

Automata Learning

Borja Balle

Amazon Research Cambridge¹

Foundations of Programming Summer School (Oxford) — July 2018

 $1B$ ased on work completed before joining Amazon

Brief History of Automata Learning

- 1967 Gold: Regular languages are learnable in the limit
- 1987 Angluin: Regular languages are learnable from queries
- 1993 Pitt & Warmuth: PAC-learning DFA is NP-hard
- 1994 Kearns & Valiant: Cryptographic hardness
	- . . . Clark, Denis, de la Higuera, Oncina, others: Combinatorial methods meet statistics and linear algebra
- 2009 Hsu-Kakade-Zhang & Bailly-Denis-Ralaivola: Spectral learning

Goals of This Tutorial

Goals

- ► Motivate spectral learning techniques for weighted automata and related models on sequential and tree-structured data
- \triangleright Provide the key intuitions and fundamental results to effectively navigate the literature
- § Survey some formal learning results and give overview of some applications
- \triangleright Discuss role of linear algebra, concentration bounds, and learning theory in this area

Non-Goals

- § Dive deep into applications: instead pointers will be provided
- ► Provide an exhaustive treatment of automata learning: beyond the scope of an introductory lecture
- \triangleright Give complete proofs of the presented results: illuminating proofs will be discussed, technical proofs omitted

Outline

- 1. [Sequential Data and Weighted Automata](#page-4-0)
- 2. [WFA Reconstruction and Approximation](#page-12-0)
- 3. [PAC Learning for Stochastic WFA](#page-22-0)
- 4. [Statistical Learning for WFA](#page-32-0)
- 5. [Beyond Sequences: Transductions and Trees](#page-42-0)
- 6. [Conclusion](#page-49-0)

Outline

- 1. [Sequential Data and Weighted Automata](#page-4-0)
- 2. [WFA Reconstruction and Approximation](#page-12-0)
- 3. [PAC Learning for Stochastic WFA](#page-22-0)
- 4. [Statistical Learning for WFA](#page-32-0)
- 5. [Beyond Sequences: Transductions and Trees](#page-42-0)
- 6. [Conclusion](#page-49-0)

Learning Sequential Data

- \triangleright Sequential data arises in numerous applications of Machine Learning:
	- § Natural language processing
	- § Computational biology
	- $\overline{}$ Time series analysis
	- \rightarrow Sequential decision-making
	- ▶ Robotics
- § Learning from sequential data requires specialized algorithms
	- § The most common ML algorithms assume the data can be represented as vectors of a fixed dimension
	- ► Sequences can have arbitrary length, and are compositional in nature
	- § Similar things occur with trees, graphs, and other forms of structured data
- \blacktriangleright Sequential data can be diverse in nature
	- § Continuous vs. discrete time vs. only order information
	- § Continuous vs. discrete observations

Functions on Strings

- In this lecture we focus on sequences represented by strings on a finite alphabet: Σ^*
- \triangleright The goal will be to learn a function $f : \Sigma^* \to \mathbb{R}$ from data
- \triangleright The function being learned can represent many things, for example:
	- A language model: f (sentence) = likelihood of observing a sentence in a specific natural language

resea

- \rightarrow A protein scoring model: f (aminoacid sequence) = predicted activity of a protein in a biological reaction
- \rightarrow A reward model: $f(\text{action sequence}) =$ expected reward an agent will obtain after executing a sequence of actions
- A network model: f (packet sequence) = probability that a sequence of packets will successfully transmit a message through a network
- ► These functions can be identified with a weighted language $f \in \mathbb{R}^{\sum^*}$, an infinite-dimensional object
- \triangleright In order to learn such functions we need a finite representation: **weighted automata**

Weighted Finite Automata

Graphical Representation

Algebraic Representation

$$
\mathbf{\alpha} = \begin{bmatrix} -1 \\ 0.5 \end{bmatrix} \quad \mathbf{\beta} = \begin{bmatrix} 1.2 \\ 0 \end{bmatrix}
$$

$$
\mathbf{A}_a = \begin{bmatrix} 1.2 & -1 \\ -2 & 3.2 \end{bmatrix}
$$

$$
\mathbf{A}_b = \begin{bmatrix} 2 & -2 \\ 0 & 5 \end{bmatrix}
$$

Weighted Finite Automaton

A WFA A with $n=|A|$ states is a tuple $A=\langle\bm{\alpha},\bm{\beta},\{\mathbf{A}_\sigma\}_{\sigma\in\bm{\Sigma}}\rangle$ where $\bm{\alpha},\bm{\beta}\in\mathbb{R}^n$ and $\mathbf{A}_\sigma\in\mathbb{R}^{n\times n}$

Language of a WFA

With every WFA $A = \langle \alpha, \beta, \{A_{\sigma}\}\rangle$ with *n* states we associate a weighted language $f_{\Delta} : \Sigma^{\star} \to \mathbb{R}$ given by į,

$$
f_A(x_1 \cdots x_{\tau}) = \sum_{q_0, q_1, \dots, q_{\tau} \in [n]} \alpha(q_0) \left(\prod_{t=1}^{\tau} \mathbf{A}_{x_t}(q_{t-1}, q_t) \right) \boldsymbol{\beta}(q_{\tau})
$$

$$
= \boldsymbol{\alpha}^{\top} \mathbf{A}_{x_1} \cdots \mathbf{A}_{x_{\tau}} \boldsymbol{\beta} = \boldsymbol{\alpha}^{\top} \mathbf{A}_{x} \boldsymbol{\beta}
$$

Recognizable/Rational Languages

A weighted language $f : \Sigma^* \to \mathbb{R}$ is recognizable/rational if there exists a WFA A such that $f = f_A$. The smallest number of states of such a WFA is rank (f) . A WFA A is minimal if $|A|$ = rank (f_A) .

Observation: The minimal A is not unique. Take any invertible matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$, then $\boldsymbol{\alpha}^\top \boldsymbol{\mathsf{A}}_{\mathsf{x}_1}\cdots \boldsymbol{\mathsf{A}}_{\mathsf{x}_\mathsf{T}}\boldsymbol{\beta} = (\boldsymbol{\alpha}^\top \boldsymbol{\mathsf{Q}})(\boldsymbol{\mathsf{Q}}^{-1} \boldsymbol{\mathsf{A}}_{\mathsf{x}_1}\boldsymbol{\mathsf{Q}}) \cdots (\boldsymbol{\mathsf{Q}}^{-1} \boldsymbol{\mathsf{A}}_{\mathsf{x}_\mathsf{T}}\boldsymbol{\mathsf{Q}})(\boldsymbol{\mathsf{Q}}^{-1}\boldsymbol{\beta})$

Examples: DFA, HMM

Deterministic Finite Automata

- ▶ Weights in ${0, 1}$
- \blacktriangleright Initial: α indicator for initial state
- \triangleright Final: β indicates accept/reject state
- ► Transition: $\mathbf{A}_{\sigma}(i,j) = \mathbb{I}[i \stackrel{\sigma}{\to} j]$
- $\rightarrow f_A : \Sigma^* \rightarrow \{0, 1\}$ defines regular language

