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Brief History of Automata Learning

1967 Gold: Regular languages are learnable in the limit

1987 Angluin: Regular languages are learnable from queries

1993 Pitt & Warmuth: PAC-learning DFA is NP-hard

1994 Kearns & Valiant: Cryptographic hardness
... Clark, Denis, de la Higuera, Oncina, others: Combinatorial methods meet statistics and

linear algebra

2009 Hsu-Kakade-Zhang & Bailly-Denis-Ralaivola: Spectral learning



Goals of This Tutorial

Goals

§ Motivate spectral learning techniques for weighted automata and related models on

sequential and tree-structured data

§ Provide the key intuitions and fundamental results to effectively navigate the literature

§ Survey some formal learning results and give overview of some applications

§ Discuss role of linear algebra, concentration bounds, and learning theory in this area

Non-Goals

§ Dive deep into applications: instead pointers will be provided

§ Provide an exhaustive treatment of automata learning: beyond the scope of an

introductory lecture

§ Give complete proofs of the presented results: illuminating proofs will be discussed,

technical proofs omitted
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1. Sequential Data and Weighted Automata
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3. PAC Learning for Stochastic WFA

4. Statistical Learning for WFA
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Learning Sequential Data

§ Sequential data arises in numerous applications of Machine Learning:
§ Natural language processing
§ Computational biology
§ Time series analysis
§ Sequential decision-making
§ Robotics

§ Learning from sequential data requires specialized algorithms
§ The most common ML algorithms assume the data can be represented as vectors of a

fixed dimension
§ Sequences can have arbitrary length, and are compositional in nature
§ Similar things occur with trees, graphs, and other forms of structured data

§ Sequential data can be diverse in nature
§ Continuous vs. discrete time vs. only order information
§ Continuous vs. discrete observations



Functions on Strings

§ In this lecture we focus on sequences represented by strings on a finite alphabet: Σ‹

§ The goal will be to learn a function f : Σ‹ Ñ R from data

§ The function being learned can represent many things, for example:
§ A language model: f psentenceq “ likelihood of observing a sentence in a specific natural

language
§ A protein scoring model: f paminoacid sequenceq “ predicted activity of a protein in a

biological reaction
§ A reward model: f paction sequenceq “ expected reward an agent will obtain after

executing a sequence of actions
§ A network model: f ppacket sequenceq “ probability that a sequence of packets will

successfully transmit a message through a network

§ These functions can be identified with a weighted language f P RΣ‹ , an

infinite-dimensional object

§ In order to learn such functions we need a finite representation: weighted automata



Weighted Finite Automata

Graphical Representation

q1

1.2
´1

q2

0
0.5

a, 1.2

b, 2

a,´1

b,´2

a, 3.2

b, 5
a,´2

b, 0

Algebraic Representation

α “

„

´1

0.5



β “

„

1.2

0



Aa “

„

1.2 ´1

´2 3.2



Ab “

„

2 ´2

0 5



Weighted Finite Automaton

A WFA A with n “ |A| states is a tuple A “ xα,β, tAσuσPΣy where α,β P Rn and Aσ P Rnˆn



Language of a WFA
With every WFA A “ xα,β, tAσuy with n states we associate a weighted language

fA : Σ‹ Ñ R given by

fApx1 ¨ ¨ ¨ xT q “
ÿ

q0,q1,...,qTPrns

αpq0q

˜

T
ź

t“1

Axt pqt´1, qtq

¸

βpqT q

“ αJAx1 ¨ ¨ ¨AxTβ “ α
JAxβ

Recognizable/Rational Languages

A weighted language f : Σ‹ Ñ R is recognizable/rational if there exists a WFA A such that

f “ fA. The smallest number of states of such a WFA is rankpf q. A WFA A is minimal if

|A| “ rankpfAq.

Observation: The minimal A is not unique. Take any invertible matrix Q P Rnˆn, then

αJAx1 ¨ ¨ ¨AxTβ “ pα
JQqpQ´1Ax1Qq ¨ ¨ ¨ pQ

´1AxTQqpQ´1βq



Examples: DFA, HMM

Deterministic Finite Automata

§ Weights in t0, 1u

§ Initial: α indicator for initial state

§ Final: β indicates accept/reject state

§ Transition: Aσpi , jq “ Iri
σ
Ñ js

§ fA : Σ‹ Ñ t0, 1u defines regular

language

Hidden Markov Model

§ Weights in r0, 1s

§ Initial: α distribution over initial state

§ Final: β vector of ones

§ Transition:

Aσpi , jq “ Pri
σ
Ñ js “ Pri Ñ jsPri σÑs

§ fA : Σ‹ Ñ r0, 1s defines dynamical

system



Hankel Matrices

Given a weighted language f : Σ‹ Ñ R define its Hankel matrix Hf P RΣ‹ˆΣ‹ as

Hf “

»

—

—

—

—

—

—

—

—

—

—

–

ε a b ¨¨¨ s ¨¨¨

ε f pεq f paq f pbq
...

a f paq f paaq f pabq
...

b f pbq f pbaq f pbbq
...

