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Regular Inference (Informal Description)

§ Unknown regular language L Ď Σ‹

§ With indicator function f : Σ‹ Ñ t0, 1u

§ Given examples px1, fpx1qq, px2, fpx2qq, . . .
§ Finite or infinite
§ (positive and negative) OR (only positive)

§ Find a representation for L (eg. a DFA)
§ Using a reasonable amount of computation
§ After seeing a reasonable amount of examples



PAC Learning Regular Languages

§ Concept class C of functions Σ‹ Ñ t0, 1u
§ Eg. C “ DFAn all regular languages recognized by DFA with n states

§ Hypothesis class H of representations for functions Σ‹ Ñ t0, 1u
§ Proper learning H “ C
§ Improper learning H ‰ C

Definition: PAC Learner

An algorithm A such that for any f P C and any prob. dist. D on Σ‹, and
any accuracy ε and confidence δ, satisfies: given a large enough sample of
examples S “ ppxi, fpxiqqq i.i.d. from D, the output hypothesis f̂ “ ApSq P

H satisfies Px„Drfpxq ‰ f̂pxqs ď ε with probability at least 1´ δ.

§ Large enough typically means polynomial of 1{ε, 1{δ, size of f

§ For any prob. dist. D on Σ‹ is called distribution-free learning

Note: see [De la Higuera, 2010] for other important formal learning models



Sample Complexity of PAC Learning DFA

Sample Complexity

The distribution-free sample complexity of PAC learning C “ DFAn is
polynomial in n and |Σ|

Follows from:
§ Any concept class C can be proper PAC-learned with:

§ |S| “ O
´

VCpCq logp1{εq`logp1{δq
ε

¯

[Vapnik, 1982]

§ |S| “ O
´

VCpCq logp1{δq
ε

¯

[Haussler et al., 1994]

§ |S| “ O
´

VCpCq`logp1{δq
ε

¯

[Hanneke, 2016]

§ VCpDFAnq “ Op|Σ|n lognq [Ishigami and Tani, 1993]

Generic Learning Algorithm:

§ Upper bounds in [Vapnik, 1982, Hanneke, 2016] apply to consistent
learning algorithms

§ A is consistent if for any sample S “ ppxi, fpxiqqq the hypothesis
f̂ “ ApSq satisfies f̂pxiq “ fpxiq for all i



Computational Complexity of PAC Learning DFA

§ Proper PAC learning of DFA is equivalent to finding smallest
consistent DFA with S [Board and Pitt, 1992]

§ Finding the smallest consistent DFA is NP-hard
[Angluin, 1978, Gold, 1978]

§ Approximating the smallest consistent DFA is NP-hard
[Pitt and Warmuth, 1993, Chalermsook et al., 2014]

§ Improper learning DFA is as hard as breaking RSA
[Kearns and Valiant, 1994]

§ Improper learning DFA is as hard as refuting random CSP
[Daniely et al., 2014]



Is Worst-case Hardness Too Pessimistic?
Positive Results:

§ Given characteristic sample, state-merging can find smallest
consistent DFA [Oncina and Garćıa, 1992]

§ PAC learning is possible under nice distributions adapted to target
language [Parekh and Honavar, 2001, Clark and Thollard, 2004]

§ Random DFA under uniform distributions seem easy to learn
[Lang, 1992, Angluin and Chen, 2015]

§ And also lots of successful heuristics in practice: EDSM, SAT solvers,
etc.

Take Away:

§ By giving up on distribution-free and focusing on nice distributions
efficient PAC learning is possible

§ Almost all of these algorithms still focus on sample consistency
§ Do we expect them to work well for practical applications?

§ Probably yes for software engineering
§ Probably not for NLP, robotics, bioinformatics, ...
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Regular Inference as an Optimization Problem

Thought Experiment

Given input sample S “ ppxi,yiqq for i “ 1...100, would you rather:

1. classify all 100 examples correctly with 50 states, or

2. classify 95 examples correctly with 5 states?