Hidden Markov Model

- \triangleright Weights in [0, 1]
- \triangleright Initial: α distribution over initial state
- \triangleright Final: β vector of ones
- § Transition: $\mathbf{A}_{\sigma}(i,j) = \mathbb{P}[i \stackrel{\sigma}{\rightarrow} j] = \mathbb{P}[i \rightarrow j] \mathbb{P}[i \stackrel{\sigma}{\rightarrow}]$
- $\rightarrow f_4 : \Sigma^* \rightarrow [0, 1]$ defines dynamical system

Hankel Matrices

Given a weighted language $f: \Sigma^* \to \mathbb{R}$ define its Hankel matrix $H_f \in \mathbb{R}^{\Sigma^* \times \Sigma^*}$ as

$$
\mathbf{H}_f = \begin{bmatrix}\n\epsilon & a & b & \cdots & s & \cdots \\
f(\epsilon) & f(a) & f(b) & \vdots & \vdots \\
f(a) & f(aa) & f(ab) & \vdots & \vdots \\
f(b) & f(ba) & f(bb) & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & f(p \cdot s) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\n\end{bmatrix}
$$

Fliess-Kronecker Theorem [\[Fli74\]](#page-57-0)

The rank of H_f is finite if and only if f is rational, in which case rank (H_f) = rank (f)

Intuition for the Fliess–Kronecker Theorem

Note: We call $H_f = P_A S_A$ the forward-backward factorization induced by A

Outline

1. [Sequential Data and Weighted Automata](#page-4-0)

2. [WFA Reconstruction and Approximation](#page-12-0)

- 3. [PAC Learning for Stochastic WFA](#page-22-0)
- 4. [Statistical Learning for WFA](#page-32-0)
- 5. [Beyond Sequences: Transductions and Trees](#page-42-0)
- 6. [Conclusion](#page-49-0)

From Hankel to WFA

Algebraically: Factorizing Hets us solve for A_a

 $H = P S \implies H_{\sigma} = P A_{\sigma} S \implies A_{\sigma} = P^{+} H_{\sigma} S^{+}$

Aside: Moore–Penrose Pseudo-inverse

For any $M \in \mathbb{R}^{n \times m}$ there exists a unique *pseudo-inverse* $M^+ \in \mathbb{R}^{m \times n}$ satisfying:

- \rightarrow MM⁺M = M, M⁺MM⁺ = M⁺, and M⁺M and MM⁺ are symmetric
- If rank $(M) = n$ then $MM^+ = I$, and if rank $(M) = m$ then $M^+M = I$
- If M is square and invertible then $M^+ = M^{-1}$

Given a system of linear equations $\mathbf{M} \mathbf{u} = \mathbf{v}$, the following is satisfied:

$$
\textbf{M}^+\textbf{v}=\underset{u\in \text{argmin}}{\arg\!\min} \, \|\textbf{u}\|_2 \enspace .
$$

In particular:

- If the system is completely determined, M^+v solves the system
- If the system is underdetermined, M^+v is the solution with smallest norm
- If the system is overdetermined. M^+v is the minimum norm solution to the least-squares problem min $\|\mathbf{M}\mathbf{u} - \mathbf{v}\|_2$

Finite Hankel Sub-Blocks

Given finite sets of prefixes and suffixes $\mathcal{P}, \mathcal{S} \subset \Sigma^*$ and infinite Hankel matrix $H_f \in \mathbb{R}^{\Sigma^* \times \Sigma^*}$ we define the sub-block $\bm{\mathsf{H}}\in\mathbb{R}^{\mathcal{P}\times\mathcal{S}}$ and for $\sigma\in\Sigma$ the sub-block $\bm{\mathsf{H}}_\sigma\in\mathbb{R}^{\mathcal{P}\sigma\times\mathcal{S}}$

WFA Reconstruction from Finite Hankel Sub-Blocks

Suppose $f: \Sigma^* \to \mathbb{R}$ has rank n and $\epsilon \in \mathcal{P}, \mathcal{S} \subset \Sigma^*$ are such that the sub-block $\mathbf{H} \in \mathbb{R}^{\mathcal{P} \times \mathcal{S}}$ of H_f satisfies rank(H) = n.

research

- Let $A = \langle \alpha, \beta, \{A_{\sigma}\}\rangle$ be obtained as follows:
	- 1. Compute a rank factorization $H = PS$; i.e. rank $(P) = rank(S) = rank(H)$
	- 2. Let α^{\top} (resp. β) be the ϵ -row of **P** (resp. ϵ -column of **S**)
	- 3. Let $A_\sigma = P^+ H_\sigma S^+$, where $H_\sigma \in \mathbb{R}^{\mathcal{P}\cdot \sigma \times \mathcal{S}}$ is a sub-block of H_t

Claim The resulting WFA computes f and is minimal

Proof

- ► Suppose $\tilde{A} = \langle \tilde{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}}, \{\tilde{\boldsymbol{\mathsf{A}}}_\sigma\} \rangle$ is a minimal WFA for f.
- ► It suffices to show there exists an invertible $\mathbf{Q} \in \mathbb{R}^{n \times n}$ such that $\boldsymbol{\alpha}^\top = \boldsymbol{\tilde{\alpha}}^\top \mathbf{Q}$, $A_{\sigma} = Q^{-1} \tilde{A}_{\sigma} Q$ and $\boldsymbol{\beta} = Q^{-1} \tilde{\boldsymbol{\beta}}$.
- ► By minimality \tilde{A} induces a rank factorization $H = \tilde{P}\tilde{S}$ and also $H_{\sigma} = \tilde{P}\tilde{A}_{\sigma}\tilde{S}$.
- ▶ Since ${\bf A}_{\sigma} = {\bf P}^+H_{\sigma}{\bf S}^+ = {\bf P}^+ \tilde{\bf P} \tilde{\bf A}_{\sigma} \tilde{\bf S} {\bf S}^+$, take ${\bf Q} = \tilde{\bf S}{\bf S}^+$.
- ► Check $\mathbf{Q}^{-1} = \mathbf{P}^{+} \tilde{\mathbf{P}}$ since $\mathbf{P}^{+} \tilde{\mathbf{P}} \tilde{\mathbf{S}} \mathbf{S}^{+} = \mathbf{P}^{+} \mathbf{H} \mathbf{S}^{+} = \mathbf{P}^{+} \mathbf{P} \mathbf{S} \mathbf{S}^{+} = \mathbf{I}$.

WFA Learning Algorithms via the Hankel Trick

- 1. Estimate a Hankel matrix from data
	- § For stochastic automata: counting empirical frequencies
	- \cdot In general: empirical risk minimization
	- § Inductive bias: enforcing low-rank Hankel will yield less states in WFA
	- § Parameters: rows and columns of Hankel sub-block
- 2. Recover a WFA from the Hankel matrix
	- § Direct application of WFA reconstruction algorithm

Question: How robust to noise are these steps? Can we the learned WFA is a good representation of the data?

