
Learning the Privacy-Utility Trade-off
with Bayesian Optimization

Borja Balle

Joint work with B. Avent, J. Gonzalez, T. Diethe and A. Paleyes

Privacy
Utility

Theory vs Practice

O

(√
d HQ;(R/δ)

nε

)

<latexit sha1_base64="9kDpveEaFLU+Unv7fLX8RADi8cg=">AAADgXicbVLbbtNAEN3WXEq4pcAbLxZVpUSKgl1UKKqQKkCUBySKIG2lOIo267Gzynptdsch0coSH8ILX8MrPPIXfAJru0h1wkhrzZ4zF8/smWSCa/S83xubzpWr165v3WjdvHX7zt329r1TneaKwYClIlXnE6pBcAkD5CjgPFNAk4mAs8nsVcmfzUFpnspPuMxglNBY8ogzihYatw/fBwIi7ASRoswE+rNCE7qBSOOO/zgIQSDtFoWRbjCnCjLNRSqLQPF4it1xe8fre5W5645/4ewcvfn64Fv69M/JeHuzH4QpyxOQyATVeuh7GY4MVciZgKIV5BoyymY0BhNDmgCqpUX/uQZhgV94iNMXvseSRvzQupImoEem2krh7lokdKNU2SPRrdBGB5povUwmNjKhONWrXAn+jxvmGB2MDJdZjiBZ3SjKhYupW67YDbkChmJpHcoUt7O5bErtftE+RKML5ALUvDmIqRpmwJroIpecpeHKkhYCF6ioBTVgQrksRzXHXAj3I5W6aO3WhK1YMp3XPOaoe+/s68vesQKYdS9HX55yAXbbPZYsZyOzqFfasoKIrNCqm0mWZd2aMWVcYbz+84Oe1y+Pt28//r7NAau/KtQE64n1nwuQcclnVHEZWnXYUhkWLaswf1VP687pXt9/0vc+WKm9JLVtkYfkEekQnzwjR+QtOSEDwsh38oP8JL8cx+k6nrNXh25uXOTcJw1zDv8C/mMsAg==</latexit>

22

Plot from J. M. Abowd “Disclosure Avoidance for Block Level Data and Protection of Confidentiality in Public Tabulations”
(CSAC Meeting, December 2018)

Example: DP-SGD

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Learning the Privacy–Utility Trade-off with Bayesian Optimization

A. Sparse Vector Technique Analysis
This section provides a proof of the privacy bound for Alg. 1 used to implement the privacy oracle P0 using in Sec. 2.3 and
Sec. 3.4. The proof is based on observing that our Alg. 1 is just a simple re-parametrization of [26, Alg. 7] where some
of the parameters have been fixed up-front. For concreteness, we reproduce [26, Alg. 7] as Alg. 3 below. The result then
follows from a direct application of [26, Thm. 4], which shows that Alg. 3 is ("1 + "2, 0)-DP.

Algorithm 3: Sparse Vector Technique ([26, Alg. 7] with "3 = 0)
Input: dataset z, queries q1, . . . , qm, sensitivity �
Hyperparameters: bound C, thresholds T1, . . . , Tm, privacy parameters "1, "2
c 0, w (?, . . . ,?) 2 {?,>}m
⇢ Lap(�/"1)
for i 2 [m] do

⌫ Lap(2C�/"2)
if qi(z) + ⌫ � Ti + ⇢ then

wi >, c c + 1
if c � C then return w

return w

Comparing Alg. 3 with the sparse vector technique used in Sec. 2.3 (Alg. 1), we see that they are virtually the same
algorithms, where we have fixed � = 1, Ti = 1/2, "1 = 1/b1 and "2 = 2C/b2. Thus, by expanding the definitions of b1
and b2 as a function of b and C, we can verify that Alg. 1 is (", 0)-DP with

" = "1 + "2 =
1

b1
+

2C

b2
=

1 + (2C)1/3

b
+

(2C)2/3(1 + 2C)1/3

b
=

(1 + (2C)1/3)(1 + (2C)2/3)

b
.

This concludes the proof.

B. Differentially Private Stochastic Optimization Algorithms
Stochastic gradient descent (SGD) is a simplification of gradient descent, where on each iteration instead of computing
the gradient for the entire dataset, it is instead estimated on the basis of a single example (or small batch of examples)
picked uniformly at random (without replacement) [8]. Adam [21] is a first-order gradient-based optimization algorithm for
stochastic objective functions, based on adaptive estimates of lower-order moments.

As a privatized version of SGD, we use a mini-batched implementation with clipped gradients and Gaussian noise similar to
that of [1]. The pseudo-code is given in Alg. 4; the only difference with the algorithm in [1] is that we sample mini-batches
of a fixed size without replacement instead of using mini-batches obtained from Poisson sampling with a fixed probability.
In the pseudo-code below, the function clipL(v) acts as the identify if kvk2 L, and otherwise returns (L/kvk2)v. This
clipping operation ensures that kclipL(v)k2 L so that the `2-sensitivity of any gradient to a change in one datapoint in z
is always bounded by L/m.

