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optimization of frequency EEG microstates 
enables attention LSTM framework to classify 
distinct temporal cortical communications 
of different cognitive tasks
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Abstract 

Temporal analysis of global cortical communication of cognitive tasks in coarse EEG information is still challenging 
due to the underlying complex neural mechanisms. This study proposes an attention-based time-series deep learning 
framework that processes fMRI functional connectivity optimized quasi-stable frequency microstates for classifying 
distinct temporal cortical communications of the cognitive task. Seventy volunteers were subjected to visual target 
detection tasks, and their electroencephalogram (EEG) and functional MRI (fMRI) were acquired simultaneously. At 
first, the acquired EEG information was preprocessed and bandpass to delta, theta, alpha, beta, and gamma bands 
and then subjected to quasi-stable frequency-microstate estimation. Subsequently, time-series elicitation of each 
frequency microstates is optimized with graph theory measures of simultaneously eliciting fMRI functional connectiv-
ity between frontal, parietal, and temporal cortices. The distinct neural mechanisms associated with each optimized 
frequency-microstate were analyzed using microstate-informed fMRI. Finally, these optimized, quasi-stable frequency 
microstates were employed to train and validate the attention-based Long Short-Term Memory (LSTM) time-series 
architecture for classifying distinct temporal cortical communications of the target from other cognitive tasks. The 
temporal, sliding input sampling windows were chosen between 180 to 750 ms/segment based on the stability of 
transition probabilities of the optimized microstates. The results revealed 12 distinct frequency microstates capa-
ble of deciphering target detections’ temporal cortical communications from other task engagements. Particularly, 
fMRI functional connectivity measures of target engagement were observed significantly correlated with the right-
diagonal delta (r = 0.31), anterior–posterior theta (r = 0.35), left–right theta (r = − 0.32), alpha (r = − 0.31) microstates. 
Further, neuro-vascular information of microstate-informed fMRI analysis revealed the association of delta/theta and 
alpha/beta microstates with cortical communications and local neural processing, respectively. The classification 
accuracies of the attention-based LSTM were higher than the traditional LSTM architectures, particularly the frame-
works that sampled the EEG data with a temporal width of 300 ms/segment. In conclusion, the study demonstrates 
reliable temporal classifications of global cortical communication of distinct tasks using an attention-based LSTM 
utilizing fMRI functional connectivity optimized quasi-stable frequency microstates.
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1  Introduction
1.1 � Decoding distant cortical communications 

from cortical EEG
The human brain dynamically engages distinct neural 
populations between distant brain regions, and their spa-
tiotemporal oscillations often modulate systematically 
with behavioral and cognitive tasks. The synchrony or 
lack thereof between remote brain regions brings effec-
tive global brain communication, functional connectivity 
for information processing. Many researchers [25, 31, 35] 
employed simultaneous EEG information acquired with 
fMRI imaging to understand these functional connec-
tivities, neural origins, and correlated brain states. These 
researches revealed that the elicitation of local neural 
systems is observed as high-frequency dynamics in EEG 
cortical oscillations. Cortical high-frequency gamma 
oscillation mainly explains local high-level neural infor-
mation and positively correlates with the fMRI BOLD 
strength. Further, the distant cortical and long-range 
coordination emerges as the lower EEG cortical fre-
quency oscillation [9]. The alpha and beta power modu-
late the BOLD response’s latency and strength to gamma 
power changes [34]. Many researchers [2, 22, 40] have 
recently observed multi-frequency cortical EEG inter-
action explaining hemodynamic task elicitation better 
than single EEG power information. JC Pang et  al. [44] 
revealed that the inverse correlation of alpha and BOLD 
originates from high- and low-frequency components of 
the same underlying neural engagement caused by mod-
ulation in corticothalamic and intra-thalamic feedback. 
Despite these clear insights of distinct global and local 
neural processing associated with every task engagement, 
decoding their temporal dynamics computationally from 
spatially coarse-grained cortical times-series EEG infor-
mation is still challenging.

1.2 � Microstates and global cortical communication
Microstates are the cluster centers of EEG information 
and are unique in every cognitive task engagement in 
healthy and disease populations. Every microstate topog-
raphy is associated with a "quasi-stable" functional state 
[16, 36], explaining the brain’s specific neural interac-
tion. These quasi-stable patterns span around 100  ms 
and are the most robust approach to bringing distant 
functional communication in cortical EEG information. 
Many researchers [24, 64] observed that the time course 
of microstate metrics, when correlated with the fMRI 
BOLD signal, reveals functional networks similar to the 

resting-state networks. Further, the microstate dynam-
ics are observed to measure transitions between global 
cortical communications characterized by specific local 
neural alpha inhibitions [12, 23, 38, 56]. The traditional 
microstate estimation employs the EEG frequency range 
[30, 45] of 2–20  Hz. Hence, their time-series dynamics 
are primarily influenced by the cortical alpha inhibitory/
excitatory modulations [37]. However, the cognitive task 
engagement’s distant and local cortical communication 
manifests through other EEG rhythms [18, 49]. Thus, the 
task-induced modulation of cortical communication and 
associated local neural engagement is manifested as a 
combination of different frequencies [4]. More recently, 
the beta-band and the coverage feature of the EEG 
microstate analysis have been revealed as the essential 
features for classifying epilepsy and PNES patients with 
reasonably high accuracy and precision [3].

