAc = Aglg < IxpX1A + p¥A = (x| + 1)pXA

falx) = faw(x)| = la"AB — o’ AP < |a' (A8~ AB)| +|(a—a) AL
lalp|AB — AB g + o — a/HpHA/ﬁ/Hq

lalplAxlqlB =Blq + lelp|Ax = AllqlBlq + = a'[ | AL 4184
PIIB — B g + P IAx = Alllg + Pl — o

p‘X‘HA—i-,o p|><\ 1’X‘A +p|x\+1A .

NN

//\



Aside: Singular Value Decomposition (SVD)

For any M € R with rank(M) = k there exists a singular value decomposition

k
M=UDV'™ =) suyv/
=1

» D e R**¥ diagonal contains k sorted singular values s1 > s> > --- = s, > 0
» U e R™K contains k left singular vectors, i.e. orthonormal columns UTU = |
» V e R™*K contains k right singular vectors, i.e. orthonormal columns V'V = I

Properties of SVD
» M = (UDY?)(DY?VT) is a rank factorization
» Can be used to compute the pseudo-inverse as M+ = VD~ 1UT
» Provides optimal low-rank approximations. For k' < k, My, = Uk/Dk/VZ, = Zfils,-u,-v,T
satisfies
My € argmin |[M— M|,
rank(M)<k’



Perturbation Bounds: Hankel—Automaton [Ban13]

» Suppose f : 2* — R has rank n and e € P, S < ~* are such that the sub-block
H € RP*S of Hy satisfies rank(H) = n
» Let A= {(a,B,{A,}) be obtained as follows:
1. Compute the SVD factorization H = PS; i.e. P = UD'? and S = D/?VT

2. Let a' (resp. B) be the e-row of P (resp. e-column of S)
3. Let A, = PtH,S*, where H, € RP9%S is a sub-block of Hf

» Suppose H € RP*S and H, € R”7%S satisfy max{|H — H|2, max, |Hy — Ho |2} < A
» Let A= (&,B, {A,}) be obtained as follows:

1. Compute the SVD rank-n approximation A~PS;ie P= lAJnIZA),l,/2 and § = f)}/z\A/nT
2. Let &' (resp. B) be the e-row of P (resp. e-column of S)
3. Let A, = PtH,S*

Claim For any pair of Holder conjugate (p, g) we have

B - B

max{|a — &

qr moax |As — Acr”q} < 0(4A)

P
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3. PAC Learning for Stochastic WFA



Probabilities on Strings

Suppose the function f : ©* — R to be learned computes “probabilities”: f(x) € [0, 1]

Stochastic Languages
» Probability distribution over all strings: >} 5. f(x) =1

» Can sample finite strings and try to learn the distribution

Dynamical Systems

» Probability distribution over strings of fixed length: for all t >0, > 5+ f(x) =1
» Can sample (potentially infinite) prefixes and try to learn the dynamics



Hankel Estimation from Strings [HkZzo09, BDRO09]

Data: S = {x', ..., x™} containing m i.i.d. string from some distribution f over ¥*

Empirical Hankel matrix:

1 ¢« - -
= = Y IIx H(p,s) = fs(p- )
m
=1
Properties:
» Unbiased and consistent: lim,, ... H = E[H] = H
» Data inefficient:

a b

aa, b, bab, a, € .19 .06

S bbab, abb, babba, abbb, N o @ .06 .06
ab, a, aabba, baa, b .00 .06

abbab, baba, bb, a ba .06 .06



Hankel Estimation from Prefixes [BcLQ14]
Data: S={x, ..., xM} containing m i.i.d. string from some distribution f over X*

Empirical Prefix Hankel matrix:
1 m
— Z I x' e XX
m
i=1

Properties:

> E[fs(x)] = X e F(xy) = P[xT"]
» If £ is computed by WFA A, then

- Y- Saaas-aa (X a)

yeX* yexr* yeEX*

=a'A, (Z (Mg, + -+ Ay ) —a'A, (Z Atﬁ>

t=0 t=0

TA ( ) 1ﬁ aTAXﬁ



Hankel Estimation from Substrings [BcLq14]

Data: S={x!,..., xM} containing m i.i.d. string from some distribution f over X*

Empirical Substring Hankel matrix:

1 m

Properties:

» E[fs ()] = Xy yexe F(uxv) = X exe [V (v) = Eyerllyls]
» If £ is computed by WFA A, then