Algorithm 4: Differentially Private SGD
Input: dataset z = (z1, . . . , zn)
Hyperparameters: learning rate ⌘, mini-batch size m, number of epochs T , noise variance �2, clipping norm L
Initialize w 0
for t 2 [T] do

for k 2 [n/m] do
Sample S ⇢ [n] with |S| = m uniformly at random
Let g 1

m

P
j2S clipL(r`(zj , w)) + 2L

m N (0,�2I)

Update w w � ⌘g

return w

• 5+ hyper-parameters affecting both privacy and utility

• For convex problems can be set to achieve near-optimal rates

• For deep learning applications we don’t have (good) utility bounds

[Bassily et al. 2014; Abadi et al. 2016]

Privacy-Utility Pareto Front

1. Efficient to compute

2. Use empirical utility measurements

3. Enable fine-grained comparisons

Desiderata

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Learning the Privacy–Utility Trade-off with Bayesian Optimization

Figure 3. Far left, center left: Hypervolumes of the Pareto fronts computed by the various models, optimizers, and architectures on
the Adult and MNIST datasets (respectively) by both DPARETO and random sampling. Center right: Pareto fronts learned for MLP2
architecture on the MNIST dataset with DPARETO and random sampling, including the shared points they were both initialized with. Far

right: Adult dataset DPARETO sampled points and its Pareto front compared to larger set of random sampling points and its Pareto front.

0 10�1 100 101

�

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
ti
on

er
ro

r

MNIST Pareto Fronts
MLP1

MLP2

Figure 4. Left: Pareto fronts for combinations of models and op-
timizers on the Adult dataset. Right: Pareto fronts for different
MLP architectures on the MNIST dataset.

we compare DPARETO to the traditional naive approach of
using random sampling by computing the hypervolumes of
Pareto fronts generated by each method.

In Fig. 3, the first two plots show, for a variety of models,
how the hypervolume of the Pareto front expands as new
points are sampled. In nearly every experiment, DPARETO’s
approach yields a greater hypervolume than the experi-
ment’s random sampling analog – a direct indicator that
DPARETO has better charactarized the Pareto front. This
can be seen very clearly by examining the center right plot of
the figure, which directly shows a Pareto front of the MLP2
model with both sampling methods. Specifically, while the
random sampling method only marginally improved over
its initially seeded points, DPARETO was able to thoroughly
explore the high-privacy regime (i.e. small "). The far right
plot of the figure compares the DPARETO approach with
256 sampled points against the random sampling approach
with significantly more sampled points, 1500. While both
approaches yield similar Pareto fronts, the efficiency of
DPARETO is particularly highlighted by the points that are
not actually on the front: nearly all the points chosen by
DPARETO are close to the actual front, whereas many points
chosen by random sampling are nowhere near it.

DPARETO’s Versatility The other main purpose of these
experiments is to demonstrate the versatility of DPARETO

by comparing multiple approaches to the same problem. In
Fig. 4, the left plot shows Pareto fronts of the Adult dataset
for multiple optimizers (SGD and Adam) as well as mul-
tiple models (LogReg and SVM), and the right plot shows
Pareto fronts of the MNIST dataset for different architec-
tures (MLP1 and MLP2). With this, we can see that on the
Adult dataset, the LogReg model optimized using Adam
was nearly always better than the other model/optimizer
combinations. We can also see that on the MNIST dataset,
while both architectures performed similarly in the low-
privacy regime, the MLP2 architecture significantly outper-
formed the MLP1 architecture in the high-privacy regime.
With DPARETO, analysts and practitioners can efficiently
create these types of Pareto fronts and use them to perform
privacy–utility trade-off comparisons.

7. Conclusion
In this paper we have introduced DPARETO, a method to
empirically characterize the privacy–utility trade-off of dif-
ferentially private algorithms. We use Bayesian optimiza-
tion (BO), a state-of-the-art method for hyperparameter
optimization, to simultaneously optimize for both privacy
and utility, forming a Pareto front. Further, we showed that
the use of BO allows us to perform useful visualizations to
aid the decision making process. There are several inter-
esting directions for future work. Here we focussed on the
supervised learning setting, but the method could also be ap-
plied to, e.g. stochastic variational inference on probabilistic
models, as long as a utility function (e.g. held-out perplex-
ity) is available. The current DPARETO method uses two
independent GPs, an interesting extension would be to use
multi-output GPs. While we explored the effect of changing
the model (logistic regression vs. SVM) and the optimizer
(SGD vs. Adam) on the privacy/accuracy trade-off, it would
interesting to obtain a global Pareto front by optimizing
over these choices as well. Finally, in some settings it would
be of interest to optimize over additional criteria, such as
model size or running time.