1.3 � Deep learning approaches for temporal EEG analysis
The EEG time-series information is higher-dimensional, 
and the cognitive information is spread across its time-
lines. Hence, the feature information derived from a sin-
gle time point of EEG time-series data is inadequate to 
explain any cognitive process. Thus, Recurrent Neural 
networks (RNN) perform better in extracting sequential 
information embedded in higher dimensional EEG time-
series information. However, the traditional RNN system 
suffers in learning long-term dynamics due to vanishing/
exploding gradient problems. Long Short-Term Memory 
(LSTM) architecture addresses this exploding gradient 
obstacle by learning both long- and short-term depend-
encies. Recently, the attention mechanism has been intro-
duced [55] to improve the performance of deep learning 
models; it highlights the more informative feature and 
subsequently gives higher weights to the corresponding 
original feature sequence. It has been embedded with the 
LSTM architecture in several EEG studies [21, 28, 48, 61, 
62, 66, 67] by effectively selecting the feature information 
and observed with significantly improved efficiency and 
performance accuracy of deep learning systems.

1.4 � Present study
The present study proposes an attention-based LSTM 
computational model that employs optimized frequency 
microstates to decipher the distant cortical commu-
nication of visual target detection tasks. The temporal 
dynamics of the frequency microstate metrics are cor-
related with fMRI hemodynamic functional connectivity 
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measures to optimize the cortical EEG quasi-stable fre-
quency patterns with the task’s local/global brain com-
munication. The hemodynamic functional connectivity 
is assessed by employing the graph-theoretical analysis 
on simultaneously acquired fMRI information. The sig-
nificantly correlated frequency microstates are further 
subjected to the robust correlation analysis to understand 
their multi-frequency coupling elicited during intercor-
tical interaction during the task engagement. The local 
and global neural mechanisms underlying these fre-
quency quasi-stable microstates were further estimated 
through EEG-informed fMRI analysis. Finally, a hybrid 
deep learning framework consisting of LSTM with an 
attention mechanism is employed to classify the target 
detection task engagement from the temporal dynam-
ics of these optimized frequency microstate quasi-stable 
patterns. The performance metrics such as precision, 
accuracy, and recall are estimated for all deep learning 
architectures and validated using a tenfold cross-valida-
tion approach.

2 � Methods and materials
2.1 � Participants and task design
Seventy healthy right-handed volunteers (30 males and 
40 females; mean age: 23 years; age range, 20–32 years) 
were selected from the academic environment. All par-
ticipants gave written informed consent and did not 
have psychiatric or neurological disorders or medi-
cation.  The experiment was conducted following the 

World Medical Association (Declaration of Helsinki), 
and the local ethical committee approved all measure-
ments. The vision of participants was corrected using 
MR-compatible lenses whenever required.

These participants underwent the task paradigm 
(Fig.  1) designed to perform three tasks. They are tar-
get detection, distractor detection, and fixation identi-
fication. For this purpose, the multiple distinct shapes 
(squares, circles, stars, and triangles) with primary 
colors (experimental conditions, stimuli) were shown 
at the beginning (called ’Targets stimulus’). Then vol-
unteers were sequentially shown a single stimulus, one 
at a time, and asked whether it was part of earlier dis-
played target stimuli collections. The volunteer must 
click the right thumb button whenever he identifies 
the target stimulus. Only 30 percent of stimuli were 
selected from earlier displayed stimuli, the targets, and 
randomly distributed among the "Distractor Stimulus". 
The correct identification of the target stimulus invokes 
the elicitation of distinct neural mechanisms compared 
to the identification of distractors. Each sequential 
stimulus was presented for the duration of 3000  ms. 
The paradigm consisted of five trials. Each trial started 
with a different target stimuli collection, and 105 single 
stimuli were subsequently presented for target/distrac-
tor identification. Among 105 stimuli, only 32 were tar-
get stimuli and presented randomly. A fixation stimulus 
followed each stimulus; a single black-colored cross 
in the slide’s center was presented for 3  s. These task 

Fig. 1  Schematic of task paradigm design
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stimuli are projected onto MR-compatible lenses fitted 
on the head coil inside MRI.

2.2 � Simultaneous EEG–fMRI acquisition and preprocessing
In the present study, simultaneous EEG–fMRI data 
acquisition is carried out using a 3T Siemens Magnetom 
Skyra scanner (Siemens, Erlangen) and  MR-compatible 
32-channel Brain Amp system with an EEG cap. EEG 
signals are recorded at a sampling rate of 5 kHz, and the 
impedance of all scalp electrodes is maintained below 
five kOhms throughout the recording.  The fMRI were 
acquired using Eco Planar Imaging (EPI) sequence with 
TR = 3000  ms; TE = 36  ms; voxel size = 3.6*3.6*3.0  mm; 
matrix = 64*64; FoV read = 230  mm; flip angle = 90°, 
36 axial slices. The axial slices are acquired parallel 
to the anterior–posterior (AC–PC) line in an inter-
leaving manner with a slice thickness of 3.0  mm. The 
high-resolution structural images of the brain are 
acquired using T1 MPRAGE sequence with param-
eters, voxel size = 1.0*1.0*1.0  mm; TR = 2000  ms; flip 
angle = 90°; FoV = 240  mm; matrix = 512*512; slice 
thickness = 1.0  mm, 160 axial slices. The axial slices are 
acquired parallel to the anterior–posterior (AC–PC) 
line in an interleaving manner with a slice thickness of 
5.0 mm.