...

p ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ f pp ¨ sq
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Fliess–Kronecker Theorem [Fli74]

The rank of Hf is finite if and only if f is rational, in which case rankpHf q “ rankpf q



Intuition for the Fliess–Kronecker Theorem

HfA P R
Σ‹ˆΣ‹ PA P RΣ‹ˆn SA P RnˆΣ‹

»

—

—

—

—

—

—

—

–

s

...

...

...

p ¨ ¨ ¨ ¨ ¨ ¨ ‚ ¨ ¨ ¨ ¨ ¨ ¨
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

p ‚ ‚ ‚

¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

fl

»

–

s

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

fi

fl

fApp1 ¨ ¨ ¨ pT ¨ s1 ¨ ¨ ¨ sT 1q “ αJAp1 ¨ ¨ ¨ApT
looooooomooooooon

αAppq

As1 ¨ ¨ ¨AsT 1β
loooooomoooooon

βApsq

Note: We call Hf “ PASA the forward-backward factorization induced by A
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From Hankel to WFA

f pp1 ¨ ¨ ¨ pT s1 ¨ ¨ ¨ sT 1q “ αJAp1 ¨ ¨ ¨ApTAs1 ¨ ¨ ¨AsT 1β

H “

»

—

—

—

—

–

s

¨

¨

¨

p ¨ ¨ f ppsq ¨ ¨

¨

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

‚ ‚ ‚

¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

fl

»

–

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

fi

fl

f pp1 ¨ ¨ ¨ pTσs1 ¨ ¨ ¨ sT 1q “ αJAp1 ¨ ¨ ¨ApTAaAs1 ¨ ¨ ¨AsT 1β

Hσ “

»

—

—

—

—

–

s

¨

¨

¨

p ¨ ¨ f ppasq ¨ ¨

¨

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

‚ ‚ ‚

¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

fl

»

–

‚ ‚ ‚

‚ ‚ ‚

‚ ‚ ‚

fi

fl

»

–

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

fi

fl

Algebraically: Factorizing H lets us solve for Aa

H “ P S ùñ Hσ “ P Aσ S ùñ Aσ “ P` Hσ S`



Aside: Moore–Penrose Pseudo-inverse

For any M P Rnˆm there exists a unique pseudo-inverse M` P Rmˆn satisfying:

§ MM`M “ M, M`MM` “ M`, and M`M and MM` are symmetric

§ If rankpMq “ n then MM` “ I, and if rankpMq “ m then M`M “ I

§ If M is square and invertible then M` “ M´1

Given a system of linear equations Mu “ v, the following is satisfied:

M`v “ argmin
uPargmin }Mu´v}2

}u}2 .

In particular:

§ If the system is completely determined, M`v solves the system

§ If the system is underdetermined, M`v is the solution with smallest norm

§ If the system is overdetermined, M`v is the minimum norm solution to the

least-squares problem min }Mu´ v}2



Finite Hankel Sub-Blocks

Given finite sets of prefixes and suffixes P,S Ă Σ‹ and infinite Hankel matrix Hf P RΣ‹ˆΣ‹

we define the sub-block H P RPˆS and for σ P Σ the sub-block Hσ P RPσˆS

Hf “

»

—

—

—

—

—

—

—

—

—

—

—

–

ε a b aa ab ba bb ¨¨¨

ε ‚ ‚ ‚ ‚ ‚ ‚ ‚ ¨ ¨ ¨

a ‚ ‚ ‚ ‚ ‚ ‚ ‚ ¨ ¨ ¨

b ‚ ‚ ‚ ‚ ‚ ‚ ‚ ¨ ¨ ¨

aa ‚ ‚ ‚ ‚ ‚ ‚ ‚ ¨ ¨ ¨

ab ‚ ‚ ‚ ‚ ‚ ‚ ‚ ¨ ¨ ¨

ba ‚ ‚ ‚ ‚ ‚ ‚ ‚ ¨ ¨ ¨

bb ‚ ‚ ‚ ‚ ‚ ‚ ‚ ¨ ¨ ¨
...