Problem Formulation

A = {Aλ : Z → W | λ ∈ Λ}
<latexit sha1_base64="CUn8cS7i9fYIDlg1WBH2pLx6Qzk=">AAADi3icbVLdbtMwGPUafkZh0IHEDVxYmyYNqYoSpokxmLQB07jYxRB0nWiqynW+tlYdJ7KdkcjkWXgArngULoGXwUmKtHRYcnRyzmd/+U7OOOFMac/7tdJybty8dXv1TvvuvbX7DzrrD89VnEoKPRrzWF6MiQLOBPQ00xwuEgkkGnPoj+dvS71/CVKxWHzSeQLDiEwFmzBKtKVGneMgInpGCTdHBT7AgcFHIxNwe0FICryPP+NAx7iPg1f4a/lYSDhgAgenC1yMOpue61ULXwf+AmwebqDWt8c/np6N1ltuEMY0jUBoyolSA99L9NAQqRnlULSDVEFC6JxMwUwhjkDL3LL/oNGQ6S8s1LMD36NRo35goSARqKGp/CnwlmVCPIml3ULjim10IJFSeTS2laUbalkryf9pg1RP9oaGiSTVIGjdaJJybC0rzcYhk0A1zy0gVDI7G6YzIgnV9pc0ukDKQV42BzFVwwRok81SwWgcLpmUcZ1pSSypQEeEiXJUc8I4xx+JUEV7qxbsjaWy/Y5NmVbdU5sD0T2RAPNnV6uvTpmBdbtLo3w+NFltaTsIYWIjV72ZKK9CVCmmrCuM577c63puub1d+/B37RmwSaxKTXD9YP3lHMS01BMimQhtOuxViS7aNmH+cp6ug/Pnrr/jeh9s1N6geq2iJ2gDbSMfvUCH6D06Qz1E0Xf0E/1Gf5w1Z8fZd17Xpa2VxZlHqLGc478R0ytG</latexit>

Parametrized Algorithm Class

Error (Utility) Oracle

Privacy Oracle

E : Λ → [y- R]
<latexit sha1_base64="yFd9fxwOuuVIYFyEkmawDQxwenc=">AAADW3icbVJda9RAFJ1u/Kix6lapL/owtBQqLCFRilUQih/Uhz5UdNvCJpTZyd3dYWcmYWZSE4b9LeKrPvlzfPC/OEkqNLsOTDg559x7c2/uOOdMmzD8vdbzbty8dXv9jn934979B/3Nh6c6KxSFIc14ps7HRANnEoaGGQ7nuQIixhzOxvN3tX52CUqzTH4xVQ6JIFPJJowS46iL/tYH/BrHxy4gJTg2GR6Fgyi56O+EQdgcvAqiK7BzuI163x7/enpysdkL4jSjhQBpKCdaj6IwN4klyjDKYeHHhYac0DmZgp1CJsCoyrH/oDVQmq8sNbM3UUhFxz9yUBIBOrFNvwu865gUTzLlrjS4YTsViNC6EmPnFMTM9LJWk//TRoWZHCSWybwwIGlbaFJw7OZSDw+nTAE1vHKAUMVcb5jOiCLUuBF3qkDBQV12G7FNwRxoly0LyWiWLg2p5KY0ijhSgxGEybpVe8Q4x5+J1At/txVcxlrZe8+mzOjBsfuvcnCkAObPrruvd1mCm/aAimqe2LIdqR+nMHEr1LxZUdV5W8XWvoUNg1cHgzCob7jvHtG+iwG3WY3VxquB7ZdzkNNaz4liMnXb4VLlZuG7DYuW92kVnD4PohdB+Mmt2lvUnnX0BG2jPRShl+gQfUQnaIgosug7+oF+9v54nud7G621t3YV8wh1jrf1FwsCGbM=</latexit>

P : Λ → [y-∞)
<latexit sha1_base64="oyXPwVlGjlMOWU17+3SHjT4QY0c=">AAADYHicbVJNa9tAEN3Y/XDdj9gt9JD2IBICCRghpYSmhUJoC+khB5fWScAyYb0a2YtXK7E7Si2Eof+kt17b/pxe+0s6klKI7Q6smH3vzYxmdsapkhY97/dGo3nr9p27rXvt+w8ePtrsdB+f2SQzAgYiUYm5GHMLSmoYoEQFF6kBHo8VnI9n70r+/AqMlYn+jHkKo5hPtIyk4EjQZWer77x2glMKCLkTYOIMvV4gdYT5/mVnx3O9ypx1x792do63WePb01/P+5fdhhuEichi0CgUt3boeymOCm5QCgWLdpBZSLmY8QkUE0hiQJMT+s8tEOb4RYY4feN7Il7SD8nVPAY7KqqmF84uIaETJYaORqdClyrw2No8HpMy5ji1q1wJ/o8bZhgdjQqp0wxBi7pQlCmHhlNO0AmlAYEqJ4cLI6k3R0y54QJpzktVIFNgrpYbKaqCKYhldJ5pKZJwZUhzhXM0nEALGHN6F2q1OJFKOZ+4tov2bk1QxpLZey8nEm3vlB5X904MwGz/pvpml3OgafdEnM9GxbweaTsIIaI9qm5FnJd5a6YodYvCc18d9Ty3PN4hffxDigFar0paBOuB9Z8r0JOST7mROqTtoFQpLtq0Yf7qPq07Zweu/8L1PtKqvWW1tdgzts32mM9esmP2gfXZgAn2lX1nP9jPxp9mq7nZ7NbSxsZ1zBO2ZM2tvzIPHBE=</latexit>