EEG data acquired simultaneously inside the MRI 
scanner are initially subjected to the FMRIB plugin of 
EEGLAB to remove the MRI-related artifacts such as 
gradient switching and cardio ballistic artifacts. The gra-
dient artifact removal process employed FASTR (FMRI 
Artifact Slice Template Removal) tool [20, 42]. It aligned 
all the artifact slices to correct any slight jitter in the exact 
location of the slice-timing events, interpolating and 
shifting each artifact until the correlation was maximized 
between data and a reference artifact (the first artifact in 
the data). The second stage of FASTR [5] computed an 
average template for the cardio ballistic artifact. It sub-
tracted this template from the center contaminated data 
by taking a moving window average of slice artifacts. QRS 
detection utilizes combined adaptive thresholding [11] 
and the  Teager  energy operator [27], followed by a cor-
rection algorithm to detect heartbeats robustly for false 
positives and negatives and remove the pulse artifacts by 
using an optimal basis set for the number of PCs 3.

Further, Harvard Automated Processing Pipeline 
(HAPPE) [14] is employed for noise-free time–fre-
quency analyses using EEGLAB (MathWorks). MR and 
CB artifact corrected EEG data are subjected to the 
0.1  Hz high-pass and 57  Hz low-pass filtering followed 
by ICA decomposition using all the EEG channels. The 
electrical noise is removed using the Clean Line pro-
gram (Mullen, 2012) through the multi-taper regression 
approach implemented in EEGLAB. The bad channels 

are identified by evaluating the normed joint probability 
of the average log power of all the selected channels and 
removed for the probability of more than three standard 
deviations from the mean for further analyses. A wave-
let-enhanced ICA (W-ICA) approach removes eye and 
muscle-generated artifacts, high-amplitude artifacts, 
and signal discontinuities from EEG data. This approach 
of W-ICA followed by ICA improves the resulting ICA 
decomposition of the EEG data [63]. A machine-learning 
algorithm MARA (Multiple Artifact Rejection Algo-
rithm) [59] evaluates the ICA-derived components for 
automated component rejection for artifact probabilities 
greater than 0.5.

Further, artifact rejected data are segmented based on 
event markers. The artifact-corrected datasets were sub-
sequently  downsampled  to 250  Hz and re-referenced 
to the common average reference and bandpass filtered 
from 1 to 48 Hz ((1–4) Hz for delta, (4–8) Hz for theta, 
(9–14) Hz for an alpha, (15–35) Hz for beta and (35–48) 
Hz for gamma)). Finally, all the participants’ artifact cor-
rected data are then segregated specific to the target, 
distractor, and fixation blocks.  Further, simultaneously 
acquired fMRI data are preprocessed using Statistical 
Parametric Mapping version 12. The information is cor-
rected for slice-timing differences, spatially realigned, 
and excluded if movement exceeds 3  mm. It follows by 
registering the functional scans to standard MNI tem-
plate space. Further, artifact-corrected images are sub-
jected to spatially smoothing with a 5*5*5 mm full-width 
half-maximum Gaussian kernel.

2.3 � Estimation of frequency‑microstates and their 
optimization with task’s cortical communications

The present study develops a computational framework 
that classifies distinct task engagement’s temporal global 
cortical communication through unique temporal EEG 
quasi-stable information that decodes the neural basis 
of the distant cortical communications. Figure 2 explains 
these processes in detail. The following section will elab-
orate on each one of these steps in detail.

At first, artifact-corrected EEG data are bandpass fil-
tered to segregate it into frequency-band limited data 
comprising (1–4) Hz for delta, (4–8) Hz for theta, (9–14) 
Hz for an alpha, (15–35) Hz for beta and (35–48) Hz for 
gamma. Then, each frequency information’s Global Field 
Power (GFP) is computed and subjected to the modi-
fied K-means clustering algorithm [46] to identify every 
frequency-microstate topographic prototype. A detailed 
description of this estimation is given in Additional file 1: 
Section S1. Then, each frequency-microstate prototype 
is back fitted in every individual’s data and estimated re-
expressed sequences of microstate classes. Finally, sta-
tistics about the sequence of microstate classes, such as 
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their frequency of occurrence or average duration, are 
calculated. This quasi-stable frequency-microstate pat-
terns elicitation information is subsequently mapped 
with global functional connectivity of each task engage-
ment assessed from simultaneously acquired fMRI 
information.

Simultaneously, the task’s neural sources are identified 
from simultaneously acquired fMRI information employ-
ing the General Linear Model-based (GLM) analysis. At 
the subject level analysis, BOLD responses of each task 
engagement (target, distractor, and fixation) are mod-
eled by a canonical hemodynamic response function with 
temporal and dispersion derivatives with six realignment 
parameters for each run. In second-level GLM modeling, 
group average maps were computed using one-sample 
t-tests, cluster corrected (p < 0.05) across subjects. Sub-
sequently, the second-level GLM model results for every 
task engagement are passed as regions of interest (ROI) 

to graph theory analysis to estimate the global/local func-
tional connectivity [58]. A detailed description of this 
estimation is given in the Additional file  1: Section S2. 
Finally, the graph theory metrics such as global and local 
efficiency of the functionally connected regions are esti-
mated for each subject, and the ROI-to-ROI connectiv-
ity matrix is thresholded at p-FDR < 0.05 in a two-sided 
analysis.