Eyllyld = D) vkf) = Y. a AAAB

yeEYX* u,vexr*

—a'(I-A) A (-A)"B=a"Ap



Hankel Estimation from a Single String [Bm17]
Data: x = x1 -+ Xy -+ sampled from some dynamical system f over ¥

Empirical One-string Hankel matrix:
1 m
= — Z [XiXit1- € XX"]
m =1

Properties:

> Elfn(x)] = 5 Syexn F(ux) = 5 X751 Pr[T'x]
» If fis computed by WFA A, then

Nagl
3|~
N
)
=
Il
\
N
Q
_‘
>
<
>
Q

1
i



Concentration Bounds for Hankel Estimation

» Consider a sub-block H over (P, S) fixed and the sample size m — «©
» In general one can show: with high probability over a sample S of size m

s -0 )

» The hidden constants depend on the dimension of the sub-block P x S and properties of
the stringsin P - S

» The norm || e | can be either the operator or the Frobenius norm

» Under the assumptions in the previous slides we can replace Hs by Hs (on prefixes), Hs
(on substrings) or H,, (single trajectory)

where

» Proofs rely on a diversity of concentration inequalities; they can be found in
[DGH16, BM17]



Aside: McDiarmid’s Inequality

Let @ : Q™ — R be such that

Vie [m] sup | P(xq, ..., Xy, Xm) — ®(x1, ..., P

If X = (X, ..., Xm) are i.i.d. from some distribution over Q:

2
P[0(X) > EO(X) + £] < exp <_§fc2>

Equivalently, the following holds with probability at least 1 — § over X:

O(X) < EO(X) + cy /g log(1/5)



A Simple Proof via McDiarmid’s Inequality [Bai13]

» Let o(xL, ..., x™) = &(S) = |H — Hs|r with x' i.i.d. from a distribution on ¥*
Note Hs = £ 37 H,;, where Hy(p,s) =I[p s = x|
» Defining cp.s = max, |{(p,s) e P x S : p-s = x}| = maxyk HI:IXH% we get

v

A ~ ]_ ~ ~ 2 ~ A 2 C’])'S
[9(S) = &(S)| < [Hs = Hs/llr = —[Hy = Hollr < — max{[Hyr [Holr} < ——

» Using Jensen’s inequality we can bound the expectation E®(S) = E|H — Hs||¢ as

. 2 . . .
(EHH - H5HF> <E|H—Hs|? = Y E(H(p,s) — Hs(p,5))* = > VHs(p, s)
p.s p.s
cp.s

_ 2y 2
(cp.s = IHIZ) <

3|~

:;;Hmau—mnms

» By McDiarmid, w.p. > 1—6: |[H — Hs|r < 1/ S + 2Cﬂlogl<5=01\/ﬁ
m m




PAC Learning Stochastic WFA [BcLq14]

Setup:
» Unknown f : ©* — R with rank(f) = n defining probability distribution on ©*
» Data: xM), .., x(M) ii.d. strings sampled from f
» Parameters: n and P, S such that e € P 1 S and the sub-block H € R”*S satisfies
rank(H) = n
Algorithm:

1. Estimate Hankel matrices H and I:Ia for all o € ¥ using empirical probabilities
_ L Z 0 _ 4]
m =1

2. Return A = Spectral(H, {H,}, n)
Analysis:

» Running time is O(|P - S|m + |Z||P||S|n)

. . - ~ 2
> With high probability >, -, [f(x) — A(x)| = O (%)



. esearch
Outline e

4. Statistical Learning for WFA



Statistical Learning Framework
Motivation

» PAC learning focuses on the realizable case: the samples come from model in known
class

» In practice this is unrealistic: real data is not generated from a “nice” model

» The non-realizable setting is the natural domain of statistical learning theory?

Setup (for strings with real labels)
» Let D be a distribution over ¥* x R, and S = {(x’, y')} a sample with m i.i.d. examples
» Let H be a hypothesis class of functions of type ¥* — R
» Let £: R x R — R, be a (convex) loss function
» The goal of statistical learning theory is to use S to find e H that approximates

f* = argmin B¢, ) p[£(f(x), y)]
feH

2And agnostic PAC learning, but we will not discuss this setting here.