Eg. DP-SGD

Eg. Expected
classification
error

Eg. Epsilon for
fixed delta

Pareto-Optimal Points

Hyper-parameter Space
Privacy Loss

Er
ro

r

Pareto-Optimal Points

Hyper-parameter Space
Privacy Loss

Er
ro

r

Pareto-Optimal Points

Hyper-parameter Space
Privacy Loss

Er
ro

r

Pareto-Optimal Points

Hyper-parameter Space
Privacy Loss

Er
ro

r

Pareto-Optimal Points

Hyper-parameter Space
Privacy Loss

Er
ro

r

Pareto-Optimal Points

Hyper-parameter Space
Privacy Loss

Er
ro

r

Pareto-Optimal Points

Hyper-parameter Space
Privacy Loss

Er
ro

r

Pareto-Optimal Points

Hyper-parameter Space
Privacy Loss

Er
ro

r

Pareto-Optimal Points

Hyper-parameter Space
Privacy Loss

Er
ro

r

Bayesian Optimization (BO)

• Gradient-free
optimization for black-
box functions

• Widely used in
applications (HPO in
ML, scheduling &
planning, experimental
design, etc)

Bayesian Optimization (BO)

• Gradient-free
optimization for black-
box functions

• Widely used in
applications (HPO in
ML, scheduling &
planning, experimental
design, etc)

λ⋆ = argmin
λ∈Λ

F(λ)
<latexit sha1_base64="TGEkGqWC2Y2pTh7doXDXE9iPXAA=">AAADiHicbVJdb9MwFPVWPkb56uCRF4tpUidVVQKqtj1MmgpiPOxhCLpNakrlOretVduJ7JvRysof4Jfwa3gF3vkZPOAkRVpbLDk6OefYN/fmjFIpLAbBr63t2p279+7vPKg/fPT4ydPG7rNLm2SGQ48nMjHXI2ZBCg09FCjhOjXA1EjC1Wj2ptCvbsBYkehPuEhhoNhEi7HgDD01bHQj6c0x++wii8zk9IRGiuE0SR0zEyV0PnRLC42EptF5iXP6rrmkD4aNvaAdlItugnAJ9k675HfU+frnYri73Y7ihGcKNHLJrO2HQYoDXxAFl5DXo8xCyviMTcBNIFGAZuHZf9AhzPGLiHF6EgZcrfj7HmqmwA5cOZyc7nsmpuPE+K2RluxKBaasXaiRdxaN23WtIP+n9TMcHw2c0GmGoHlVaJxJigktJk1jYYCjXHjAuBG+N8qnzDCO/n+sVIFMgrlZbcSVBVPgq+w804In8dqQ5hLnaJgnLaBiQhetujMhJf3ItM3r+5XgbyyU5lsxEWhb5z4EunVmAGYHt923u5yDn3aLq8Vs4ObVSOtRDGOft/LNqUVxb6W4wpe7oH181AraxQ46/hF2/BnwMSytLto8WH25BD0p9JQZoWOfDn9VinndJyxcz9MmuHzVDl+3gw9l1Kq1Q16Ql6RJQnJITsl7ckF6hJNv5Dv5QX7W6rWgdlg7rqzbW8szz8nKqnX/Aix3LoY=</latexit>

F : Λ ⊂ Rp → R
<latexit sha1_base64="7mCaJAcfnko16yIWReBdRKtLbmA=">AAADdXicbVLdbtMwFPZafkb56+ASgSzK0JCqLAFNDCTEBIhxsYsN6DZpKZXjnLZWHSeynZHIyuUegXdB4hYegmfgHm5xkiE1LUdydPx95yfn8wkSzpR23Z8rrfaFi5cur17pXL12/cbN7tqtQxWnksKAxjyWxwFRwJmAgWaaw3EigUQBh6Ng9rrkj05BKhaLjzpPYBiRiWBjRom20Ki7+RY/x/6eTQgJ9lUaKNDYj4ieBoF5X3xKsK/jOWDU7bmOWxledrxzp/fy99m9rwe/zvZHay3HD2OaRiA05USpE89N9NAQqRnlUHT8VEFC6IxMwEwgjkDL3KL/XKMh059ZqKcvPJdGjfgT6woSgRqaSokCr1skxONY2iM0rtBGBxIplUeBjSxHUotcCf6PO0n1eHtomEhSDYLWjcYpx1acUlYcMglU89w6hEpmZ8N0SiSh2orf6AIpB3naHMRUDROgTTRLBaNxuCBSxnWmJbGgfauIMFGOanYZ5/gDEarorNeErVgyG2/YhGnV37MvLvq7EmD2aD56fsoMrNp9GuWzoclqSTt+CGO7XNXNRHlZt2ZMGVcY13m23Xed8rhb9uNt2RywO1eFGn85sf5zDmJS8gmRTIR2O2ypRBcdu2He4j4tO4ePHe+J4x64vZ1XqLZVdAfdRxvIQ0/RDnqH9tEAUfQFfUPf0Y/Wn/bd9oP2wzq0tXKecxs1rL35FxbGKAY=</latexit>Input:

Goal:

Expensive,
non-convex,

smooth

Bayesian Optimization (BO)

• Gradient-free
optimization for black-
box functions

• Widely used in
applications (HPO in
ML, scheduling &
planning, experimental
design, etc)