Optimization Problems

1. Minimal consistent DFA

min
APDFA

|A| s.t. Apxiq “ yi @i P rms

2. Empirical risk minimization in DFAn

min
APDFA

1

m

m
ÿ

i“1

1rApxiq ‰ yis s.t. |A| ď n



Statistical Learning for Classification
Statistical Learning Setup

§ D probability distribution over Σ‹ ˆ t`1,´1u
§ H hypothesis class of functions Σ‹ Ñ t`1,´1u
§ `01 the 0-1 loss function for y, ŷ P t`1,´1u

`01pŷ,yq “
1´ signpŷyq

2
“ 1rŷ “ ys

Statistical Learning Goal

§ Find the minimizer of the average loss:

f˚ “ argmin
fPH

Epx,yq„D r`01pfpxq,yqs “ argmin
fPH

LDpf; `01q

§ From a sample S “ ppxi,yiqq with m i.i.d. examples from D

Epx,yq„D r`01pfpxq,yqs «
1

m

m
ÿ

i“1

`01pfpx
iq,yiq



ERM and VC Theory
Empirical Risk Minimization (ERM)

§ Given the sample S “ ppxi,yiqq return the hypothesis

f̂ “ argmin
fPH

1

m

m
ÿ

i“1

`01pfpx
iq,yi, q “ argmin

fPH
L̂Spf; `01q

Statistical Justification

§ Generalization bound based on VC theory: with prob. at least 1´ δ
over S (e.g. see [Mohri et al., 2012])

LDpf; `01q ď L̂Spf; `01q`O

˜

c

VCpHq logm` logp1{δq

m

¸

@f P H

§ In the case H “ DFAn:

LDpA; `01q ď L̂SpA; `01q`O

˜

c

|Σ|n logn logm` logp1{δq

m

¸

@|A| ď n



Sources of Hardness in ERM for DFA

min
APDFA

1

m

m
ÿ

i“1

`01pApx
iq,yiq s.t. |A| ď n

§ Non-convex loss: `01pApxq,yq is not convex in Apxq because of sign

§ Combinatorial search space: search over DFA is search over labelled
directed graph with constraints

§ Non-convex constraint: introducing |A| into the optimization is hard

Common Wisdom: Optimization tools that work better in practice deal
with differentiable and/or convex problems



Roadmap to a Tractable Surrogate

§ Replace by `01 by a convex upped bound

§ Make search space continuous: from DFA to WFA

§ Identify convex constraints on WFA that can prevent overfitting



Writing DFA with Matrices and Vectors

q1

0
1

q2

1
0

a

b

b

a

A “ xα,β, tAσuy

α “

„

1
0



β “

„

1
0



Aa “

„

1 0
1 0



Ab “

„

0 1
0 1



Apaabq “ αJAaAaAbβ “ 1



Weighted Finite Automata (WFA)

q1

1.2
´1

q2

0
0.5

a, 1.2
b, 2

a,´1
b,´2

a, 3.2
b, 5

a,´2
b, 0

A “ xα,β, tAσuy

α “

„

´1
0.5



β “

„

1.2
0



Aa “

„

1.2 ´1
´2 3.2



Ab “

„

2 ´2
0 5



A : Σ‹ Ñ R Apx1 ¨ ¨ ¨ xT q “ α
JAx1 ¨ ¨ ¨AxTβ



ERM for WFA is Differentiable

min
APWFA

1

m

m
ÿ

i“1

`pApxiq,yiq s.t. |A| “ n

with loss `pŷ,yq differentiable on first coordinate

Gradient Computation

§ WFA A “ xα,β, tAσuy, x P Σ
‹, y P R, can compute ∇A`pApxq,yq

§ Example with x “ abca and weights in Aa:

∇Aa`pApxq,yq “
B`

Bŷ
pApxq,yq ¨

`

∇Aaα
JAaAbAcAaβ

˘

“
B`

Bŷ
pApxq,yq ¨

´

αβJAJaA
J
cA

J
b `AJcA

J
bA

J
aαβ

J
¯

§ Can use gradient descent to “solve” ERM for WFA
§ The optimization is highly non-convex, but its commonly done in RNN
§ Since WFAn is infinite, what is a proper way to prevent overfitting?