Finally, these tasks’ global cortical communications 
information estimated from fMRI graph theoretical 
measures are utilized to optimize and identify the rele-
vant cortical quasi-stable frequency EEG elicitations that 
correspond to the task engagement. For this purpose, the 
number of occurrences of each delta, theta, alpha, beta, 
and gamma EEG microstates of every individual dur-
ing task engagements (target, distractor, and fixation) is 
subjected to the robust correlation with global functional 
connectivities metrics measured from the simultaneously 

Fig. 2  Methodological framework of the study
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measured fMRI information. This study further validated 
these significantly correlating frequency-microstates by 
subjecting them to the EEG-informed fMRI analysis [1, 
19] and studying their neural mechanisms. Since the fre-
quency microstates that correlate with fMRI functional 
connectivity metrics are different for target, distractor, 
and fixation, three separate EEG-informed fMRI models 
were constructed for every task engagement. A detailed 
description of this estimation is given in the Additional 
file 1: Section S3.

2.4 � Attention‑based LSTM model and validation
This study aims to develop an attention-based LSTM 
framework to classify the global cortical communication 
(estimated using fMRI functional connectivity optimized 
frequency quasi-stable oscillations) associated with 
global brain communications. For this purpose, each fre-
quency-microstate strongly associated with fMRI func-
tional connectivity measures was correlated with every 
individual preprocessed EEG information. Then, the fea-
ture vector consisting of the correlation value for each 
quasi-stable frequency microstates belonging to every 
task engagement is formed and used as a training, test-
ing, and validation dataset for the attention-based LSTM 
deep learning model. The attention-based LSTM model 
employed in this study is illustrated in Fig. 3.

LSTM has been a popular recurrent neural network for 
learning sequential features in time-series data and clas-
sifying EEG information [41, 57]. However, the standard 
LSTM is incapable of detecting important parts for clas-
sification. The attention mechanism is recently conceptu-
alized [55] and integrated with the LSTM framework to 
overcome this issue. The attention mechanism improves 
the ability of LSTM by concentrating on time fragments 
with the most discriminative information in EEG time-
series. It helps to classify the data that involve remember-
ing and aggregating feature embeddings in time-series 
information [65]. A detailed description of the LSTM 
model and attention mechanism is explained below.

The LSTM architecture consists of interconnected cells 
that hold the memory information through which the 
input data are processed to evaluate the output results. 
The cells have a common cell state, keeping long-term 
dependencies along the entire LSTM chain of cells. In 
LSTM, input information flow is controlled by the input 
gate (it) and forget gate ( ft ) and allows the network to 
decide whether to forget the previous state ( Ct−1 ) or 
update the current state ( Ct ) with new information. Fur-
ther, each cell’s result is modulated by an output gate 
( ot ), which lets the cell compute its output based on the 
updated information.  The function of LSTM cell archi-
tecture is calculated as:

Fig. 3  Schematic diagram of Attention-based LSTM deep learning framework adopted in the study. ’T’ represents the temporal, sliding input 
sampling window size and is chosen between 180 to 750 ms/segment associated with the specific number of cells ranging from 4 to 16, based on 
the stability of transition probabilities of the optimized microstates
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where  σ(x) = 1
1+e−x , tanh(x) = 2

1+e−2x − 1.  ht, 
Ct-1 and xt are the hidden state, cell state and input passed 
to the architecture at time step t. Wf, Wi, Wc,Wo are the 
weights, and bf, bi, bc, and bo are the biases.

2.4.1 � Attention mechanism
The core concept of the attention mechanism is to simu-
late the human attention mechanism to improve the per-
formance of deep learning [39] by utilizing the weighting 
parameters of the elements in the input sequence to gen-
erate the output sequence. It is carried out by multiplying 
the hidden output states by trainable weights, capturing 
more discriminative task-related features, and can be 
expressed as:

where hi  is the output hidden state vector for 
the ith LSTM cell corresponding to the ith input, and L is 
the number of cells in each recurrent layer of the LSTM 
network. To capture the importance of each hidden state, 
the attention mechanism is defined as follows:

where vector v is the attention layer’s output, and Ws and 
bs are trainable parameters.