λ⋆ = argmin
λ∈Λ

F(λ)
<latexit sha1_base64="TGEkGqWC2Y2pTh7doXDXE9iPXAA=">AAADiHicbVJdb9MwFPVWPkb56uCRF4tpUidVVQKqtj1MmgpiPOxhCLpNakrlOretVduJ7JvRysof4Jfwa3gF3vkZPOAkRVpbLDk6OefYN/fmjFIpLAbBr63t2p279+7vPKg/fPT4ydPG7rNLm2SGQ48nMjHXI2ZBCg09FCjhOjXA1EjC1Wj2ptCvbsBYkehPuEhhoNhEi7HgDD01bHQj6c0x++wii8zk9IRGiuE0SR0zEyV0PnRLC42EptF5iXP6rrmkD4aNvaAdlItugnAJ9k675HfU+frnYri73Y7ihGcKNHLJrO2HQYoDXxAFl5DXo8xCyviMTcBNIFGAZuHZf9AhzPGLiHF6EgZcrfj7HmqmwA5cOZyc7nsmpuPE+K2RluxKBaasXaiRdxaN23WtIP+n9TMcHw2c0GmGoHlVaJxJigktJk1jYYCjXHjAuBG+N8qnzDCO/n+sVIFMgrlZbcSVBVPgq+w804In8dqQ5hLnaJgnLaBiQhetujMhJf3ItM3r+5XgbyyU5lsxEWhb5z4EunVmAGYHt923u5yDn3aLq8Vs4ObVSOtRDGOft/LNqUVxb6W4wpe7oH181AraxQ46/hF2/BnwMSytLto8WH25BD0p9JQZoWOfDn9VinndJyxcz9MmuHzVDl+3gw9l1Kq1Q16Ql6RJQnJITsl7ckF6hJNv5Dv5QX7W6rWgdlg7rqzbW8szz8nKqnX/Aix3LoY=</latexit>

F : Λ ⊂ Rp → R
<latexit sha1_base64="7mCaJAcfnko16yIWReBdRKtLbmA=">AAADdXicbVLdbtMwFPZafkb56+ASgSzK0JCqLAFNDCTEBIhxsYsN6DZpKZXjnLZWHSeynZHIyuUegXdB4hYegmfgHm5xkiE1LUdydPx95yfn8wkSzpR23Z8rrfaFi5cur17pXL12/cbN7tqtQxWnksKAxjyWxwFRwJmAgWaaw3EigUQBh6Ng9rrkj05BKhaLjzpPYBiRiWBjRom20Ki7+RY/x/6eTQgJ9lUaKNDYj4ieBoF5X3xKsK/jOWDU7bmOWxledrxzp/fy99m9rwe/zvZHay3HD2OaRiA05USpE89N9NAQqRnlUHT8VEFC6IxMwEwgjkDL3KL/XKMh059ZqKcvPJdGjfgT6woSgRqaSokCr1skxONY2iM0rtBGBxIplUeBjSxHUotcCf6PO0n1eHtomEhSDYLWjcYpx1acUlYcMglU89w6hEpmZ8N0SiSh2orf6AIpB3naHMRUDROgTTRLBaNxuCBSxnWmJbGgfauIMFGOanYZ5/gDEarorNeErVgyG2/YhGnV37MvLvq7EmD2aD56fsoMrNp9GuWzoclqSTt+CGO7XNXNRHlZt2ZMGVcY13m23Xed8rhb9uNt2RywO1eFGn85sf5zDmJS8gmRTIR2O2ypRBcdu2He4j4tO4ePHe+J4x64vZ1XqLZVdAfdRxvIQ0/RDnqH9tEAUfQFfUPf0Y/Wn/bd9oP2wzq0tXKecxs1rL35FxbGKAY=</latexit>Input:

Goal:

Expensive,
non-convex,

smooth

Bayesian Optimization Loop:

(λR- F(λR))- X X X - (λk- F(λk))
<latexit sha1_base64="iwGSn4DImkd/v9Z3cKjJVJgXYmk=">AAADgnicbVJfb9MwEPeaAaP8WQcSL/AQbZrUoipKmCaGNKQJEOOBhyHoNqmpKte5tlZsJ7KdkcjqZ0HiG/AteIU3vg1OMqBpOcnR+ff73V3ufJOUUaV9/9dGy9m8cfPW1u32nbv37m93dh6cqySTBAYkYYm8nGAFjAoYaKoZXKYSMJ8wuJjEr0v+4gqkoon4pIsURhzPBJ1SgrWFxp3jbsisOsLjoO++/Xfp9fpuyKJEq777F42XJXGvN+7s+Z5fmbvuBNfO3skuan159O3J2Xin5YVRQjIOQhOGlRoGfqpHBktNCYNFO8wUpJjEeAZmBgkHLQuL/nGNhlx/ppGevwx8whv6oXUF5qBGphrLwt23SOROE2mP0G6FNipgrlTBJ1bJsZ6rVa4E/8cNMz09Ghkq0kyDIHWhacZcnbjljN2ISiCaFdbBRFLbm0vmWGKi7Us0qkDGQF41GzFVwRRIE80zQUkSrQwpZzrXEltQgeaYirJVc0oZcz9ioRbt/ZqwGUum+4bOqH3T9/b5Rf9UAsS9ZfVylznYafcJL+KRyeuRtsMIpnbTqpvhRZm3ZkypWxjfe3HU973y+If2ExzaGLALWElNuB5Y/zkDMSv5FEsqIrsdNlWqF227YcHqPq0758+84MDzP9hVe4Vq20KP0S7qogA9RyfoHTpDA0TQV/Qd/UA/nU3nqRM4B7W0tXEd8xA1zDn+DUsdJ0Q=</latexit>