...
...

...
...

...
...

...
. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl



WFA Reconstruction from Finite Hankel Sub-Blocks
Suppose f : Σ‹ Ñ R has rank n and ε P P,S Ă Σ‹ are such that the sub-block H P RPˆS of

Hf satisfies rankpHq “ n.

Let A “ xα,β, tAσuy be obtained as follows:

1. Compute a rank factorization H “ PS; i.e. rankpPq “ rankpSq “ rankpHq

2. Let αJ (resp. β) be the ε-row of P (resp. ε-column of S)

3. Let Aσ “ P`HσS`, where Hσ P RP¨σˆS is a sub-block of Hf

Claim The resulting WFA computes f and is minimal

Proof

§ Suppose Ã “ xα̃, β̃, tÃσuy is a minimal WFA for f .

§ It suffices to show there exists an invertible Q P Rnˆn such that αJ “ α̃JQ,

Aσ “ Q´1ÃσQ and β “ Q´1β̃.

§ By minimality Ã induces a rank factorization H “ P̃S̃ and also Hσ “ P̃ÃσS̃.

§ Since Aσ “ P`HσS` “ P`P̃ÃσS̃S`, take Q “ S̃S`.

§ Check Q´1 “ P`P̃ since P`P̃S̃S` “ P`HS` “ P`PSS` “ I.



WFA Learning Algorithms via the Hankel Trick

Data
Hankel

Matrix
WFA

1. Estimate a Hankel matrix from data
§ For stochastic automata: counting empirical frequencies
§ In general: empirical risk minimization
§ Inductive bias: enforcing low-rank Hankel will yield less states in WFA
§ Parameters: rows and columns of Hankel sub-block

2. Recover a WFA from the Hankel matrix
§ Direct application of WFA reconstruction algorithm

Question: How robust to noise are these steps? Can we the learned WFA is a good

representation of the data?



Norms on WFA

Weighted Finite Automaton

A WFA with n states is a tuple A “ xα,β, tAσuσPΣy where α,β P Rn and Aσ P Rnˆn

Let p, q P r1,8s be Hölder conjugate 1p `
1
q “ 1.

The pp, qq-norm of a WFA A is given by

}A}p,q “ max

"

}α}p, }β}q,max
σPΣ

}Aσ}q

*

,

where }Aσ}q “ sup}v}qď1 }Aσv}q is the q-induced norm.

Example For probabilistic automata A “ xα,β, tAσuy with α probability distribution, β

acceptance probabilities, Aσ row (sub-)stochastic matrices we have }A}1,8 “ 1



Perturbation Bounds: AutomatonÑLanguage [Bal13]

Suppose A “ xα,β, tAσuy and A1 “ xα1,β1, tA1σuy are WFA with n states satisfying

}A}p,q ď ρ, }A1}p,q ď ρ, max t}α´ α1}p, }β ´ β
1}q,maxσPΣ }Aσ ´ A1σ}qu ď ∆.

Claim The following holds for any x P Σ‹:

|fApxq ´ fA1pxq| ď p|x | ` 2qρ|x |`1∆ .

Proof By induction on |x | we first prove }Ax ´ A1x}q ď |x |ρ
|x |´1∆:

}Axσ ´ A1xσ}q ď }Ax ´ A1x}q}Aσ}q ` }A
1
x}q}Aσ ´ A1σ}q ď |x |ρ

|x |∆` ρ|x |∆ “ p|x | ` 1qρ|x |∆ .

|fApxq ´ fA1pxq| “ |α
JAxβ ´ α

1JA1xβ
1| ď |αJpAxβ ´ A1xβ

1q| ` |pα´ α1qJA1xβ
1|

ď }α}p}Axβ ´ A1xβ
1}q ` }α´ α

1}p}A
1
xβ
1}q

ď }α}p}Ax}q}β ´ β
1}q ` }α}p}Ax ´ A1x}q}β

1}q ` }α´ α
1}p}A

1
x}q}β

1}q

ď ρ|x |`1}β ´ β1}q ` ρ
2}Ax ´ A1x}q ` ρ

|x |`1}α´ α1}p

ď ρ|x |`1∆` ρ2ρ|x |´1|x |∆` ρ|x |`1∆ .