Norms on WFA

Weighted Finite Automaton

A WFA with n states is a tuple $A=\langle\bm{\alpha},\bm{\beta},\{\bm A_\sigma\}_{\sigma\in\bm{\Sigma}}\rangle$ where $\bm{\alpha},\bm{\beta}\in\mathbb{R}^n$ and $\bm{\mathsf{A}}_\sigma\in\mathbb{R}^{n\times n}$

Let $p, q \in [1, \infty]$ be Hölder conjugate $\frac{1}{p} + \frac{1}{q} = 1$.

The (p, q) -norm of a WFA A is given by

$$
\|A\|_{p,q} = \max \left\{ \|\boldsymbol{\alpha}\|_p, \|\boldsymbol{\beta}\|_q, \max_{\sigma \in \Sigma} \|\mathbf{A}_{\sigma}\|_q \right\} ,
$$

research

where $\|{\mathbf{A}}_\sigma\|_q = \sup_{\|{\mathsf v}\|_q \leqslant 1} \|{\mathbf{A}}_\sigma {\mathsf v}\|_q$ is the q -induced norm.

Example For probabilistic automata $A = \langle \alpha, \beta, \{A_{\sigma}\}\rangle$ with α probability distribution, β acceptance probabilities, A_{σ} row (sub-)stochastic matrices we have $||A||_{1,\infty} = 1$

Perturbation Bounds: Automaton \rightarrow Language [\[Bal13\]](#page-54-0)

Suppose $A=\langle\bm{\alpha},\bm{\beta},\{\mathbf{A}_\sigma\}\rangle$ and $A'=\langle\bm{\alpha}',\bm{\beta}',\{\mathbf{A}'_\sigma\}\rangle$ are WFA with n states satisfying $||A||_{p,q}\leqslant \rho, ||A'||_{p,q}\leqslant \rho, \ \max{\{\|\boldsymbol{\alpha}-\boldsymbol{\alpha}'\|_p, \|\boldsymbol{\beta}-\boldsymbol{\beta}'\|_q, \max_{\sigma\in \Sigma}\|\mathbf{A}_\sigma-\mathbf{A}_\sigma'\|_q\}}\leqslant \Delta.$

<u>Claim</u> The following holds for any $x \in \Sigma^*$:

 $|f_A(x) - f_{A'}(x)| \leq (|x| + 2)\rho^{|x| + 1}\Delta$.

 $\frac{\text{Proof}}{\text{Proot}}$ By induction on $|x|$ we first prove $\|\mathbf{A}_x - \mathbf{A}'_x\|_q \leqslant |x|\rho^{|x|-1}\Delta$: $\|\mathbf{A}_{\mathbf{x}\sigma}-\mathbf{A}_{\mathbf{x}\sigma}'\|_q \leqslant \|\mathbf{A}_{\mathbf{x}}-\mathbf{A}_{\mathbf{x}}'\|_q \|\mathbf{A}_{\sigma}\|_q + \|\mathbf{A}_{\mathbf{x}}'\|_q \|\mathbf{A}_{\sigma}-\mathbf{A}_{\sigma}'\|_q \leqslant |\mathbf{x}|\rho^{|\mathbf{x}|}\Delta + \rho^{|\mathbf{x}|}\Delta = (|\mathbf{x}|+1)\rho^{|\mathbf{x}|}\Delta$

$$
|f_A(x) - f_{A'}(x)| = |\alpha^{\top} A_x \beta - \alpha'^{\top} A'_x \beta'| \le |\alpha^{\top} (A_x \beta - A'_x \beta')| + |(\alpha - \alpha')^{\top} A'_x \beta'|
$$

\n
$$
\le |\alpha|_p ||A_x \beta - A'_x \beta'||_q + ||\alpha - \alpha'||_p ||A'_x \beta'||_q
$$

\n
$$
\le ||\alpha||_p ||A_x||_q ||\beta - \beta'||_q + ||\alpha||_p ||A_x - A'_x||_q ||\beta'||_q + ||\alpha - \alpha'||_p ||A'_x||_q ||\beta'||_q
$$

\n
$$
\le |\alpha^{|\times|+1} ||\beta - \beta'||_q + \rho^2 ||A_x - A'_x||_q + \rho^{|\times|+1} ||\alpha - \alpha'||_p
$$

\n
$$
\le \rho^{|\times|+1} \Delta + \rho^2 \rho^{|\times|-1} |\alpha| + \rho^{|\alpha|+1} \Delta.
$$

Aside: Singular Value Decomposition (SVD)

For any $M \in \mathbb{R}^{n \times m}$ with rank $(M) = k$ there exists a singular value decomposition

$$
\mathbf{M} = \mathbf{U} \mathbf{D} \mathbf{V}^\top = \sum_{i=1}^k \mathfrak{s}_i \mathbf{u}_i \mathbf{v}_i^\top
$$

- **•** $\mathbf{D} \in \mathbb{R}^{k \times k}$ diagonal contains k sorted singular values $\mathfrak{s}_1 \geq \mathfrak{s}_2 \geq \cdots \geq \mathfrak{s}_k > 0$
- ▶ $$
- $\blacktriangleright \mathbf{V} \in \mathbb{R}^{m \times k}$ contains k right singular vectors, i.e. orthonormal columns $\mathbf{V}^\top \mathbf{V} = \mathbf{I}$

Properties of SVD

- \blacktriangleright **M** = $(\mathbf{U}\mathbf{D}^{1/2})(\mathbf{D}^{1/2}\mathbf{V}^{\top})$ is a rank factorization
- \blacktriangleright Can be used to compute the pseudo-inverse as $M^+ = V D^{-1} U^\top$
- Solven to compute the pseudo-inverse as $\mathbf{w}^+ = \mathbf{v} \mathbf{D}^{-1} \mathbf{U}$

For k' \mathbf{v} , $\mathbf{D}_{k'} \mathbf{D}_{k'} \mathbf{V}_{k'}^\top = \sum_{i=1}^{k'}$ $_{i=1}^{k^{\prime}}$ s_iu_iv_i satisfies

$$
\textbf{M}_{k'}\in\mathop{\rm argmin}_{\text{rank}(\hat{M})\leqslant k'}\|\textbf{M}-\hat{\textbf{M}}\|_2
$$

Perturbation Bounds: Hankel \rightarrow Automaton [\[Bal13\]](#page-54-0)