Given k evaluations

1. Build a surrogate model for F (eg. Gaussian process)

2. Find most promising next evaluation

BO: 1-Dimensional Example

BO: 1-Dimensional Example

BO: 1-Dimensional Example

BO: 1-Dimensional Example

BO: 1-Dimensional Example

BO: 1-Dimensional Example

BO: 1-Dimensional Example

BO: 1-Dimensional Example

BO: 1-Dimensional Example

The DPareto Algorithm

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Learning the Privacy–Utility Trade-off with Bayesian Optimization

the predictive distribution of each output can be fully
characterized by their mean mj(�) and variance s2j (�)
functions, which can be computed in closed form.

3. Use the posterior distribution of the surrogate model to
form an acquisition function ↵(�; I), where I represents
the dataset D and the GP posterior conditioned on D.

4. Collect the next evaluation point �k+1 at the (numerically
estimated) global maximum of ↵(�; I).

The process is repeated until the budget to collect new lo-
cations is over. There are two key aspects of any Bayesian
optimization method: the surrogate model of the objectives
and the acquisition function ↵(�; I).

In this work we used independent GPs with a transformed
output domain to model each objective, but generalizations
with multi-output GPs [4] are possible (see Appx. E).

3.2. Acquisition with Pareto Front Hypervolume

Next we define an acquisition criterion ↵(�; I) useful to
collect new points when learning the Pareto front. Let
P = PF(V) be the Pareto front computed with the ob-
jective evaluations in I and let v† 2 Rp be some “anti-
ideal” point4. To measure the relative merit of different
Pareto fronts we use the hypervolume HVv†(P) of the
region dominated by the Pareto front P bounded by the
anti-ideal point. Mathematically this can be expressed as
HVv†(P) = µ({v 2 Rp | v � v†, 9u 2 P u � v}), where
µ denotes the standard Lebesgue measure on Rp. Hence-
forth we assume the anti-ideal point is fixed and drop it from
our notation.

Larger hypervolume means the points in the Pareto front are
closer to the ideal point (0, 0). Thus, HV(PF(V)) provides
a way to measure the quality of the Pareto front obtained
from the data in V . Furthermore, hypervolume can be used
to design acquisition functions for selecting hyperparame-
ters that will improve the Pareto front. Start by defining the
increment in the hypervolume given a new point v 2 Rp:

�PF (v) = HV(PF(V [{v}))� HV(PF(V)) .

This quantity is positive only if v lies in the set �̃ of points
non-dominated by PF(V). Therefore, the probability of

improvement (PoI) over the current Pareto front when se-
lecting a new hyperparameter � can be computed using the
model trained on I as follows:

PoI(�) = P[(f1(�), . . . , fp(�)) 2 �̃ | I] (1)

=

Z

v2�̃

pY

j=1

�j(�; vj)dvj ,

4The anti-ideal point must be dominated by all points in
PF(V). See [11] for further details.

where �j(�; ·) is the predictive Gaussian density for fj with
mean mj(�) and variance s2j (�).

The PoI in (1) accounts for the probability that a given
� 2 ⇤ has to improve the Pareto front, and it can be used
as a criterion to select new points. However, in this work,
we opt for the hypervolume-based PoI (HVPoI) due to its
superior computational and practical properties [11] . The
HVPoI is given by:

↵(�; I) = �PF (m(�)) · PoI(�), (2)

where m(�) = (m1(�), . . . ,md(�)). This acquisition
weights the probability of improving the Pareto front with a
measure of how much improvement is expected computed
using the means of the outputs. The HVPoI has been shown
to work well in practice and efficient implementations exist.

3.3. The DPARETO Algorithm

The main optimization loop of DPARETO is shown in Alg. 2.
It combines the two ingredients sketched so far: GPs for
surrogate modelling of the objective oracles, and HVPoI
as an acquisition function to select new hyperparameters.
The basic procedure is to first seed the optimization by
selecting k0 hyperparameters from ⇤ at random, and then
fit the GP models for the privacy and utility oracles based
on these points. We then find the maximum of the HVPoI
acquisition function given in Eq. (2) to obtain the next query
point, which is then added into the dataset. This is repeated
k times until the optimization budget is used up. Further
implementation details are provided in Appx. E.1.