Aside: Singular Value Decomposition (SVD)
For any M P Rnˆm with rankpMq “ k there exists a singular value decomposition

M “ UDVJ “
k
ÿ

i“1

siuiv
J
i

§ D P Rkˆk diagonal contains k sorted singular values s1 ě s2 ě ¨ ¨ ¨ ě sk ą 0
§ U P Rnˆk contains k left singular vectors, i.e. orthonormal columns UJU “ I
§ V P Rmˆk contains k right singular vectors, i.e. orthonormal columns VJV “ I

Properties of SVD

§ M “ pUD1{2qpD1{2VJq is a rank factorization
§ Can be used to compute the pseudo-inverse as M` “ VD´1UJ

§ Provides optimal low-rank approximations. For k 1 ă k , Mk 1 “ Uk 1Dk 1V
J
k 1 “

řk 1

i“1 siuiv
J
i

satisfies

Mk 1 P argmin
rankpM̂qďk 1

}M´ M̂}2



Perturbation Bounds: HankelÑAutomaton [Bal13]

§ Suppose f : Σ‹ Ñ R has rank n and ε P P,S Ă Σ‹ are such that the sub-block

H P RPˆS of Hf satisfies rankpHq “ n

§ Let A “ xα,β, tAσuy be obtained as follows:

1. Compute the SVD factorization H “ PS; i.e. P “ UD1{2 and S “ D1{2VJ

2. Let αJ (resp. β) be the ε-row of P (resp. ε-column of S)

3. Let Aσ “ P`HσS`, where Hσ P RP¨σˆS is a sub-block of Hf

§ Suppose Ĥ P RPˆS and Ĥσ P RP¨σˆS satisfy maxt}H´ Ĥ}2,maxσ }Hσ ´ Ĥσ}2u ď ∆

§ Let Â “ xα̂, β̂, tÂσuy be obtained as follows:

1. Compute the SVD rank-n approximation Ĥ « P̂Ŝ; i.e. P̂ “ ÛnD̂
1{2
n and Ŝ “ D̂

1{2
n V̂Jn

2. Let α̂J (resp. β̂) be the ε-row of P̂ (resp. ε-column of Ŝ)

3. Let Âσ “ P̂`ĤσŜ`

Claim For any pair of Hölder conjugate pp, qq we have

maxt}α´ α̂}p, }β ´ β̂}q,max
σ
}Aσ ´ Âσ}qu ď Op∆q
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Probabilities on Strings

Suppose the function f : Σ‹ Ñ R to be learned computes “probabilities”: f pxq P r0, 1s

Stochastic Languages

§ Probability distribution over all strings:
ř

xPΣ‹ f pxq “ 1

§ Can sample finite strings and try to learn the distribution

Dynamical Systems

§ Probability distribution over strings of fixed length: for all t ě 0,
ř

xPΣt f pxq “ 1

§ Can sample (potentially infinite) prefixes and try to learn the dynamics



Hankel Estimation from Strings [HKZ09, BDR09]

Data: S “ tx1, . . . , xmu containing m i.i.d. string from some distribution f over Σ‹

Empirical Hankel matrix:

f̂Spxq “
1

m

m
ÿ

i“1

Irx i “ xs Ĥpp, sq “ f̂Spp ¨ sq

Properties:

§ Unbiased and consistent: limmÑ8 Ĥ “ ErĤs “ H
§ Data inefficient:

S “

$

’

’

&

’

’

%

aa, b, bab, a,

bbab, abb, babba, abbb,

ab, a, aabba, baa,

abbab, baba, bb, a

,

/

/

.

/

/

-

ÝÑ Ĥ “

»

—

—

–

a b

ε .19 .06

a .06 .06

b .00 .06

ba .06 .06

fi

ffi

ffi

fl



Hankel Estimation from Prefixes [BCLQ14]

Data: S “ tx1, . . . , xmu containing m i.i.d. string from some distribution f over Σ‹

Empirical Prefix Hankel matrix:

f̄Spxq “
1

m

m
ÿ

i“1

Irx i P xΣ‹s

Properties:
§ Erf̄Spxqs “

ř

yPΣ‹ f pxyq “ Pf rxΣ‹s
§ If f is computed by WFA A, then

Pf rxΣ‹s “
ÿ

yPΣ‹

f pxyq “
ÿ

yPΣ‹

αJAxAyβ “ α
JAx

˜

ÿ

yPΣ‹

Ayβ

¸

“ αJAx

˜

ÿ

tě0

pAσ1 ` ¨ ¨ ¨ ` Aσk q
t β

¸

“ αJAx

˜

ÿ

tě0

Atβ

¸

“ αJAx pI´ Aq´1β “ αJAx β̄



Hankel Estimation from Substrings [BCLQ14]