This study uses all 12 quasi-stable frequency micro-
states (correlated with task engagement’s neural mecha-
nisms) as input information to train attention-based 
LSTM models. As mentioned in the methods, 70 volun-
teers participated in the study and performed target iden-
tification, distractor identification, and fixation (rest). 
Each paradigm involved 32 blocks of the target, 62 blocks 
of the distractor, and 94 blocks of fixation. More distrac-
tors and fixation are needed to avoid the expectancy 
aspect of cognitive engagement. For this, 32-channel 

(1)it = σ(Wi.[ht−1, xt]+ bi),

(2)ft = σ(Wf .[ht−1, xt]+ bf ),

(3)Ct = ft ∗ Ct−1 + it ∗ tanh(Wc.[ht−1, xt]+ bc),

(4)ot = σ(Wo.[ht−1, xt]+ bo),

(5)ht = ot ∗ tanh(Ct),

(6)hi = LSTM(si), i ∈ [1, L],

(7)ui = tanh(Wshi + bs),

(8)αi =
exp(ui)

∑

j exp
(

uj
) ,

(9)v =

∑

i

αihi,

EEG is employed to acquire the data with a 5k sampling 
rate and subsampled to 250  Hz during preprocessing. 
Each task engagement block was carried out for 3 s; 750 
feature vectors were staggered for every task block. The 
32nd channel data are ECG, hence not included for pro-
cessing. Accordingly, each volunteer will have a 750 × 31 
dataset at every block. Equal numbers, 32 blocks from 
each target, distractor, and fixation are selected for train-
ing. Selecting distractor and fixation from many blocks 
is done randomly to avoid training bias. Hence, each 
volunteer had selected data with a size of 72,000 × 31 
(24,000 × 31 for every task engagement). The pre-
processed EEG data of the complete 70 volunteer set 
(50,40,000 × 31) are initially subjected to the correlation 
with all the 12 significant frequency microstates, result-
ing in feature vectors with the size of 50,40,000 × 12. 
Each feature vector consists of the correlation value for 
each one of the quasi-stable frequency microstate infor-
mation belonging to every task engagement is formed. 
The feature vectors are combined across task blocks, 
and distinct segregation of input feature vectors belong-
ing to every task block was explored. For this, the study 
independently employed different attention-based 
LSTM architectures in input layers with 4 to 16-LSTM 
cells. This enabled analyzing the effect of temporal, slid-
ing sampling window width on the performance of deep 
learning architectures. As every task stimulus last for 
3  s, choosing different deep learning architectures with 
LSTM nodes of 4 to 16 allowed the EEG sliding temporal 
window to be 750  ms to 180  ms. The final LSTM layer 
was ensued by an attention layer, which was succeeded 
by a fully connected layer with a sigmoid activation func-
tion to predict the probability of each task engagement. 
Finally, to estimate the efficacy of attention mechanisms 
in the original LSTM system, all attention-based LSTM 
architectures were compared with their attention coun-
terpart.  The tuning parameters were applied after each 
LSTM layer and optimized the weight matrix L2 regulari-
zation coefficient of each LSTM layer for optimization. 
Finally, hyper-parameter such as learning rate was tuned 
for the stochastic Adam optimizer. The final optimized 
tuned parameter that performed better is tabulated in 
Table 1.

2.4.2 � Validation
Finally, the attention-based LSTM architecture is vali-
dated by employing a tenfold cross-validation approach 
with no overlap of training and testing segments. True 
positive (TP), true negative (TN), false negative (FN), 
and false positive (FP) were used to calculate the perfor-
mance metrics. They are formulated as Precision = TP/
(TP + FP), Accuracy = (TP + TN)/(TP + TN + FP + FN) 
and Recall = TP/(TP + FN).
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3 � Results
The present study presents the time-series computa-
tional frameworks that classify different task engagement 
based on temporal modulation of distant brain com-
munications through optimized frequency EEG micro-
states. The frequency EEG microstates were optimized 
by associating them with simultaneously eliciting distant 
hemodynamic functional connectivity measures. Further, 
the study explored the EEG-informed fMRI approach 
employed to understand the insights into the neuronal 
mechanisms related to frequency microstates that cor-
relate with global task communications.  The following 
sections present the results of each of the above steps in 
detail.

3.1 � Frontal–parietal–temporal regions interaction 
during task engagements

The neural sources associated with each task engage-
ment are assessed through fMRI GLM models with the 
double-sided t-test of p < 0.5, FDR corrected. The results 
suggest that target engagement enhanced the hemo-
dynamic response in the frontal [frontal orbital cortex 
(FOC), frontal pole (FP), superior frontal gyrus (SFG)], 
parietal [angular gyrus (AG), Precuneus cortex (PC)], 
and temporal [Inferior and middle temporal Gyrus (ITG, 
MTG)] cortices. Further, it involves significant engage-
ment of the cingulate gyrus (CG), lateral occipital cortex, 
occipital pole (OP), paracingulate gyrus, and insular cor-
tex (IC) regions. The neural correlates of distractor and 
fixation have also revealed significantly different inter-
cortical engagement. The detailed list of neural correlates 
of each task engagement is tabulated in Additional file 1: 
Table S1.

This distinct inter-cortical communication during each 
task engagement is further supported by the graph the-
oretical functional connectivity metrics such as global 
(GE) and local efficiency (LE). The target engagement sig-
nificantly engaged inter and intra-cortical communica-
tion at frontal cortex (FP [GE:0.893, LE:0.89], FOC [GE: 

0.886, LE:0.89], and SFG [GE:0.886, LE:0.894]), parietal 
cortex (left AG [GE:0.872, LE:0.893], right AG [GE:0.9, 
LE:0.887], PC [GE:0.87, LE:0.894]) and temporal corti-
cal regions (ITG [GE: 0.88, LE: 0.889], MTG [GE:0.889, 
LE: 0.891], temporal occipital fusiform cortex (TOFC) 
[GE:0.88, LE:0.89]) at p < 0.05 with FDR correction. Func-
tional connectivity elicitation remained distinct for the 
target detection task and had minimal overlap with other 
task engagement. Notably, frontoparietal and frontotem-
poral interaction engagement were distinct for target, 
distractor, and fixation engagement. The detailed infor-
mation on graph-theoretical measures estimated for each 
task engagement is given in Additional file 1: Section S2.