Algorithm 2: DPARETO

Input: hyperparameter set ⇤, privacy oracle P,
error oracle E, anti-ideal point v†, number
of initial points k0, number of iterations k,
prior GP

Initialize dataset D ;
for i 2 [k0] do

Sample random point � 2 ⇤
Evaluate oracles v (P(�),E(�))
Augment dataset D D [{(�, v)}

for i 2 [k] do
Fit a GP to the transformed privacy using D
Fit a GP to the transformed utility using D
Optimize the HVPoI acquisition function in
Eq. (2) using anti-ideal point v† and obtain a
new query point �

Evaluate oracles v (P(�),E(�))
Augment dataset D D [{(�, v)}

return Pareto front PF({v | (�, v) 2 D})

• Find privacy-utility Pareto front
using multi-objective Bayesian
optimization

• Use transformed Gaussian
processes to model privacy and
error oracles

• Acquisition function optimizes
hyper-volume based probability of
improvement [Couckuyt et al. 2014]

Example: Sparse Vector Technique

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

"

2000

4000

6000

8000

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

1 � F1

0.0

0.2

0.4

0.6

0.8

10�1 100 101 102

"

0.0

0.2

0.4

0.6

0.8

1.0

1
�

F
1

Pareto front

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

Pareto inputs

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

"

2000

4000

6000

8000

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C
1 � F1

0.0

0.2

0.4

0.6

0.8

10�1 100 101 102

"

0.0

0.2

0.4

0.6

0.8

1.0

1
�

F
1

Pareto front

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

Pareto inputs

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Learning the Privacy–Utility Trade-off with Bayesian Optimization

The Pareto front of a set of points in Rp is defined as follows.

Definition 2 (Pareto Front). Let � ⇢ Rp
and u, v 2 �. We

say that u dominates v if ui vi for all i 2 [p], and we write

u � v. The Pareto front of � is the set of all non-dominated

points PF(�) = {u 2 � | v 6� u, 8 v 2 � \ {u}}.

In other words, the Pareto front contains all the points in
� where none of the coordinates can be decreased further
without increasing some of the other coordinates (while
remaining inside �). According to this definition, given a
privacy–utility trade-off problem of the form (⇤,P�,Uz)
we are interested in finding the Pareto front PF(�) of the
2-dimensional set � = {(P�(�), 1� Uz(�)) | � 2 ⇤}. The
use of 1� Uz(�) for the utility coordinate is for notational
consistency, since we use the convention that the points in
the Pareto front are those that minimize each individual di-
mension. Given this Pareto front, a decision-maker looking
to deploy DP has all the necessary information to make an
informed decision about how to trade-off privacy and utility
in their particular application.

2.2. Threat Model

In the idealized setting developed in this section, the de-
sired output is the Pareto front PF(�), which depends
on z through the utility oracle; this is also the case for
the Bayesian optimization algorithm for approximating the
Pareto front presented in Sec. 3. This warrants a discussion
about what threat model is appropriate to consider here.

DP guarantees that an adversary observing the output w =
A�(z) will not be able to infer too much about any individ-
ual record in z. The (central) threat model for DP assumes
that z is owned by a trusted curator, responsible for running
the algorithm and releasing its output to the world. When
releasing multiple outputs computed on the same private
input, the final privacy guarantees degrade with the number
of outputs according to the composition property [15].

The framework described in this section is not attempting
to prevent information leakage about z when releasing the
Pareto front. This is because our methodology is only meant
to provide a substitute for using closed-form utility guaran-
tees when selecting hyperparameters for a given DP algo-
rithm. When these guarantees are not available, one must
resort to evaluating utility empirically, and that can only
be done by giving data as input to the algorithm. This im-
plies the Pareto front PF(�) can leak information about
the dataset z, and so does any object derived from it, e.g.
hyperparameters � identifying a point in the Pareto front.

A simple way around this is to assume the existence of
a public dataset z0 which is in some sense similar to the
private dataset z on which we would like to run the algo-
rithm. Then we can use z0 to compute the Pareto front
of the algorithm, select hyperparameters �⇤ achieving a

desired privacy–utility trade-off, and release the output of
A�⇤(z). This is the setting we implicitly consider in this
paper, though other scenarios are also possible. Note that
the availability of public data is not an uncommon assump-
tion in the DP literature [20, 32, 5, 16]. In particular, this
threat model is similar to the one being used by the U.S.
Census Bureau to tune the parameters for their use of DP in
the context of the 2020 census (see Sec. 5 for more details).

2.3. Example: Sparse Vector Technique

The sparse vector technique [14] is a mechanism to privately
run m queries against a fixed sensitive database and release
under DP the indices of those queries which exceed a certain
threshold. The naming of the mechanism reflects the fact
that it is specifically designed to have good accuracy when
only a small number of queries are expected to be above
the threshold. The mechanism has found applications in a
number of problems, and several variants of the algorithm
have been proposed [26].

To illustrate our framework we use a non-interactive ver-
sion of the mechanism proposed in [26, Alg. 7]. The
mechanism is described in Alg. 1, and is tailored to an-
swer m binary queries qi : Zn ! {0, 1} with sensitivity
� = 1 and a fixed threshold T = 1/2. The privacy and
utility of the mechanism are controlled by the noise level
b and the bound C on the number of answers. Increasing
b or decreasing C yields a more private but less accurate
mechanism. Unlike in the usual setting, where the sparse
vector technique is parametrized by the target privacy ",
we modified the mechanism to takes as input a total noise
level b. This noise level is split across two parameters b1
and b2 controlling how much noise is added to the thresh-
old and to the query answers respectively3. The standard
privacy analysis of the sparse vector technique provides
the following closed-form privacy oracle for our algorithm:
P0 = (1 + (2C)1/3)(1 + (2C)2/3)b�1 (see Appx. A for
more details).