Data: S “ tx1, . . . , xmu containing m i.i.d. string from some distribution f over Σ‹

Empirical Substring Hankel matrix:

f̃Spxq “
1

m

m
ÿ

i“1

|x i |x |x i |x “
ÿ

u,vPΣ‹

Irx i “ uxv s

Properties:

§ Erf̃Spxqs “
ř

u,vPΣ‹ f puxvq “
ř

yPΣ‹ |y |x f pyq “ Ey„f r|y |x s
§ If f is computed by WFA A, then

Ey„f r|y |x s “
ÿ

yPΣ‹

|y |x f pyq “
ÿ

u,vPΣ‹

αJAuAxAvβ

“ αJpI´ Aq´1Ax pI´ Aq´1β “ ᾱJAx β̄



Hankel Estimation from a Single String [BM17]

Data: x “ x1 ¨ ¨ ¨ xm ¨ ¨ ¨ sampled from some dynamical system f over Σ

Empirical One-string Hankel matrix:

f̊mpxq “
1

m

m
ÿ

i“1

Irxixi`1 ¨ ¨ ¨ P xΣ‹s

Properties:

§ Er̊fmpxqs “ 1
m

ř

uPΣăm f puxq “
1
m

řm´1
i“0 Pf rΣixs

§ If f is computed by WFA A, then

1

m

m´1
ÿ

i“0

Pf rΣixs “
1

m

ÿ

uPΣăm

f puxq “
1

m

ÿ

uPΣăm

αJAuAxβ

“

˜

1

m

m´1
ÿ

i“0

αJAi

¸

Axβ “ ᾱ
J
mAxβ



Concentration Bounds for Hankel Estimation

§ Consider a sub-block H over pP,Sq fixed and the sample size m Ñ8

§ In general one can show: with high probability over a sample S of size m

}ĤS ´H} “ O

ˆ

1
?
m

˙

where
§ The hidden constants depend on the dimension of the sub-block P ˆ S and properties of

the strings in P ¨ S
§ The norm } ‚ } can be either the operator or the Frobenius norm
§ Under the assumptions in the previous slides we can replace ĤS by H̄S (on prefixes), H̃S

(on substrings) or H̊m (single trajectory)

§ Proofs rely on a diversity of concentration inequalities; they can be found in

[DGH16, BM17]



Aside: McDiarmid’s Inequality

Let Φ : Ωm Ñ R be such that

@i P rms sup
x1,...,xm,x

1
i PΩ
|Φpx1, . . . , xi , . . . , xmq ´ Φpx1, . . . , x

1
i , . . . , xmq| ď c

If X “ pX1, . . . ,Xmq are i.i.d. from some distribution over Ω:

P rΦpX q ě EΦpX q ` ts ď exp

ˆ

´
2t2

mc2

˙

Equivalently, the following holds with probability at least 1´ δ over X :

ΦpX q ă EΦpX q ` c

c

m

2
logp1{δq



A Simple Proof via McDiarmid’s Inequality [Bal13]

§ Let Φpx1, . . . , xmq “ ΦpSq “ }H´ ĤS}F with x i i.i.d. from a distribution on Σ‹

§ Note ĤS “
1
m

řm
i“1 Ĥx i , where Ĥx pp, sq “ Irp ¨ s “ xs

§ Defining cP,S “ maxx |tpp, sq P P ˆ S : p ¨ s “ xu| “ maxx }Ĥx}
2
F we get

|ΦpSq ´ ΦpS 1q| ď }ĤS ´ ĤS 1}F “
1

m
}Ĥx i ´ Ĥx i 1}F ď

2

m
maxt}Ĥx i }F , }Ĥx i 1}F u ď

2
?
cP,S

m

§ Using Jensen’s inequality we can bound the expectation EΦpSq “ E}H´ ĤS}F as

´

E}H´ ĤS}F

¯2
ď E}H´ ĤS}

2
F “

ÿ

p,s

EpHpp, sq ´ ĤSpp, sqq
2 “

ÿ

p,s

VĤSpp, sq

“
1

m

ÿ

p,s

Hpp, sqp1´Hpp, sqq ď
1

m
pcP,S ´ }H}

2
F q ď

cP,S
m

§ By McDiarmid, w.p. ě 1´ δ: }H´ ĤS}F ď
b

cP,S
m `

b

2cP,S
m logp1{δq “ Op1{

?
mq



PAC Learning Stochastic WFA [BCLQ14]