Statistical Learning and Rademacher Complexity

§ The risk of overfitting can be controlled with generalization bounds of
the form: for any D, with prob. 1´ δ over S „ Dm

LDpf; `q ď L̂Spf; `q ` CpS,H, `q @f P H

§ Rademacher complexity provides bounds for any H “ tf : Σ‹ Ñ Ru

RmpHq “ ES„DmEσ

«

sup
fPH

1

m

m
ÿ

i“1

σifpx
iq

ff

where σi „ unifpt`1,´1uq

§ For a bounded Lipschitz loss ` with probability 1´ δ over S „ Dm

(e.g. see [Mohri et al., 2012])

LDpf; `q ď L̂Spf; `q `O

˜

RmpHq `

c

logp1{δq

m

¸

@f P H



Rademacher Complexity of WFA
§ Given a pair of Hölder conjugate integers p,q (1{p` 1{q “ 1), define

a norm on WFA given by

}A}p,q “ max

"

}α}p, }β}q, max
aPΣ

}Aa}q

*

§ Let An ĂWFAn be the class of WFA with n states given by

An “ tA PWFAn | }A}p,q ď 1u

Theorem [Balle and Mohri, 2015b]

The Rademacher complexity of An is bounded by

RmpAnq “ O

˜

Lm

m
`

c

n2|Σ| logpmq

m

¸

,

where Lm “ ESrmaxi |x
i|s.



Learning WFA with Gradient Descent

§ Solve the following ERM problem with (stochastic) projected gradient
descent:

min
APWFAn

1

m

m
ÿ

i“1

`pApxiq,yiq s.t. }A}p,q ď R

§ Control overfitting by tuning R (e.g. via cross-validation)

§ Can equally solve classification (yi P t`1,´1u) and regression
(yi P R) with differentiable loss functions

§ Risk of underfitting: unlikely that we will find the global optimum,
might get stuck in local optimum
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Hankel Matrices and Fliess’ Theorem

Given f : Σ‹ Ñ R define its Hankel matrix Hf P RΣ
‹ˆΣ‹ as

»

—

—

—

—

—

—

—

—

—

—

–

ε a b ¨¨¨ s ¨¨¨

ε fpεq fpaq fpbq
...

a fpaq fpaaq fpabq
...

b fpbq fpbaq fpbbq
...

...
p ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ fppsq
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Theorem [Fliess, 1974]

The rank of Hf is finite if and only if f is computed by a WFA, in which
case rankpHfq equals the number of states of a minimal WFA computing f



From Hankel to WFA

App1 ¨ ¨ ¨pT s1 ¨ ¨ ¨ sT 1q “ αJAp1
¨ ¨ ¨ApT

As1 ¨ ¨ ¨AsT 1β

»

—

—

—

–

s

¨

¨

¨

p ¨ ¨ fppsq ¨ ¨

¨

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

‚ ‚ ‚

¨ ¨ ¨

fi

ffi

ffi

ffi

fl

»

–

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

fi

fl

App1 ¨ ¨ ¨pTas1 ¨ ¨ ¨ sT 1q “ αJAp1
¨ ¨ ¨ApT

AaAs1 ¨ ¨ ¨AsT 1β

»

—

—

—

–

s

¨

¨

¨

p ¨ ¨ fppasq ¨ ¨

¨

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

‚ ‚ ‚

¨ ¨ ¨

fi

ffi

ffi

ffi

fl

»

–

‚ ‚ ‚

‚ ‚ ‚

‚ ‚ ‚

fi

fl

»

–

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

fi

fl

§ Algebraically: H “ PS and Ha “ PAaS, so we can learn by
Aa “ P`HaS

`

§ This is the underlying principle behind query learning and spectral
learning for WFA [Balle and Mohri, 2015a]