3.2 � Hemodynamic functional connectivity optimization 
of quasi‑stable frequency‑microstates

Frequency microstates estimation revealed four domi-
nant microstates for every EEG frequency band of each 
task engagement. Figure 4 illustrates spatial topographi-
cal patterns of frequency-microstate topography associ-
ated with every task engagement.

Further, Fig.  5 presents the mean number of occur-
rences of all frequency microstates and highlights 12 spe-
cific frequency microstates whose number of occurrences 
is robustly correlated (+ ve correlation: green, −ve corre-
lation: red) with the fMRI functional connectivity meas-
ures. The detailed correlation information of frequency 
microstates with graph-theoretical measures of every 
task engagement is illustrated in Fig.  6. In this study, 
based on the microstate’s green color band direction, 
they are labeled as anterior–posterior (AP), left–right 
(LR), left diagonal (LD), and right diagonal (RD) micro-
state prototypes. For example, the delta microstate with a 
green band traveling between anterior–posterior is called 
the "anterior–posterior delta microstate." During target 
engagement, the number of occurrences of right diago-
nal delta-microstate positively correlates with the global 
efficiency of fMRI functional connectivity measures. On 
the other hand, the local efficiency of fMRI connectivity 
measures correlates negatively with both left–right theta 
and alpha microstate occurrences and positively with 
anterior–posterior theta microstate.

3.3 � Neurovascular analysis of optimized frequency 
microstates: EEG‑informed fMRI analysis

Engagement of task generally elicits local neural cluster-
ing (high-frequency quasi-stable oscillations) at distinct 
brain regions, responsible for efficient local informa-
tion processing, together with distant cortical inter-
communication to facilitate global communication 
(low-frequency quasi-stable oscillations). The neuro-
vascular analysis through EEG-informed fMRI explains 
these insights through synchronizing neural information 

Table 1  Final tuning parameter of LSTM model

Hyperparameters Tuned parameters

Hidden layer size 256

Batch size 64

Training epoch numbers 1000

Rate dropout Input Layer: 0, 1st LSTM Layer: 0.2, 
2nd LSTM Layer: 0.1, 3rd LSTM layer: 
0.2

Recurrent depth 3

Learning rate 0.001
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(optimized quasi-stable EEG oscillations) with hemody-
namic information (vascular) elicited from a specific task 
engagement. For this purpose, each of the 12 optimized 
frequency microstates is processed in independent EEG-
informed fMRI models, which modeled each microstate 
as separate regressors (p < 0.01, FDR corrected) to esti-
mate their neuro-vascular information. Additional file 1: 
Fig. S1a–c shows neuro-vascular information of each 12 
optimized microstates.

Figure  7 shows the neuro-vascular coupling of each 
significant frequency-microstate at the neural correlates 
of the respective task engagement and the associated 
functional connectivity. Target engagement elucidated 
the right-diagonal delta-microstate synchronously with 
the BOLD response in the frontal cortex. Further, ante-
rior–posterior and left–right theta-microstates are found 
to synchronize with the BOLD response of frontal, tem-
poral, parietal, and occipital regions except for right-
lateralized SFG and AG. The role of theta-microstate in 
BOLD-synchronization of these regions characterizes 
its significant association with target engagement. The 
alpha-microstate is observed to de-synchronize with 
the parietal, PCG’s BOLD response, and synchronize 
with the frontal, occipital region during target engage-
ment. Our findings also reveal the effects of multiple fre-
quencies on specific brain regions, such that the BOLD 
response of FP, PCG, SFG, IC, PC, and AG are modulated 
with delta, theta, and alpha-microstates. Specifically, 
the study observes the de-synchronization of alpha-
microstate with the delta and theta microstates such as 
PCG, SFG, PC, and synchronization between delta and 
theta microstates as IC and FP. Hence, the relationships 

mentioned above reveal that the multi-frequency interac-
tions modulate the BOLD response of task-engaged brain 
regions.

3.4 � Performance of deep attentional LSTM model
Figure  8 compares the performance metrics, preci-
sion, accuracy, and recall of both deep learning mod-
els (LSTM and attention-LSTM). As observed, LSTM 
combined with attention performed significantly bet-
ter in all three-performance metrics than the traditional 
LSTM model. The benefit of choosing different tempo-
ral sampling window sizes (180 ms/segment to 750 ms/
segment) of input feature vectors by choosing 16 to 4 
LSTM cells in input layers were analyzed within LSTM 
and attention-LSTM architectures. The results reflected 
the significant improvement in performance while using 
ten nodes (300  ms /segment), and a substantial decline 
in performance metrics is observed for 16 (180 ms/seg-
ment) nodes.