Setup:

§ Unknown f : Σ‹ Ñ R with rankpf q “ n defining probability distribution on Σ‹

§ Data: x p1q, . . . , x pmq i.i.d. strings sampled from f

§ Parameters: n and P,S such that ε P P X S and the sub-block H P RPˆS satisfies

rankpHq “ n

Algorithm:

1. Estimate Hankel matrices Ĥ and Ĥσ for all σ P Σ using empirical probabilities

f̂ pxq “
1

m

m
ÿ

i“1

Irx piq “ xs

2. Return Â “ SpectralpĤ, tĤσu, nq

Analysis:

§ Running time is Op|P ¨ S|m ` |Σ||P||S|nq
§ With high probability

ř

|x |ďL |f pxq ´ Âpxq| “ O
´

L2|Σ|
?
n

σnpHq2
?
m

¯
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Statistical Learning Framework
Motivation

§ PAC learning focuses on the realizable case: the samples come from model in known

class

§ In practice this is unrealistic: real data is not generated from a “nice” model

§ The non-realizable setting is the natural domain of statistical learning theory2

Setup (for strings with real labels)

§ Let D be a distribution over Σ‹ ˆ R, and S “ tpx i , y iqu a sample with m i.i.d. examples

§ Let H be a hypothesis class of functions of type Σ‹ Ñ R
§ Let ` : Rˆ RÑ R` be a (convex) loss function

§ The goal of statistical learning theory is to use S to find f̂ P H that approximates

f ˚ “ argmin
f PH

Epx ,yq„Dr`pf pxq, yqs

2And agnostic PAC learning, but we will not discuss this setting here.



Empirical Risk Minimization for WFA

§ For a large sample and a fixed f P H we have

LDpf ; `q :“ Epx ,yq„Dr`pf pxq, yqs «
1

m

m
ÿ

i“1

`pf px iq, y iq “: L̂Spf ; `q

§ A classical approach is consider the empirical risk minimization rule

f̂ “ argmin
f PH

L̂Spf ; `q

§ For “string to real” learning problems we want to choose a hypothesis class H in which
§ The ERM problem can be solved efficiently
§ We can guarantee that f̂ will not overfit the data



Generalization Bounds and Rademacher Complexity

§ The risk of overfitting can be controlled with generalization bounds of the form: for any

D, with prob. 1´ δ over S „ Dm

LDpf ; `q ď L̂Spf ; `q ` C pS ,H, `q @f P H

§ Rademacher complexity provides bounds for any H “ tf : Σ‹ Ñ Ru

RmpHq “ ES„DmEσ

«

sup
f PH

1

m

m
ÿ

i“1

σi f px
iq

ff

where σi „ unifpt`1,´1uq

§ For a bounded Lipschitz loss ` with probability 1´ δ over S „ Dm (e.g. see [MRT12])

LDpf ; `q ď L̂Spf ; `q `O

˜

RmpHq `
c

logp1{δq

m

¸

@f P H



Bounding the Weights
§ Given a pair of Hölder conjugate integers p, q (1{p ` 1{q “ 1), define a norm on WFA

given by

}A}p,q “ max

"

}α}p, }β}q,max
aPΣ

}Aa}q

*

§ Let An ĂWFAn be the class of WFA with n states given by

An “ tA PWFAn | }A}p,q ď Ru

Theorem [BM15b, BM18]

The Rademacher complexity of An for R ď 1 is bounded by

RmpAnq “ O

˜

Lm
m
`

c

n2|Σ| logpmq

m

¸

,

where Lm “ ES rmaxi |x
i |s.



Bounding the Language
§ Given p P r1,8s and a language f : Σ‹ Ñ R define its p-norm as

}f }p “

˜

ÿ

xPΣ‹

|f pxq|p

¸1{p

§ Let Rp be the class of languages given by

Rp “ tf : Σ‹ Ñ R : }f }p ď Ru

Theorem [BM15b, BM18]

The Rademacher complexity of Rp satisfies

RmpR2q “ Θ

ˆ

R
?
m

˙

, RmpR1q “ O

˜

RCm
a

logpmq

m

¸

where Cm “ ES r
a

maxx |ti : x i “ xu|s.