Algorithm 1: Sparse Vector Technique
Input: dataset z, queries q1, . . . , qm
Hyperparameters: noise b, bound C
c 0, w (0, . . . , 0) 2 {0, 1}m
b1 b/(1 + (2C)1/3), b2 b� b1, ⇢ Lap(b1)
for i 2 [m] do

⌫ Lap(b2)
if qi(z) + ⌫ � 1

2 + ⇢ then
wi 1, c c + 1
if c � C then return w

return w

3The split used by the algorithm is based on the privacy budget
allocation suggested in [26, Section 4.2].

[Lyu et al. 2017]

Setup
• 100 queries with 0/1 output, sensitivity 1

• 10% queries return 1 (randomly selected)

• Privacy: SVT analysis

• Error: 1 - F-score (avg. over 50 runs)

Example: Sparse Vector Technique

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

"

2000

4000

6000

8000

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

1 � F1

0.0

0.2

0.4

0.6

0.8

10�1 100 101 102

"

0.0

0.2

0.4

0.6

0.8

1.0

1
�

F
1

Pareto front

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

Pareto inputs

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

"

2000

4000

6000

8000

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

1 � F1

0.0

0.2

0.4

0.6

0.8

10�1 100 101 102

"

0.0

0.2

0.4

0.6

0.8

1.0

1
�

F
1

Pareto front

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

Pareto inputs

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

" (predicted)

1000

2000

3000

4000

5000

6000

7000

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

1 � F1 (predicted)

0.0

0.2

0.4

0.6

0.8

1.0

101 102

"

0.0

0.2

0.4

0.6

0.8

1
�

F
1

Pareto front

True Pareto

Empirical Pareto

Observation outputs

Non-dominated set �̃

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

HVPoI

Next location

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

" (predicted)

1000

2000

3000

4000

5000

6000

7000

10�2 10�1 100 101 102

b

5

10

15

20

25

30
C

1 � F1 (predicted)

0.0

0.2

0.4

0.6

0.8

1.0

101 102

"

0.0

0.2

0.4

0.6

0.8

1
�

F
1

Pareto front

True Pareto

Empirical Pareto

Observation outputs

Non-dominated set �̃

10�2 10�1 100 101 102

b

5

10

15

20

25

30

C

HVPoI

Next location

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Implementing the Oracles
Privacy Oracle

• Epsilon for fixed delta / Others DP variants / Attacks success metrics

• Closed-form expression / Numerical calculation (eg. moments accountant)

Error Oracle

• Fixed input / Distribution over inputs / Worst-case (over a set of) inputs

• On expectation / With high probability

• Exact expression / Empirical evaluation

Implementing the Oracles
Privacy Oracle

• Epsilon for fixed delta / Others DP variants / Attacks success metrics

• Closed-form expression / Numerical calculation (eg. moments accountant)

Error Oracle

• Fixed input / Distribution over inputs / Worst-case (over a set of) inputs

• On expectation / With high probability

• Exact expression / Empirical evaluation

Machine Learning Experiments

• Adult dataset (n=40K, d=123)

• Logistic regression (SGD and ADAM)

• Linear SVM (SGD)

• MNIST dataset (n=60K, d=784)

• MLP1 (1000 hidden)

• MLP2 (128-64 hidden)

10�1 100

"

0.150

0.175

0.200

0.225

0.250

0.275

0.300

C
la

ss
ifi

ca
ti
on

er
ro

r

Adult Pareto Fronts
LogReg+SGD

LogReg+ADAM

SVM+SGD

10�1 100 101

"

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
ti
on

er
ro

r

MNIST Pareto Fronts
MLP1

MLP2

10�1 100

"

0.150

0.175

0.200

0.225

0.250

0.275

0.300

C
la

ss
ifi

ca
ti
on

er
ro

r

Adult Pareto Fronts
LogReg+SGD

LogReg+ADAM

SVM+SGD

10�1 100 101

"

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
ti
on

er
ro

r

MNIST Pareto Fronts
MLP1

MLP2

DPareto vs Random Sampling

0 100 200

Sampled points

8.15

8.20

8.25

8.30

8.35

P
F

hy
p
er

vo
lu

m
e

Hypervolume Evolution

LogReg+SGD (RS)

LogReg+SGD (BO)

LogReg+ADAM (RS)

LogReg+ADAM (BO)

SVM+SGD (RS)

SVM+SGD (BO)

0 100 200

Sampled points

7.0

7.5

8.0

8.5

9.0

P
F

hy
p
er

vo
lu

m
e

Hypervolume Evolution

MLP1 (RS)

MLP1 (BO)

MLP2 (RS)

MLP2 (BO)

10�1 100 101

"

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
ti
on

er
ro

r

MLP2 Pareto Fronts

Initial

+256 RS

+256 BO

10�1 100 101

"

0.16

0.18

0.20

0.22

0.24

C
la

ss
ifi

ca
ti
on

er
ro

r

LogReg+SGD Samples
1500 RS

256 BO

Conclusion
• Empirical privacy-utility trade-off evaluation enables application-specific

decisions

• Bayesian optimization provides computationally efficient method to
recover the Pareto front (esp. with large number of hyper-parameters)

Future work:

• Address leakage in Pareto front (when error oracle is input-specific)

• Include further criteria (eg. running time of parametrized algorithm)