§ For more information, see our EMNLP’14 tutorial with A. Quattoni
and X. Carreras [Balle et al., 2014]



Learning with Hankel Matrices [Balle and Mohri, 2012]

Step 1: Learn a finite Hankel matrix over Pˆ S directly from data by
solving the convex ERM

Ĥ “ argmin
HPRPˆS

1

m

m
ÿ

i“1

`pHpxiq,yiq s.t. H P Hankel

Step 2: Extract sub-blocks Ĥε, Ĥa from the Hankel matrix Ĥ

P Ď Pε Y pPε ¨ Σq

Ĥεpp, sq “ Ĥpp, sq p P Pε, s P S

Ĥapp, sq “ Ĥppa, sq p P Pε, s P S

Step 3: Learn a WFA from the Hankel matrix using SVD

Ĥε “ UDVJ

Âa “ UJĤaVD´1



Controlling Overfitting with Hankel Matrices

§ To prevent overfitting, control number of states of resulting WFA by

Ĥ “ argmin
HPRPˆS

1

m

m
ÿ

i“1

`pHpxiq,yiq s.t. H P Hankel, rankpHq ď n

§ Since this is not convex, a usual surrogate is to use Schatten norms

Ĥ “ argmin
HPRPˆS

1

m

m
ÿ

i“1

`pHpxiq,yiq s.t. H P Hankel, }H}S,p ď R

where }H}S,p “ }ps1, . . . , snq}p and s1 ě ¨ ¨ ¨ sn ą 0 are the singular
values of H

§ These norms can be computed in polynomial time even for infinite
Hankel matrices [Balle et al., 2015]



Rademacher Complexity of Hankel Matrices
Given R ą 0 and p ě 1 define the class of infinite Hankel matrices

Hp “
!

H P RΣ
‹ˆΣ‹

ˇ

ˇ

ˇ
H P Hankel, }H}S,p ď R

)

Theorem [Balle and Mohri, 2015b]

The Rademacher complexity of H2 is bounded by

RmpH2q “ O

ˆ

R
?
m

˙

.

The Rademacher complexity of H1 is bounded by

RmpH1q “ O

ˆ

R logpmq
?
Wm

m

˙

,

whereWm “ ES
“

minsplitpSq max
 

maxp
ř

i 1rpi “ ps, maxs
ř

i 1rsi “ ss
(‰

.

Note: splitpSq contains all possible prefix-suffix splits xi “ pisi of all strings in S



Constrained vs. Regularized Optimization
§ Constrained ERM with parameter R ą 0

min
HPRPˆS

1

m

m
ÿ

i“1

`pHpxiq,yiq s.t. H P Hankel, }H}S,p ď R

§ Regularized ERM with parameter λ ą 0

min
HPRPˆS

1

m

m
ÿ

i“1

`pHpxiq,yiq ` λ}H}S,p s.t. H P Hankel

§ Regularized versions can be easier to solve and λ easier to tune

§ For example, for H2 bounds informally say that for any H

LDpH; `q ď L̂SpH; `q `O

ˆ

}H}S,2
?
m

˙

so choosing λ “ Op1{
?
mq would imply ERM minimizes a direct

upper bound on LD



Applications of Learning with Hankel Matrices

§ Max-margin taggers [Quattoni et al., 2014]
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§ Unsupervised transducers [Bailly et al., 2013b]

§ Unsupervised WCFG [Bailly et al., 2013a]



Conclusion / Open Problems / Future Work

§ It is possible to solve regular inference with machine learning,
focusing on the realistic statistical learning scenario, and still obtain
meaningful theoretical guarantees

§ In practice works very well, but convex algorithms are not always
scalable: we need good implementations

§ How to choose P and S from data in practice?

§ PAC learning of WFA for regression is still open

§ Theoretical link between finite and infinite Hankel matrices is still
weak
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