- Suppose $f: \Sigma^* \to \mathbb{R}$ has rank n and $\varepsilon \in \mathcal{P}, \mathcal{S} \subset \Sigma^*$ are such that the sub-block $\mathbf{H} \in \mathbb{R}^{\mathcal{P}\times\mathcal{S}}$ of \mathbf{H}_f satisfies rank $(\mathbf{H}) = n$
- Exa, $A = \langle \alpha, \beta, \{A_{\alpha}\}\rangle$ be obtained as follows:
	- 1. Compute the SVD factorization $H = PS$; i.e. $P = UD^{1/2}$ and $S = D^{1/2}V$
	- 2. Let α^{\top} (resp. β) be the ϵ -row of **P** (resp. ϵ -column of **S**)
	- 3. Let $A_{\sigma} = P^+ H_{\sigma} S^+$, where $H_{\sigma} \in \mathbb{R}^{\mathcal{P} \cdot \sigma \times \mathcal{S}}$ is a sub-block of H_{σ}
- ► Suppose $\hat{\mathsf{H}} \in \mathbb{R}^{\mathcal{P} \times \mathcal{S}}$ and $\hat{\mathsf{H}}_{\sigma} \in \mathbb{R}^{\mathcal{P} \cdot \sigma \times \mathcal{S}}$ satisfy max{ $\|\mathsf{H} \hat{\mathsf{H}}\|_2$, max $_{\sigma} \|\mathsf{H}_{\sigma} \hat{\mathsf{H}}_{\sigma}\|_2$ } $\leqslant \Delta$
- ► Let $\hat{A} = \langle \hat{\pmb{\alpha}}, \hat{\pmb{\beta}}, \{ \hat{\pmb{\mathsf{A}}}_\sigma \} \rangle$ be obtained as follows:
	- 1. Compute the SVD rank-n approximation $\hat{H} \approx \hat{P} \hat{S}$; i.e. $\hat{P} = \hat{U}_n \hat{D}_n^{1/2}$ and $\hat{S} = \hat{D}_n^{1/2} \hat{V}_n^T$ 2. Let $\hat{\alpha}^\top$ (resp. $\hat{\bm{\beta}}$) be the ϵ -row of $\hat{\bm{\mathsf{P}}}$ (resp. ϵ -column of $\hat{\bm{\mathsf{S}}})$ 3. Let $\hat{\mathbf{A}}_{\sigma} = \hat{\mathbf{P}}^{\dagger} \hat{\mathbf{H}}_{\sigma} \hat{\mathbf{S}}^{\dagger}$

Claim For any pair of Hölder conjugate (p, q) we have

$$
\max\{\|\pmb{\alpha}-\hat{\pmb{\alpha}}\|_p,\|\pmb{\beta}-\hat{\pmb{\beta}}\|_q,\max_{\sigma}\|\mathbf{A}_{\sigma}-\hat{\mathbf{A}}_{\sigma}\|_q\}\leqslant\mathcal{O}(\Delta)
$$

Outline

1. [Sequential Data and Weighted Automata](#page-4-0)

- 2. [WFA Reconstruction and Approximation](#page-12-0)
- 3. [PAC Learning for Stochastic WFA](#page-22-0)
- 4. [Statistical Learning for WFA](#page-32-0)
- 5. [Beyond Sequences: Transductions and Trees](#page-42-0)
- 6. [Conclusion](#page-49-0)

Probabilities on Strings

Stochastic Languages

- **Probability distribution over all strings:** $\sum_{x \in \Sigma^*} f(x) = 1$
- § Can sample finite strings and try to learn the distribution

Dynamical Systems

- ► Probability distribution over strings of fixed length: for all $t \ge 0$, $\sum_{x \in \Sigma^t} f(x) = 1$
- \triangleright Can sample (potentially infinite) prefixes and try to learn the dynamics

Hankel Estimation from Strings [\[HKZ09,](#page-58-0) [BDR09\]](#page-54-1)

a b

Data: $S = \{x^1, \ldots, x^m\}$ containing m i.i.d. string from some distribution f over Σ^* Empirical Hankel matrix:

$$
\hat{f}_S(x) = \frac{1}{m} \sum_{i=1}^m \mathbb{I}[x^i = x] \qquad \hat{\mathbf{H}}(p, s) = \hat{f}_S(p \cdot s)
$$

Properties:

- ▶ Unbiased and consistent: $\lim_{m\to\infty} \hat{H} = \mathbb{E}[\hat{H}] = H$
- ▶ Data inefficient:

$$
S = \begin{Bmatrix} \n\text{aa, b, bab, a,} \\ \nbb{a}, \text{ab, abbab, abbba, abbb,} \\ \n\text{ab, a, aabbab, babab, baa,} \\ \n\text{abbab, babab, bb, a} \n\end{Bmatrix} \longrightarrow \hat{\mathbf{H}} = \begin{Bmatrix} \n\text{aa, b} \\ \n\text{b} \\ \n\text{b} \\ \n\text{c} \\ \n\text{d} \\ \n\text{d} \\ \n\end{Bmatrix} \longrightarrow \hat{\mathbf{H}} = \begin{Bmatrix} \n\text{a} \\ \n\text{b} \\ \n\text{c} \\ \n\text{c} \\ \n\text{d} \\ \n\text{d} \\ \n\end{Bmatrix}
$$

Hankel Estimation from Prefixes [\[BCLQ14\]](#page-54-2)

Data: $S = \{x^1, \ldots, x^m\}$ containing m i.i.d. string from some distribution f over Σ^*

Empirical Prefix Hankel matrix:

$$
\overline{f}_{S}(x) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}[x^{i} \in x\Sigma^{\star}]
$$

Properties:

- \blacktriangleright $\mathbb{E}[\bar{f}_S(x)] = \sum_{y \in \Sigma^*} f(xy) = \mathbb{P}_f[x\Sigma^*]$
- If f is computed by WFA \ddot{A} , then

$$
\mathbb{P}_{f}[x\Sigma^{\star}] = \sum_{y \in \Sigma^{\star}} f(xy) = \sum_{y \in \Sigma^{\star}} \alpha^{\top} \mathbf{A}_{x} \mathbf{A}_{y} \boldsymbol{\beta} = \alpha^{\top} \mathbf{A}_{x} \left(\sum_{y \in \Sigma^{\star}} \mathbf{A}_{y} \boldsymbol{\beta} \right)
$$

$$
= \alpha^{\top} \mathbf{A}_{x} \left(\sum_{t \geq 0} (\mathbf{A}_{\sigma_{1}} + \dots + \mathbf{A}_{\sigma_{k}})^{t} \boldsymbol{\beta} \right) = \alpha^{\top} \mathbf{A}_{x} \left(\sum_{t \geq 0} \mathbf{A}^{t} \boldsymbol{\beta} \right)
$$

$$
= \alpha^{\top} \mathbf{A}_{x} (\mathbf{I} - \mathbf{A})^{-1} \boldsymbol{\beta} = \alpha^{\top} \mathbf{A}_{x} \bar{\boldsymbol{\beta}}
$$

Hankel Estimation from Substrings [\[BCLQ14\]](#page-54-2)

Data: $S = \{x^1, \ldots, x^m\}$ containing m i.i.d. string from some distribution f over Σ^*

Empirical Substring Hankel matrix:

$$
\tilde{f}_S(x) = \frac{1}{m} \sum_{i=1}^m |x^i|_x
$$
 $|x^i|_x = \sum_{u,v \in \Sigma^*} \mathbb{I}[x^i = uxv]$

Properties:

$$
\mathbf{E}\left[\tilde{f}_{S}(x)\right] = \sum_{u,v \in \Sigma^{*}} f(uxv) = \sum_{y \in \Sigma^{*}} |y|_{x} f(y) = \mathbb{E}_{y \sim f}[|y|_{x}]
$$

