Learning the Privacy-Utility Trade-off with Bayesian Optimization

Joint work with B. Avent, J. Gonzalez, T. Diethe and A. Paleyes

Borja Balle

Privacy

Theory vs Practice

Plot from J. M. Abowd "Disclosure Avoidance for Block Level Data and Protection of Confidentiality in Public Tabulations" (CSAC Meeting, December 2018)

Example: DP-SGD

Input: dataset $z = (z_1, \ldots, z_n)$ **Hyperparameters:** learning rate η , mini-batch size m, number of epochs T, noise variance σ^2 , clipping norm L Initialize $w \leftarrow 0$ for $t \in [T]$ do for $k \in [n/m]$ do Sample $S \subset [n]$ with |S| = m uniformly at random Let $g \leftarrow \frac{1}{m} \sum_{j \in S} \operatorname{clip}_L(\nabla \ell(z_j, w)) + \frac{2L}{m} \mathcal{N}(0, \sigma^2 I)$ Update $w \leftarrow w - \eta g$

return w

- 5+ hyper-parameters affecting both privacy and utility
- For convex problems can be set to achieve near-optimal rates
- For deep learning applications we don't have (good) utility bounds

[Bassily et al. 2014; Abadi et al. 2016]

Privacy-Utility Pareto Front

Desiderata

- 1. Efficient to compute
- 2. Use empirical utility measurements
- 3. Enable fine-grained comparisons

Parametrized Algorithm Class

$$\mathcal{A} = \{A_{\lambda}: Z \to W$$

Error (Utility) Oracle

 $\mathsf{E}: \Lambda \to [0, 1]$

Privacy Oracle

 $P: \Lambda \rightarrow [0, \infty)$

Problem Formulation

 $\lambda \in \Lambda$

Eg. DP-SGD

Eg. Expected classification error

Eg. Epsilon for fixed delta

Hyper-parameter Space

Error

Hyper-parameter Space

Error

Hyper-parameter Space

Hyper-parameter Space

Hyper-parameter Space

Hyper-parameter Space

Hyper-parameter Space

Hyper-parameter Space

Hyper-parameter Space

Bayesian Optimization (BO)

- Gradient-free optimization for blackbox functions
- Widely used in applications (HPO in ML, scheduling & planning, experimental design, etc)

Bayesian Optimization (BO)

- Gradient-free optimization for blackbox functions
- Widely used in applications (HPO in ML, scheduling & planning, experimental design, etc)

Input: $F: \Lambda \subset \mathbb{R}^p \to \mathbb{R}$

Expensive, non-convex, smooth

Bayesian Optimization (BO)

- Gradient-free optimization for blackbox functions
- Widely used in applications (HPO in ML, scheduling & planning, experimental design, etc)

Input: $F: \Lambda \subset \mathbb{R}^p \to \mathbb{R}$

Expensive, non-convex, smooth

<u>Goal</u>: $\lambda^* = \operatorname{argmin} F(\lambda)$ $\lambda \in \Lambda$

Bayesian Optimization Loop:

Given k evaluations $(\lambda_1, F(\lambda_1)), \ldots, (\lambda_k, F(\lambda_k))$

- 1. Build a surrogate model for F (eg. Gaussian process)
- 2. Find most promising next evaluation

The DPareto Algorithm

- Find privacy-utility Pareto front using *multi-objective* Bayesian optimization
- Use transformed Gaussian processes to model privacy and error oracles
- Acquisition function optimizes hyper-volume based probability of improvement [Couckuyt et al. 2014]

- **Input:** hyperparameter set Λ , privacy oracle P, error oracle E, anti-ideal point v^{\dagger} , number of initial points k_0 , number of iterations k, prior GP Initialize dataset $\mathcal{D} \leftarrow \emptyset$ for $i \in [k_0]$ do Sample random point $\lambda \in \Lambda$ Evaluate oracles $v \leftarrow (\mathsf{P}(\lambda), \mathsf{E}(\lambda))$ Augment dataset $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\lambda, v)\}$ for $i \in [k]$ do Fit a GP to the transformed privacy using \mathcal{D} Fit a GP to the transformed utility using ${\cal D}$ Optimize the HVPoI acquisition function in Eq. (2) using anti-ideal point v^{\dagger} and obtain a new query point λ Evaluate oracles $v \leftarrow (\mathsf{P}(\lambda), \mathsf{E}(\lambda))$
 - Augment dataset $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\lambda, v)\}$

return *Pareto front* $\mathcal{PF}(\{v \mid (\lambda, v) \in \mathcal{D}\})$

Example: Sparse Vector Technique

Input: dataset z, queries q_1, \ldots, q_m Hyperparameters: noise b, bound C $c \leftarrow 0, w \leftarrow (0, \dots, 0) \in \{0, 1\}^m$ $b_1 \leftarrow b/(1 + (2C)^{1/3}), b_2 \leftarrow b - b_1, \rho \leftarrow Lap(b_1)$ for $i \in [m]$ do $\nu \leftarrow \mathsf{Lap}(b_2)$ if $q_i(z) + \nu \geq \frac{1}{2} + \rho$ then $w_i \leftarrow 1, c \leftarrow c+1$ if $c \ge C$ then return wreturn w [Lyu et al. 2017]

Setup

- 100 queries with 0/1 output, sensitivity 1 ullet
- 10% queries return 1 (randor ly selected) lacksquare
- Privacy: SVT analysis \bullet
- Error: 1 F-score (avg. over 50 runs) lacksquare

Example: Sparse Vector Technique

Implementing the Oracles

Privacy Oracle

- Epsilon for fixed delta / Others DP variants / Attacks success metrics
- Closed-form expression / Numerical calculation (eg. moments accountant)

Error Oracle

- Fixed input / Distribution over inputs / Worst-case (over a set of) inputs
- On expectation / With high probability
- Exact expression / Empirical evaluation

Implementing the Oracles

Privacy Oracle

Error Oracle

- On expectation / With high probability \bullet
- Exact expression / Empirical evaluation

Epsilon for fixed delta / Others DP variants / Attacks success metrics

Closed-form expression / Numerical calculation (eg. moments accountant)

Fixed input / Distribution over inputs / Worst-case (over a set of) inputs

Machine Learning Experiments

- Adult dataset (n=40K, d=123)
 - Logistic regression (SGD and ADAM)
 - Linear SVM (SGD)
- MNIST dataset (n=60K, d=784)
 - MLP1 (1000 hidden)
 - MLP2 (128-64 hidden)

DPareto vs Random Sampling

Conclusion

- Empirical privacy-utility trade-off evaluation enables application-specific decisions
- Bayesian optimization provides computationally efficient method to recover the Pareto front (esp. with large number of hyper-parameters)
- **Future work:**
 - Address leakage in Pareto front (when error oracle is input-specific)
 - Include further criteria (eg. running time of parametrized algorithm)