Aside: Schatten Norms

§ For a matrix M P Rnˆm with rankpMq “ k let s1 ě s2 ě ¨ ¨ ¨ ě sk ą 0 be its singular

values

§ Arrange them in a vector s “ ps1, . . . , skq

§ For any p P r1,8s we define the p-Schatten norm of M as

}M}S,p “ }s}p

§ Some of these norms have given names:
§ p “ 8: spectral or operator norm
§ p “ 2: Frobenius or Hilbert–Schmidt norm
§ p “ 1: nuclear or trace norm

§ In some sense, the nuclear norm is the best convex approximation to the rank function

(i.e. its convex envelope)



Bounding the Matrix

Given R ą 0 and p ě 1 define the class of infinite Hankel matrices

Hp “
 

H P RΣ‹ˆΣ‹
ˇ

ˇ H P Hankel, }H}S,p ď R
(

Theorem [BM15b, BM18]

The Rademacher complexity of Hp satisfies

RmpH2q “ O
ˆ

R
?
m

˙

, RmpH1q “ O
ˆ

R logpmq
?
Wm

m

˙

,

where Wm “ ES
“

minsplitpSq max
 

maxp
ř

i 1rp
i “ ps,maxs

ř

i 1rs
i “ ss

(‰

.

Note: splitpSq contains all possible prefix-suffix splits x i “ pis i of all strings in S



Direct Gradient-Based Methods

§ The ERM problem on the class An can be solved with (stochastic) projected gradient

descent:

min
APWFAn

1

m

m
ÿ

i“1

`pApx iq, y iq s.t. }A}p,q ď R

§ Example gradient computation with x “ abca and weights in Aa:

∇Aa`pApxq, yq “
B`

Bŷ
pApxq, yq ¨

`

∇AaαJAaAbAcAaβ
˘

“
B`

Bŷ
pApxq, yq ¨

`

αβJAJa AJc AJb ` AJc AJbAJa αβ
J
˘

§ Can solve classification (y i P t`1,´1u) and regression (y i P R) with differentiable `

§ Optimization is highly non-convex – might get stuck in local optimum – but its

commonly done in RNN

§ Automatic differentiation can automate gradient computations



Hankel Matrix Completion [BM12]

§ Learn a finite Hankel matrix over P ˆ S directly from data by solving the convex ERM

Ĥ “ argmin
HPRPˆS

1

m

m
ÿ

i“1

`pHpx iq, y iq s.t. }H}S,p ď R

$

’

’

&

’

’

%

(bab,1), (bbb,0)

(aaa,3), (a,1)

(ab,1), (aa,2)

(aba,2), (bb,0)

,

/

/

.

/

/

-

ÝÑ

»

—

—

—

—

—

—

–

ε a b

a 1 2 1

b ? ? 0

aa 2 3 ?
ab 1 2 ?
ba ? ? 1

bb 0 ? 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

§ Recover a WFA from Ĥ using the spectral reconstruction algorithm

§ Rademacher complexity of Hp and algorithmic stability [BM12] can be used to guarantee

generalization
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Sequence-to-Sequence Modelling in NLP and RL

§ Many NLP applications involve pairs of input-output sequences:
§ Sequence tagging (one output tag per input token) e.g.: part of speech tagging

input: Ms. Haag plays Elianti

output: NNP NNP VBZ NNP
§ Transductions (sequence lenghts might differ) e.g.: spelling correction

input: a p l e

output: a p p l e

§ Sequence-to-sequence models also arise naturally in RL:
§ An agent operating in an MPD or POMDP enviroment collects traces of the form

input (actions): a1 a2 a3 ¨ ¨ ¨

output (observation, rewards): po1, r1q po2, r2q po3, r3q ¨ ¨ ¨

§ For these applications we want to learn functions of the form f : pΣˆ∆q‹ Ñ R or more

generally f : Σ‹ ˆ∆‹ Ñ R (can model using ε-transitions)



Learning Transducers with Hankel Matrices

§ Given input and output alphabets Σ and ∆ we can define IO-WFA3 as

A “ xα,β, tAσ,δuy

§ The language computed by a IO-WFA can have diverse interpretations, for
px , yq P pΣˆ∆q‹:

§ Tagging: f px , yq “ compatiblity score of output y on input x
§ Dynamics modelling: f px , yq “ Pry |xs, probability of observations given outputs
§ Reward modelling: f px , yq “ Err1 ` ¨ ¨ ¨ ` rts, expected reward from action-observation

sequence

§ The Hankel trick applies to this setting as well with Hf P RpΣˆ∆q‹ˆpΣˆ∆q‹

§ For applications and concrete algorithms see [BSG09, BQC11, QBCG14, BM17]

3Other nomenclatures: weighted finite state transition (WFST), predictive state representation (PSR),

input-output observable operator model (IO-OOM)



Trees in NLP

§ Parsing tasks in NLP require predicting a tree for a sequence: modelling dependencies

inside a sentence, document, etc

S

NP

noun

Mary

VP

verb

plays

NP

det

the

noun

guitar

§ Models on trees are also useful to learn more complicated languages: weighted

context-free languages (instead of regular)

§ Applications involve different types of models and levels of supervision
§ Labelled trees, unlabelled trees, yields, etc.