If f is computed by WFA A, then

$$
\mathbb{E}_{y \sim f}[|y|_{x}] = \sum_{y \in \Sigma^{*}} |y|_{x} f(y) = \sum_{u,v \in \Sigma^{*}} \alpha^{\top} \mathbf{A}_{u} \mathbf{A}_{x} \mathbf{A}_{v} \boldsymbol{\beta}
$$

$$
= \alpha^{\top} (\mathbf{I} - \mathbf{A})^{-1} \mathbf{A}_{x} (\mathbf{I} - \mathbf{A})^{-1} \boldsymbol{\beta} = \bar{\alpha}^{\top} \mathbf{A}_{x} \bar{\boldsymbol{\beta}}
$$

Hankel Estimation from a Single String [\[BM17\]](#page-56-0)

Data: $x = x_1 \cdots x_m \cdots$ sampled from some dynamical system f over Σ

Empirical One-string Hankel matrix:

$$
\mathring{f}_m(x) = \frac{1}{m} \sum_{i=1}^m \mathbb{I}[x_i x_{i+1} \cdots \in x \Sigma^{\star}]
$$

Properties:

$$
\mathbf{E}\left[\hat{f}_m(x)\right] = \frac{1}{m} \sum_{u \in \Sigma^{
$$

If f is computed by WFA A, then

$$
\frac{1}{m} \sum_{i=0}^{m-1} \mathbb{P}_f[\Sigma^i x] = \frac{1}{m} \sum_{u \in \Sigma^{
$$
= \left(\frac{1}{m} \sum_{i=0}^{m-1} \alpha^{\top} A^i\right) A_x \beta = \bar{\alpha}_m^{\top} A_x \beta
$$
$$

Concentration Bounds for Hankel Estimation

- ► Consider a sub-block **H** over $(\mathcal{P}, \mathcal{S})$ fixed and the sample size $m \to \infty$
- In general one can show: with high probability over a sample S of size m

$$
\|\hat{\mathbf{H}}_S - \mathbf{H}\| = O\left(\frac{1}{\sqrt{m}}\right)
$$

where

- ▶ The hidden constants depend on the dimension of the sub-block $\mathcal{P} \times \mathcal{S}$ and properties of the strings in $P \cdot S$
- \cdot The norm $\|\cdot\|$ can be either the operator or the Frobenius norm
- ▸ Under the assumptions in the previous slides we can replace \hat{H}_S by \bar{H}_S (on prefixes), \tilde{H}_S (on substrings) or $\dot{\mathbf{H}}_m$ (single trajectory)
- § Proofs rely on a diversity of concentration inequalities; they can be found in [\[DGH16,](#page-57-1) [BM17\]](#page-56-0)

Aside: McDiarmid's Inequality

Let $\Phi: \Omega^m \to \mathbb{R}$ be such that

 $\forall i \in [m]$ sup $x_1, \ldots, x_m, x'_i \in \Omega$ $|\Phi(x_1,\ldots,x_i,\ldots,x_m)-\Phi(x_1,\ldots,x'_i,\ldots,x_m)|\leqslant c$

If $X = (X_1, \ldots, X_m)$ are i.i.d. from some distribution over Ω :

$$
\mathbb{P}\left[\Phi(X)\geqslant\mathbb{E}\Phi(X)+t\right]\leqslant\exp\left(-\frac{2t^2}{mc^2}\right)
$$

Equivalently, the following holds with probability at least $1 - \delta$ over X:

$$
\Phi(X) < \mathbb{E}\Phi(X) + c\sqrt{\frac{m}{2}\log(1/\delta)}
$$

A Simple Proof via McDiarmid's Inequality [\[Bal13\]](#page-54-0)

- \blacktriangleright Let $\Phi(x^1, \ldots, x^m) = \Phi(S) = \|\mathbf{H} \hat{\mathbf{H}}_S\|_F$ with x^i i.i.d. from a distribution on Σ^*
- ▸ Note $\hat{H}_S = \frac{1}{n}$ m $\sum_{i=1}^{m} \hat{\mathbf{H}}_{x^i}$, where $\hat{\mathbf{H}}_x(p,s) = \mathbb{I}[p \cdot s = x]$
- ► Defining $c_{\mathcal{P},\mathcal{S}} = \max_x |\{(p,s) \in \mathcal{P} \times \mathcal{S} : p \cdot s = x\}| = \max_x \|\hat{\mathbf{H}}_x\|_F^2$ we get

$$
|\Phi(S) - \Phi(S')| \leq \|\hat{\mathbf{H}}_S - \hat{\mathbf{H}}_{S'}\|_F = \frac{1}{m} \|\hat{\mathbf{H}}_{x^i} - \hat{\mathbf{H}}_{x^{i'}}\|_F \leq \frac{2}{m} \max\{\|\hat{\mathbf{H}}_{x^i}\|_F, \|\hat{\mathbf{H}}_{x^{i'}}\|_F\} \leq \frac{2\sqrt{c_{P,S}}}{m}
$$

► Using Jensen's inequality we can bound the expectation $\mathbb{E} \Phi(S) = \mathbb{E} \|\mathbf{H} - \hat{\mathbf{H}}_S \|_F$ as

$$
\left(\mathbb{E} \|\mathbf{H} - \hat{\mathbf{H}}_{S}\|_{F}\right)^{2} \leq \mathbb{E} \|\mathbf{H} - \hat{\mathbf{H}}_{S}\|_{F}^{2} = \sum_{p,s} \mathbb{E}(\mathbf{H}(p,s) - \hat{\mathbf{H}}_{S}(p,s))^{2} = \sum_{p,s} \mathbb{V} \hat{\mathbf{H}}_{S}(p,s)
$$

$$
= \frac{1}{m} \sum_{p,s} \mathbf{H}(p,s) (1 - \mathbf{H}(p,s)) \leq \frac{1}{m} (c_{p,s} - \|\mathbf{H}\|_{F}^{2}) \leq \frac{c_{p,s}}{m}
$$

► By McDiarmid, w.p. $\geqslant 1 - \delta$: $||\mathbf{H} - \hat{\mathbf{H}}_{S}||_F \leqslant$ $\frac{C_{\mathcal{P},\mathcal{S}}}{m}+\sqrt{\frac{2C_{\mathcal{P},\mathcal{S}}}{m}}$ $\sqrt{\frac{c_{P,S}}{m} \log(1/\delta)} = O(1/\sqrt{m})$

PAC Learning Stochastic WFA [\[BCLQ14\]](#page-54-2)

Setup:

- b Unknown $f : \Sigma^* \to \mathbb{R}$ with rank $(f) = n$ defining probability distribution on Σ^*
- ▶ Data: $x^{(1)}, \ldots, x^{(m)}$ i.i.d. strings sampled from *f*
- ► Parameters: *n* and P , S such that $\epsilon \in P \cap S$ and the sub-block $H \in \mathbb{R}^{P \times S}$ satisfies rank $(H) = n$

Algorithm:

1. Estimate Hankel matrices \hat{H} and \hat{H}_{σ} for all $\sigma \in \Sigma$ using empirical probabilities

$$
\hat{f}(x) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}[x^{(i)} = x]
$$