Empirical Risk Minimization for WFA

» For a large sample and a fixed f € H we have

Lo(f;€) == Ep p)~pl€(F(x %Z ) = Ls(f; 0)

» A classical approach is consider the empirical risk minimization rule

f = argmin Ls(f;£)
feH

» For “string to real” learning problems we want to choose a hypothesis class H in which

» The ERM problem can be solved efficiently
» We can guarantee that f will not overfit the data



Generalization Bounds and Rademacher Complexity

» The risk of overfitting can be controlled with generalization bounds of the form: for any
D, with prob. 1 — 9 over S ~ D™

~

Lp(f;8) < Ls(f;4) + C(S,H,4) VfeH

» Rademacher complexity provides bounds for any H = {f : ¥* — R}

Rm(H) = Es pmEy [sup — Z o;f ] where o; ~ unif({+1, —1})
feH M

» For a bounded Lipschitz loss £ with probability 1 — 6 over S ~ D™ (e.g. see [MRT12])

~

Lo(f:8) <lLs(f;0) + O (mm(%) + '09(1/5)> VfeH

m



Bounding the Weights

» Given a pair of Holder conjugate integers p, g (1/p + 1/q = 1), define a norm on WFA
given by

|Allp,q = max {HaHp- 1Bl g, max IAqu}
aex

» Let A, € WFA, be the class of WFA with n states given by
Ay ={AeWFA, | |Alpq < R}

The Rademacher complexity of A, for R < 1 is bounded by

mm(An) =0 <L—m + —n2|2| Iog(m))
m m

where L, = Es[max; |x'[].



Bounding the Language

» Given p € [1, ] and a language f : ¥* — R define its p-norm as

1/p
Il = (Z | (x )
XEXL*

» Let R, be the class of languages given by
Rp={f: 5" > R:|[f], <R}

The Rademacher complexity of R, satisfies

Rm(R2) = © (%) . R®p(R1) =0 (’?C"’Tbg(m))

where Cp, = Es[v/maxy |{i : x' = x}|].




Aside: Schatten Norms

» For a matrix M € R"*™ with rank(M) = k let 51 > 6o > --- = s, > 0 be its singular
values

v

Arrange them in a vector s = (sq, ..., Sk)

» For any p € [1, 0] we define the p-Schatten norm of M as

IMlls.p = lsll,

v

Some of these norms have given names:

» p = o0: spectral or operator norm

» p = 2: Frobenius or Hilbert—Schmidt norm

» p = 1: nuclear or trace norm
» In some sense, the nuclear norm is the best convex approximation to the rank function
(i.e. its convex envelope)



Bounding the Matrix

Given R > 0 and p > 1 define the class of infinite Hankel matrices

Hy = (HeRZ ¥

H € Hankel, [H|s , < R}

The Rademacher complexity of H,, satisfies

Rim(Hz) = O (%) . Rp(H1) =0 (M)

where W, = Es [mingyjie(sy max {max, >; 1[p’ = p], maxs Y, 1[s' = s]}].

Note: split(S) contains all possible prefix-suffix splits x' = p's’ of all strings in S



Direct Gradient-Based Methods

» The ERM problem on the class A, can be solved with (stochastic) projected gradient

descent:
1 Z . )
min  — E LAX). ') st |Alpg <R

Example gradient computation with x = abca and weights in Ag:

VALAG) ) = (A - (Vaa AsAsAALS)

v

= —(Ax),y)- (aB"AJALA] + AIA[A 0BT

» Can solve classification (y' € {+1, —1}) and regression (y' € R) with differentiable £
Optimization is highly non-convex — might get stuck in local optimum — but its
commonly done in RNN

Automatic differentiation can automate gradient computations

v

v



Hankel Matrix Completion [Bmi2]

» Learn a finite Hankel matrix over P x S directly from data by solving the convex ERM

m
H = argmin i ZE(H(X'),J/’) st. [Hlsp <R
HerPxs 1M i=1
€ a b
a 1 2 1
(bab,1), (bbb,0) b | 7 70
(aaa,3), (a,1) aa 2 3 7
(ab,1), (aa,2) 7 b |12 7
(aba,2), (bb,0) ba 77 1
bb 0O 7?7 0

» Recover a WFA from H using the spectral reconstruction algorithm

» Rademacher complexity of H, and algorithmic stability [BM12] can be used to guarantee
generalization
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5. Beyond Sequences: Transductions and Trees