4 � Discussion
The present study brings more insights into understand-
ing and optimizing frequency microstate information 
estimated from cortical, coarse EEG information with 
distant fMRI functional connectivity measures associ-
ated with different task engagements. It utilizes them 
to train a time-series of deep learning frameworks. The 
study employed an attention-based stacked LSTM for 
effectively remembering and aggregating feature embed-
dings in the time-series classification of stacked temporal 
dynamics of the frequency microstate quasi-stable pat-
terns. The results reveal that hemodynamic functional 

Fig. 4  A topographical representation of frequency-microstates for the target, distractor, and fixation
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Fig. 5  Estimated metrics of frequency-microstates. The violin graph plots the mean occurrence of each frequency-microstates for each frequency 
band. The violin plot’s green and red color shades reveal the correlation (positive and negative) of the number of occurrences of quasi-stable 
elicitation with the task’s fMRI functional connectivity measures. The red star on violin plots specifies the significance (p < 0.01)
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Fig. 6  Significantly associated, optimized, frequency-microstates with graph-theoretical measures of a target, b distractor, and c fixation task 
engagement. Frequency microstates are labeled as anterior–posterior (AP), left–right (LR), left diagonal (LD), and right diagonal (RD)
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connectivity optimized quasi-stable frequency micro-
states enable attention-based LSTM algorithm to bet-
ter classify target engagement, distractors, and fixation. 
Further, the study employed EEG-informed fMRI to 
understand the optimized frequency microstates’ neuro-
vascular insights and their association mechanisms. The 
following sections discuss these observations in detail.

4.1 � Association of distinct frequency microstates 
with each task’s cortical functional connectivity

The study observed four distinct cortical frequency-
microstates elicitations for each of three different task 
engagements (thus, 12 distinct frequency microstates) 
independently correlated strongly with their hemody-
namic functional connectivity measures. Non-overlap of 

association of these frequency microstates clearly states 
the underlying difference in distant cortical communica-
tions associated with each task engagement. In addition, 
the study also has observed a distinct neuro-vascular 
functional association of slow and faster oscillations in 
the brain regions involved in each task’s cortical com-
munications. Some essential observations of these multi-
frequency quasi-stable EEG frequency associations with 
each task’s distant neural interactions are summarized 
below.

4.2 � Association of quasi‑stable microstates oscillations 
with global/local neural engagements

Complex cognitive engagement requires global interac-
tions of different brain regions enabling the large-scale 

Fig. 6  continued
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integration of local neural information. The integration of 
neural engagement of spatially distant areas constituting 
the large-scale networks is primarily molded with low-
frequency synchronized oscillations due to their long-
range communications and integrative roles in various 
brain functions.

Further, the strength of large-scale networks has also 
been found to be highest for lower frequencies and seen 
gradually decreasing with increases in the frequency 
range [15, 32, 60]. Therefore, the dominance of large-scale 
networks for the lower range of frequencies confirms 
their functional significance. The present study’s results 
(Fig. 6) distinctly revealed synchronization (positive cor-
relation) of the slow frequency oscillations with global, 
distant brain communication and de-synchronization 
(negative correlation) with local neural elicitation across 
all the task engagement. Similarly, the high-frequency 
quasi-stable oscillation distinctly synchronized with the 
elicitation of local neural engagement and desynchro-
nized with global communications across all the task 
engagements. A similar observation (Fig.  7) is revealed 
in the neurovascular coupling from EEG-informed fMRI 
analysis at the brain regions engaged in all tasks. They 
demonstrated significant de-synchronization between 
slow and faster quasi-stable oscillations in most brain 
regions involved during every task engagement. Further, 
the region-wise neuro-vascular insights brought slower 
quasi-stable oscillations associations with large-scale 
frontoparietal and frontotemporal functional networks. 

These observations are supported by the proposal of 
Polich et  al. [47] and Harper et  al. [17], explaining the 
role of delta and theta band activity underlying the fron-
toparietal and frontotemporal functional networks.

The accumulating literature suggests the association 
of local neuronal processing with the global cortical 
communication between neural assemblies by coupling 
multiple oscillatory frequencies [10] and referred to as 
cross-frequency coupling. The most well-studied exam-
ple of cross-frequency coupling is the theta-gamma 
coupling, which explains the engagement of gamma fre-
quency in certain phases of theta cycles. Further, [50] 
suggested that low-frequency oscillations may be essen-
tial in engaging gamma rhythms during attention. [33] 
discussed the relationship of alpha and theta frequency 
oscillations in the cortex and revealed the possibility of 
the theta-gamma code’s contribution to memory and 
sensory processes. Thus, the functional interaction of 
more extensive networks oscillating at lower frequen-
cies and local neuronal ensembles oscillating at higher 
frequencies has been revealed for cortical communica-
tion and integration [13, 29, 33]. Hence, the studies men-
tioned above better understand the modulation of faster 
oscillations from the slow EEG oscillations during cogni-
tive engagements.

The present study’s quasi-stable cortical oscilla-
tion’s neuro-vascular insights and their association with 
local and global neural information are consistent with 
these studies and explain the role of multi-frequency 

Fig. 7  Neuro-vascular coupling of each significant, fMRI functional connectivity optimized frequency-microstates of every task. The Regions 
shown are neural correlates observed for every task. The neuro-vascular association of optimized frequency microstate with each region is drawn 
through the arrow next to it (Synchronization: Up green arrow, De-synchronization: Down Red arrow). The area colored black has no neurovascular 
association with any of the optimized frequency microstates
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interactions in explaining the complex cognitive engage-
ments’ neuronal mechanisms.