2. Return $\hat{A} = \text{Spectral}(\hat{\mathbf{H}}, \{\hat{\mathbf{H}}_{\sigma}\}, n)$

Analysis:

- Running time is $O(|P \cdot S|m + |\Sigma||P||S|n)$
- With high probability $\sum_{|x| \leq L} |f(x) \hat{A}(x)| = O$ \mathbb{R}^2 L²|Σ| \sqrt{n} $rac{E}{\sigma_n(H)^2\sqrt{m}}$ ¯

Outline

- 1. [Sequential Data and Weighted Automata](#page-4-0)
- 2. [WFA Reconstruction and Approximation](#page-12-0)
- 3. [PAC Learning for Stochastic WFA](#page-22-0)
- 4. [Statistical Learning for WFA](#page-32-0)
- 5. [Beyond Sequences: Transductions and Trees](#page-42-0)
- 6. [Conclusion](#page-49-0)

Statistical Learning Framework

Motivation

- \triangleright PAC learning focuses on the realizable case: the samples come from model in known class
- § In practice this is unrealistic: real data is not generated from a "nice" model
- Fine non-realizable setting is the natural domain of statistical learning theory²

Setup (for strings with real labels)

- Exect D be a distribution over $\Sigma^* \times \mathbb{R}$, and $S = \{(x^i, y^i)\}\$ a sample with m i.i.d. examples
- ► Let H be a hypothesis class of functions of type $\Sigma^* \to \mathbb{R}$
- ► Let $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ be a (convex) loss function
- ▶ The goal of statistical learning theory is to use S to find $\hat{f} \in \mathcal{H}$ that approximates

 $f^* = \text{argmin}$ $\operatorname{sgmin}_{f \in \mathcal{H}} \mathbb{E}_{(x,y)\sim D}[\ell(f(x), y)]$

 2 And *agnostic* PAC learning, but we will not discuss this setting here.

Empirical Risk Minimization for WFA

► For a large sample and a fixed $f \in \mathcal{H}$ we have

$$
L_D(f; \ell) := \mathbb{E}_{(x,y)\sim D}[\ell(f(x), y)] \approx \frac{1}{m} \sum_{i=1}^m \ell(f(x^i), y^i) =: \hat{L}_S(f; \ell)
$$

 \rightarrow A classical approach is consider the empirical risk minimization rule

 $\hat{f} = \operatorname{argmin} \hat{L}_\mathcal{S}(f; \boldsymbol{\ell})$ $f \in H$

► For "string to real" learning problems we want to choose a hypothesis class H in which

- § The ERM problem can be solved efficiently
- ▶ We can guarantee that \hat{f} will not overfit the data

Generalization Bounds and Rademacher Complexity

§ The risk of overfitting can be controlled with generalization bounds of the form: for any D, with prob. $1 - \delta$ over $S \sim D^m$

research

$$
L_D(f; \ell) \leq \hat{L}_S(f; \ell) + C(S, \mathcal{H}, \ell) \qquad \forall f \in \mathcal{H}
$$

► Rademacher complexity provides bounds for any $\mathcal{H} = \{f : \Sigma^* \to \mathbb{R}\}\$

$$
\mathfrak{R}_{m}(\mathcal{H}) = \mathbb{E}_{S \sim D^{m}} \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f(x^{i}) \right] \text{ where } \sigma_{i} \sim \text{unif}(\{+1, -1\})
$$

► For a bounded Lipschitz loss ℓ with probability $1 - \delta$ over $S \sim D^m$ (e.g. see [\[MRT12\]](#page-58-1))

$$
L_D(f; \ell) \leq \hat{L}_S(f; \ell) + O\left(\Re_m(\mathcal{H}) + \sqrt{\frac{\log(1/\delta)}{m}}\right) \qquad \forall f \in \mathcal{H}
$$

Bounding the Weights

► Given a pair of Hölder conjugate integers p, $q(1/p + 1/q = 1)$, define a norm on WFA given by *

$$
\|A\|_{p,q} = \max\left\{\|\boldsymbol{\alpha}\|_p, \|\boldsymbol{\beta}\|_q, \max_{a \in \Sigma} \|\mathbf{A}_a\|_q\right\}
$$

Exect $A_n \subset WFA_n$ be the class of WFA with *n* states given by

 $A_n = \{A \in WFA_n \mid \|A\|_{p,q} \leq R\}$

Theorem [\[BM15b,](#page-55-0) [BM18\]](#page-56-1)

The Rademacher complexity of A_n for $R \le 1$ is bounded by

$$
\mathfrak{R}_{m}(\mathcal{A}_{n}) = O\left(\frac{L_{m}}{m} + \sqrt{\frac{n^{2}|\Sigma|\log(m)}{m}}\right)
$$

,

where $L_m = \mathbb{E}_S[\max_i |x^i|].$

Bounding the Language

• Given $p \in [1, \infty]$ and a language $f : \Sigma^* \to \mathbb{R}$ define its p-norm as

$$
||f||_p = \left(\sum_{x \in \Sigma^*} |f(x)|^p\right)^{1/p}
$$

Elet \mathcal{R}_p be the class of languages given by

$$
\mathcal{R}_p = \{f : \Sigma^{\star} \to \mathbb{R} : \|f\|_p \leq R\}
$$

Theorem [\[BM15b,](#page-55-0) [BM18\]](#page-56-1)

The Rademacher complexity of \mathcal{R}_p satisfies

$$
\mathfrak{R}_m(\mathcal{R}_2) = \Theta\left(\frac{R}{\sqrt{m}}\right) , \qquad \mathfrak{R}_m(\mathcal{R}_1) = O\left(\frac{RC_m\sqrt{\log(m)}}{m}\right)
$$

where $C_m = \mathbb{E}_{S}[\sqrt{\max_{x} |\{i : x^{i} = x\}|}].$

Aside: Schatten Norms

- Arrange them in a vector $\mathfrak{s} = (\mathfrak{s}_1, \ldots, \mathfrak{s}_k)$
- For any $p \in [1, \infty]$ we define the p-Schatten norm of M as

 $\|M\|_{S,p} = \|s\|_p$

- § Some of these norms have given names:
	- \rightarrow $p = \infty$: spectral or operator norm
	- \rightarrow $p = 2$: Frobenius or Hilbert–Schmidt norm
	- \rightarrow $p = 1$: nuclear or trace norm
- § In some sense, the nuclear norm is the best convex approximation to the rank function (i.e. its convex envelope)

Bounding the Matrix

,

Given $R > 0$ and $p \ge 1$ define the class of infinite Hankel matrices

 $\mathcal{H}_p =$ l. $\mathbf{H} \in \mathbb{R}^{\Sigma^{\star} \times \Sigma^{\star}} \mid \mathbf{H} \in$ Hankel, $\|\mathbf{H}\|_{\mathbf{S},p} \leq R$

Theorem [\[BM15b,](#page-55-0) [BM18\]](#page-56-1)

The Rademacher complexity of \mathcal{H}_p satisfies

$$
\mathfrak{R}_{m}(\mathcal{H}_{2}) = O\left(\frac{R}{\sqrt{m}}\right) , \qquad \mathfrak{R}_{m}(\mathcal{H}_{1}) = O\left(\frac{R \log(m) \sqrt{W_{m}}}{m}\right)
$$

where $W_m = \mathbb{E}_{S}$ $\left[\min_{\mathsf{split}(S)}\max\left\{\max_{p}\right.$ i_1 $1[p^i = p]$, max_s $\int_{i}1[s^i=s]$.