Weighted Tree Automata (WTA)

§ Take a ranked alphabet Σ “ Σ0 Y Σ1 Y ¨ ¨ ¨

§ A weighted tree automaton with n states is a tuple A “ xα, tTτuτPΣě1 , tβσuσPΣ0y

where

α,βσ P Rn Tτ P pRnqb rkpτq`1

§ A defines a function fA “ TreesΣ Ñ R through recursive vector-tensor contractions

§ Similar expressive power as WCFG and L-WCFG



Inside-Outside Factorization in WTA

a

c b

c a

b

a

c ‹ b

c a

b

d“

For any inside-outside decomposition of a tree:

f ptq “ αJtoβti plet t “ torti sq

“ αJtoTσpβt1 ,βt2q plet ti “ σpt1, t2qq

“ αJtoT
p2q
σ pβt1 b βt2q pflatten tensorq



Learning WTA with Hankel Matrices

There exist analogues of:

§ The Hankel matrix for f : TreesΣ Ñ R corresponding to inside-outside decompositions

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

a b

a

a

a

b

a
a b

¨¨¨

‹ 0 1 ´1 2 3 ...

a

‹
´1 2 1 ´1 ¨ ¨ ¨

b

‹
4 1 6 2

a
‹b 0 ´1 ´3 ´7

a
‹ b 3

...

...
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

§ The Fliess–Kronecker theorem [BLB83]

§ The spectral learning algorithm [BHD10] and variants thereof [CSC`12, CSC`13, CSC`14]
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And It Works Too!

Spectral methods are competitive

against traditional methods:

§ Expectation maximization

§ Conditional random fields

§ Tensor decompositions

In a variety of problems:

§ Sequence tagging

§ Constituency and

dependency parsing

§ Timing and geometry

learning

§ POS-level language

modelling
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Open Problems and Current Trends

§ Optimal selection of P and S from data

§ Scalable convex optimization over sets of Hankel matrices

§ Constraining the output WFA (eg. probabilistic automata)

§ Relations between learning and approximate minimisation

§ How much of this can be extended to WFA over semi-rings?

§ Spectral methods for initializing non-convex gradient-based learning algorithms



Conclusion

Take home points

§ A single building block based on SVD of Hankel matrices

§ Implementation only requires linear algebra

§ Analysis involves linear algebra, probability, convex optimization

§ Can be made practical for a variety of models and applications

Want to know more?

§ EMNLP’14 tutorial (with slides, video, and code)

https://borjaballe.github.io/emnlp14-tutorial/

§ Survey papers [BM15a, TJ15]

§ Python toolkit Sp2Learn [ABDE16]

§ Neighbouring literature: Predictive state representations (PSR) [LSS02] and Observable

operator models (OOM) [Jae00]

https://borjaballe.github.io/emnlp14-tutorial/
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Journal de Mathématiques Pures et Appliquées, 1974.



References V

D. Hsu, S. M. Kakade, and T. Zhang.

A spectral algorithm for learning hidden Markov models.

In COLT, 2009.

H. Jaeger.

Observable operator models for discrete stochastic time series.

Neural Computation, 2000.

M. Littman, R. S. Sutton, and S. Singh.

Predictive representations of state.

In NIPS, 2002.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar.

Foundations of machine learning.

MIT press, 2012.

A. Quattoni, B. Balle, X. Carreras, and A. Globerson.

Spectral regularization for max-margin sequence tagging.

In ICML, 2014.



References VI

M. R. Thon and H. Jaeger.

Links between multiplicity automata, observable operator models and predictive state representations: a

unified learning framework.

Journal of Machine Learning Research, 2015.



Automata Learning

Borja Balle

Amazon Research Cambridge4

Foundations of Programming Summer School (Oxford) — July 2018

4Based on work completed before joining Amazon


	Sequential Data and Weighted Automata
	WFA Reconstruction and Approximation
	PAC Learning for Stochastic WFA
	Statistical Learning for WFA
	Beyond Sequences: Transductions and Trees
	Conclusion