Sequence-to-Sequence Modelling in NLP and RL

» Many NLP applications involve pairs of input-output sequences:
» Sequence tagging (one output tag per input token) e.g.: part of speech tagging
input: Ms. Haag plays Elianti
output: NNP  NNP VBZ NNP
» Transductions (sequence lenghts might differ) e.g.: spelling correction
input: aple
output: apple
» Sequence-to-sequence models also arise naturally in RL:
» An agent operating in an MPD or POMDP enviroment collects traces of the form
input (actions): a a a
output (observation, rewards): (01,11) (02,) (03,13)
» For these applications we want to learn functions of the form f : (X x A)* — R or more
generally f : X* x A* — R (can model using e-transitions)



Learning Transducers with Hankel Matrices

» Given input and output alphabets ¥ and A we can define |IO-WFA3 as

A= <aﬁ {AU,5}>

» The language computed by a IO-WFA can have diverse interpretations, for
(x,y) e (X x A)*:
» Tagging: f(x,y) = compatiblity score of output y on input x
» Dynamics modelling: f(x,y) = P[y|x], probability of observations given outputs
» Reward modelling: f(x,y) =E[r + --- + r¢], expected reward from action-observation
sequence
(ExA)* x(ExA)*

v

The Hankel trick applies to this setting as well with Hf € R
» For applications and concrete algorithms see [BSG09, BQC11, QBCG14, BM17]

30Other nomenclatures: weighted finite state transition (WFST), predictive state representation (PSR),
input-output observable operator model (10-OOM)



Trees in NLP

» Parsing tasks in NLP require predicting a tree for a sequence: modelling dependencies
inside a sentence, document, etc

S
NP VP
|
noun  verb NP

| | N
Mary  plays det noun

the guitar
» Models on trees are also useful to learn more complicated languages: weighted
context-free languages (instead of regular)

» Applications involve different types of models and levels of supervision
» Labelled trees, unlabelled trees, yields, etc.



Weighted Tree Automata (WTA)

» Take a ranked alphabet Y =YguX; U ---

A weighted tree automaton with n states is a tuple A = (o, {T+}7ex_ .. {Bo}oex,)
where

v

a,B, R’ T,e (RO

» A defines a function f4 = Treesys — R through recursive vector-tensor contractions
» Similar expressive power as WCFG and L-WCFG



Inside-Outside Factorization in WTA

© (?EK—@—@
® 6

®
For any inside-outside decomposition of a tree:
F(t) = atoﬁr, (let t = to[t])
= a{ T,(B:,.Bs,) (let ti = o(t1, 2))

= o/ TV (B, ®By,) (flatten tensor)



Learning WTA with Hankel Matrices

There exist analogues of:

» The Hankel matrix for f : Treesys — R corresponding to inside-outside decompositions

© o & 6 Jb .

. ;Q ?B #Q #+Q@ @
o
|
b
L

» The Fliess—Kronecker theorem [BLB83]
» The spectral learning algorithm [BHD10] and variants thereof [CSC*12, CSC"13, CSC"14]
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6. Conclusion



And It Works Too!

Spectral methods are competitive
against traditional methods:

» Expectation maximization
» Conditional random fields

» Tensor decompositions

In a variety of problems:
» Sequence tagging
» Constituency and
dependency parsing
» Timing and geometry
learning

v

POS-level language
modelling

Double

L1 distance
°

—HMM
~k-HMM
-FST

Runtime [log(sec)]

8192 32768

32 128 512 2048
# training samples (in thousands)

— 100
— 1000
— 10000

True ODM|

Word Error Rate (%)

150

Hankel rank

15

e
v g

e SVTA
m-a sva*

10




Open Problems and Current Trends

v

Optimal selection of P and S from data

v

Scalable convex optimization over sets of Hankel matrices
» Constraining the output WFA (eg. probabilistic automata)

v

Relations between learning and approximate minimisation
» How much of this can be extended to WFA over semi-rings?

» Spectral methods for initializing non-convex gradient-based learning algorithms



Conclusion

Take home points
» A single building block based on SVD of Hankel matrices
» Implementation only requires linear algebra
» Analysis involves linear algebra, probability, convex optimization

» Can be made practical for a variety of models and applications

Want to know more?

» EMNLP'14 tutorial (with slides, video, and code)
https://borjaballe.github.io/emnlpl4-tutorial/

» Survey papers [BM15a, TJ15]
» Python toolkit Sp2Learn [ABDE16]

» Neighbouring literature: Predictive state representations (PSR) [LSS02] and Observable
operator models (OOM) [Jae00]


https://borjaballe.github.io/emnlp14-tutorial/
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