Note: split(S) contains all possible prefix-suffix splits $x^i = p^i s^i$ of all strings in S

Direct Gradient-Based Methods

 \triangleright The ERM problem on the class \mathcal{A}_n can be solved with (stochastic) projected gradient descent:

$$
\min_{A \in \mathcal{WFA}_n} \frac{1}{m} \sum_{i=1}^m \ell(A(x^i), y^i) \quad \text{s.t. } \|A\|_{p,q} \leq R
$$

Example gradient computation with $x = abca$ and weights in A_a :

$$
\nabla_{\mathsf{A}_{a}} \ell(A(x), y) = \frac{\partial \ell}{\partial \hat{y}} (A(x), y) \cdot (\nabla_{\mathsf{A}_{a}} \alpha^{\top} \mathbf{A}_{a} \mathbf{A}_{b} \mathbf{A}_{c} \mathbf{A}_{a} \boldsymbol{\beta})
$$

=
$$
\frac{\partial \ell}{\partial \hat{y}} (A(x), y) \cdot (\alpha \boldsymbol{\beta}^{\top} \mathbf{A}_{a}^{\top} \mathbf{A}_{b}^{\top} \mathbf{A}_{b}^{\top} + \mathbf{A}_{c}^{\top} \mathbf{A}_{b}^{\top} \mathbf{A}_{a}^{\top} \alpha \boldsymbol{\beta}^{\top})
$$

- ► Can solve classification $(y^{i} \in \{+1, -1\})$ and regression $(y^{i} \in \mathbb{R})$ with differentiable ℓ
- ▶ Optimization is highly non-convex might get stuck in local optimum but its commonly done in RNN
- § Automatic differentiation can automate gradient computations

Hankel Matrix Completion [\[BM12\]](#page-55-1)

$$
\hat{\mathbf{H}} = \underset{\mathbf{H} \in \mathbb{R}^{p \times S}}{\text{argmin}} \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{H}(x^{i}), y^{i}) \quad \text{s.t. } \|\mathbf{H}\|_{S, p} \le R
$$
\n
$$
\begin{cases}\n(\text{bab}, 1), (\text{bbb}, 0) \\
(\text{aaa}, 3), (\text{a}, 1) \\
(\text{ab}, 1), (\text{aaa}, 2) \\
(\text{aba}, 2), (\text{bb}, 0)\n\end{cases} \longrightarrow \begin{cases}\n\frac{a}{p} \begin{bmatrix}\n1 & 2 & 1 \\
2 & 3 & 2 \\
a & 2 & 3 \\
b & 1 & 2 & 7 \\
b & b & 2 & 7 \\
b & b & 0 & 3\n\end{bmatrix} \\
\frac{b}{p} \begin{bmatrix}\n1 & 2 & 1 \\
2 & 3 & 3 \\
1 & 2 & 7 \\
2 & 3 & 7 \\
b & b & 0 & 3\n\end{bmatrix}\n\end{cases}
$$

- Recover a WFA from \hat{H} using the spectral reconstruction algorithm
- Rademacher complexity of \mathcal{H}_p and algorithmic stability [\[BM12\]](#page-55-1) can be used to quarantee generalization

Outline

- 1. [Sequential Data and Weighted Automata](#page-4-0)
- 2. [WFA Reconstruction and Approximation](#page-12-0)
- 3. [PAC Learning for Stochastic WFA](#page-22-0)
- 4. [Statistical Learning for WFA](#page-32-0)
- 5. [Beyond Sequences: Transductions and Trees](#page-42-0)
- 6. [Conclusion](#page-49-0)

Sequence-to-Sequence Modelling in NLP and RL

- § Many NLP applications involve pairs of input-output sequences:
	- § Sequence tagging (one output tag per input token) e.g.: part of speech tagging input: Ms. Haag plays Elianti output: NNP NNP VBZ NNP
	- § Transductions (sequence lenghts might differ) e.g.: spelling correction input: a p l e output: a p p l e
- ▶ Sequence-to-sequence models also arise naturally in RL:
	- § An agent operating in an MPD or POMDP enviroment collects traces of the form input (actions): a_1 a_2 a_3 output (observation, rewards): (o_1, r_1) (o_2, r_2) (o_3, r_3) …
- For these applications we want to learn functions of the form $f : (\Sigma \times \Delta)^* \to \mathbb{R}$ or more generally $f : \Sigma^* \times \Delta^* \to \mathbb{R}$ (can model using ϵ -transitions)

Learning Transducers with Hankel Matrices

 \triangleright Given input and output alphabets Σ and Δ we can define IO-WFA³ as

 $A = \langle \boldsymbol{\alpha}, \boldsymbol{\beta}, \{\boldsymbol{A}_{\sigma \delta}\} \rangle$

- § The language computed by a IO-WFA can have diverse interpretations, for $(x, y) \in (\Sigma \times \Delta)^*$:
	- Tagging: $f(x, y) =$ compatiblity score of output y on input x
	- ▶ Dynamics modelling: $f(x, y) = \mathbb{P}[y|x]$, probability of observations given outputs
	- ► Reward modelling: $f(x, y) = \mathbb{E}[r_1 + \cdots + r_t]$, expected reward from action-observation sequence
- ► The Hankel trick applies to this setting as well with $H_f \in \mathbb{R}^{(\Sigma \times \Delta)^* \times (\Sigma \times \Delta)^*}$
- § For applications and concrete algorithms see [\[BSG09,](#page-56-2) [BQC11,](#page-56-3) [QBCG14,](#page-58-2) [BM17\]](#page-56-0)

³Other nomenclatures: weighted finite state transition (WFST), predictive state representation (PSR), input-output observable operator model (IO-OOM)

Trees in NLP

► Parsing tasks in NLP require predicting a tree for a sequence: modelling dependencies inside a sentence, document, etc

- § Models on trees are also useful to learn more complicated languages: weighted context-free languages (instead of regular)
- ► Applications involve different types of models and levels of supervision
	- \cdot Labelled trees, unlabelled trees, yields, etc.

Weighted Tree Automata (WTA)

- **Figure 3** Take a ranked alphabet $\Sigma = \Sigma_0 \cup \Sigma_1 \cup \cdots$
- ► A weighted tree automaton with *n* states is a tuple $A = \langle \bm{\alpha}, \{\bm{\mathsf{T}}_\tau\}_{\tau \in \Sigma_{\geqslant 1}}, \{\bm{\beta}_\sigma\}_{\sigma \in \Sigma_0} \rangle$ where

$$
\boldsymbol{\alpha}, \boldsymbol{\beta}_{\sigma} \in \mathbb{R}^n \qquad \mathbf{T}_{\tau} \in (\mathbb{R}^n)^{\otimes \text{rk}(\tau)+1}
$$

- \triangleright A defines a function f_A = Trees_Σ $\rightarrow \mathbb{R}$ through recursive vector-tensor contractions
- § Similar expressive power as WCFG and L-WCFG

Inside-Outside Factorization in WTA

For any inside-outside decomposition of a tree:

$$
f(t) = \boldsymbol{\alpha}_{t_o}^{\top} \boldsymbol{\beta}_{t_i}
$$

= $\boldsymbol{\alpha}_{t_o}^{\top} \mathbf{T}_{\sigma} (\boldsymbol{\beta}_{t_1}, \boldsymbol{\beta}_{t_2})$
= $\boldsymbol{\alpha}_{t_o}^{\top} \mathbf{T}_{\sigma}^{(2)} (\boldsymbol{\beta}_{t_1} \otimes \boldsymbol{\beta}_{t_2})$

 $\det t = t_o[t_i]$ $(\text{let } t_i = \sigma(t_1, t_2))$ (flatten tensor)

Learning WTA with Hankel Matrices

There exist analogues of:

• The Hankel matrix for f : Trees $\rightarrow \mathbb{R}$ corresponding to inside-outside decompositions

- § The Fliess–Kronecker theorem [\[BLB83\]](#page-55-2)
- \triangleright The spectral learning algorithm [\[BHD10\]](#page-55-3) and variants thereof [\[CSC](#page-56-4)⁺12, [CSC](#page-57-3)⁺13, CSC⁺14]

Outline

- 1. [Sequential Data and Weighted Automata](#page-4-0)
- 2. [WFA Reconstruction and Approximation](#page-12-0)
- 3. [PAC Learning for Stochastic WFA](#page-22-0)
- 4. [Statistical Learning for WFA](#page-32-0)
- 5. [Beyond Sequences: Transductions and Trees](#page-42-0)
- 6. [Conclusion](#page-49-0)

And It Works Too!

- \blacktriangleright Expectation maximization
- § Conditional random fields
- ▶ Tensor decompositions

In a variety of problems:

- \rightarrow Sequence tagging
- § Constituency and dependency parsing
- \blacktriangleright Timing and geometry learning
- ▶ POS-level language modelling

reseal

Open Problems and Current Trends

- ▶ Optimal selection of $\mathcal P$ and $\mathcal S$ from data
- § Scalable convex optimization over sets of Hankel matrices
- \triangleright Constraining the output WFA (eg. probabilistic automata)
- \triangleright Relations between learning and approximate minimisation
- § How much of this can be extended to WFA over semi-rings?
- § Spectral methods for initializing non-convex gradient-based learning algorithms

Conclusion

- ▶ A single building block based on SVD of Hankel matrices
- § Implementation only requires linear algebra
- \rightarrow Analysis involves linear algebra, probability, convex optimization
- \triangleright Can be made practical for a variety of models and applications

Want to know more?

- ► EMNLP'14 tutorial (with slides, video, and code) <https://borjaballe.github.io/emnlp14-tutorial/>
- ▶ Survey papers [\[BM15a,](#page-55-4) [TJ15\]](#page-59-0)
- ▶ Python toolkit Sp2Learn [\[ABDE16\]](#page-54-3)
- ► Neighbouring literature: Predictive state representations (PSR) [\[LSS02\]](#page-58-3) and Observable operator models (OOM) [\[Jae00\]](#page-58-4)

research

Thanks To All My Collaborators!

Xavier Carreras

Mehryar Mohri Prakash

Panangaden

Joelle Pineau

Doina Precup

Ariadna Quattoni

- § Guillaume Rabusseau
- § Franco M. Luque
- ▶ Pierre-Luc Bacon
- § Pascale Gourdeau
- § Odalric-Ambrym Maillard
- § Will Hamilton
- ► Lucas Langer
- ▶ Shay Cohen
- § Amir Globerson

References I

D. Arrivault, D. Benielli, F. Denis, and R. Eyraud. Sp2learn: A toolbox for the spectral learning of weighted automata. In ICGI, 2016.

B. Balle.

Learning Finite-State Machines: Algorithmic and Statistical Aspects. PhD thesis, Universitat Politècnica de Catalunya, 2013.

B. Balle, X. Carreras, F.M. Luque, and A. Quattoni. Spectral learning of weighted automata: A forward-backward perspective. Machine Learning, 2014.

R. Bailly, F. Denis, and L. Ralaivola.

Grammatical inference as a principal component analysis problem. In ICML, 2009.

References II

R. Bailly, A. Habrard, and F. Denis. A spectral approach for probabilistic grammatical inference on trees.

In ALT, 2010.

Symeon Bozapalidis and Olympia Louscou-Bozapalidou. The rank of a formal tree power series. Theoretical Computer Science, 27(1-2):211–215, 1983.

B. Balle and M. Mohri.

Spectral learning of general weighted automata via constrained matrix completion. In NIPS, 2012.

B. Balle and M. Mohri.

Learning weighted automata (invited paper). In CAI, 2015.

B. Balle and M. Mohri.

On the rademacher complexity of weighted automata. In ALT, 2015.

References III

Spectral learning from a single trajectory under finite-state policies. In ICML, 2017.

B. Balle and M. Mohri.

Generalization Bounds for Learning Weighted Automata.

Theoretical Computer Science, 716:89–106, 2018.

B. Balle, A. Quattoni, and X. Carreras.

A spectral learning algorithm for finite state transducers. In ECML-PKDD, 2011.

B. Boots, S. Siddiqi, and G. Gordon.

Closing the learning-planning loop with predictive state representations.

In Proceedings of Robotics: Science and Systems VI, 2009.

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Spectral learning of latent-variable PCFGs. In ACL, 2012.

References IV

- S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Experiments with spectral learning of latent-variable PCFGs. In NAACL-HLT, 2013.
- S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Spectral learning of latent-variable PCFGs: Algorithms and sample complexity. Journal of Machine Learning Research, 2014.
	- François Denis, Mattias Gybels, and Amaury Habrard. Dimension-free concentration bounds on hankel matrices for spectral learning. Journal of Machine Learning Research, 17:31:1–31:32, 2016.
	- M. Fliess.
		- Matrices de Hankel.
		- Journal de Mathématiques Pures et Appliquées, 1974.

References V

D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden Markov models.

In COLT, 2009.

H. Jaeger.

Observable operator models for discrete stochastic time series. Neural Computation, 2000.

M. Littman, R. S. Sutton, and S. Singh. Predictive representations of state. In NIPS, 2002.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.

MIT press, 2012.

References VI

F

M. R. Thon and H. Jaeger.

Links between multiplicity automata, observable operator models and predictive state representations: a unified learning framework.

Journal of Machine Learning Research, 2015.

Automata Learning

Borja Balle

Amazon Research Cambridge⁴

Foundations of Programming Summer School (Oxford) — July 2018

⁴Based on work completed before joining Amazon