4.3 � Performance of attention‑based deep learning 
system in classifying time‑series quasi‑stable cortical 
frequency EEG information

The proposed deep learning architectures (Fig.  3) 
revealed comparable accuracy, precision, and recall 
rate for classifying target detection task engagements in 
Fig.  8. However, two primary aspects distinguished the 
performance of each proposed deep learning architec-
ture. They are the temporal sampling window and incor-
poration of the attention mechanism.

4.3.1 � Temporal sampling window of quasi‑stable frequency 
information optimizes the performance of deep 
learning architectures

Temporal sampling window size plays a significant role in 
achieving the best classification accuracy of deep learning 
architectures. This crucial aspect of time-locked micro-
states events facilitated a better temporal data handling 
of multi-frequency interaction in the cognitive task’s neu-
ral engagements. The present study employed multiple 
windows of temporal sampling (four nodes: 750 ms, six 
nodes: 500  ms, eight nodes: 375  ms, 10 nodes: 300  ms, 
12 nodes: 250 ms, 14 nodes: 214 ms, 15 nodes: 200 ms, 
and 16 nodes: 180 ms) to explore optimized, quasi-stable 
microstate’s ability to classify task engagement. The high-
est classification accuracy, up to 99% for 10- and 12-node 
attention-based architecture, confirms the temporal 
dynamics of quasi-stable frequency oscillations optimally 
with 300  ms and 250  ms. Several target identification-
related EEG studies support this observation [6–8, 43, 
51] revealed that the peak of task event-related potentials 
following the stimulus onset in between 100 and 300 ms 
at multiple. Specifically, a recent EEG study [17] showed 
event-related synchronization of theta and delta bands 
occurring around 300 ms after the onset of target stimuli.

4.3.2 � Effect of attention mechanism with traditional LSTM 
architectures

The overall better performance of all the deep learning 
architectures justified the optimization of quasi-stable 
frequency-microstate information. However, the atten-
tion mechanisms further improved this in the deep learn-
ing system. The combined effect of attention phenomena 
and the LSTM architecture allowed the deep learning 
architecture to dynamically emphasize the task-relevant 
neural information in the time-series sequence of EEG 
data and give less attention to other irrelevant infor-
mation. The improvement in the performance of the 
attention-based LSTM system can be seen precisely in 
Fig. 8. The plots suggest that the attention mechanism is 

Fig. 8  Comparison of performance of the deep learning frameworks. 
A Accuracy, B precision, C recall. Each architecture was independently 
optimized with 4, 6, 8, 10, 12, 14, 15 and 16 LSTM input cells for 
temporal EEG sampling of 750, 500, 375, 300, 250, 214, 200 to 180 ms/
segment, respectively
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optimum for extracting the most relevant task neural fea-
tures and improves the LSTM’s performance compared 
to independent LSTM.

5 � Significance of the study
There is extensive literature (Additional file 1: Table S2) 
on employing a deep learning approach to decode task 
engagement using EEG elicitations. However, most of 
those works are restricted to the sensory–motor tasks 
(hand, leg movements, imagery tasks) whose engage-
ment can be localized in a few cortical regions. However, 
minimal research is engaged to decode the cognitive 
task engagement’s functional connectivity of distant and 
distinct cortical engagement using the deep learning 
framework. Further, despite many research studies that 
microstates are a promising neural signature, their asso-
ciation with the neural mechanisms of task engagement 
is still not clearly understood [26, 53, 54]. In addition, 
not many works in the literature explain the quasi-stable 
nature of the different EEG frequency oscillations either. 
The present work employs attention-based LSTM archi-
tecture to decode the temporal dynamics of cognitive 
task engagement through fMRI functional connectivity 
optimized frequency microstates. Recently, [52] investi-
gated the temporal dynamics of traditional microstates 
using recurrent neural networks. However, their work 
did not address the quasi-stable frequency microstate’s 
neural mechanism and modulation during task engage-
ment. Our present work further brings more insights into 
the attention mechanism’s ability to improvise the clas-
sification of cognitive task engagement based on the opti-
mized neural signatures. To our knowledge, the present 
study is one of the few works that employs simultaneous 
EEG–fMRI information to optimize the neural signa-
tures for improvising the performance of deep learning 
architectures.

6 � Conclusions
The present study proposes an attention-based deep 
learning framework that processes temporal dynamics of 
the 12 distinct, fMRI functional connectivity optimized, 
quasi-stable frequency microstates to classify different 
cognitive task engagement. It further utilizes neurovas-
cular insights of these optimized frequency microstates 
through EEG-informed fMRI analysis to understand 
the local and distant cortical interaction revealed by 
the optimized frequency microstate. This optimized 
neural information was passed as input at distinct tem-
poral samplings windows to train and validate the 
attention-based LSTM architecture. The results suggest 
that the classification accuracies of the attention-based 
LSTM architectures were better than the traditional 
LSTM architectures due to the ability of the attention 

mechanisms in deep learning systems to localize tem-
poral feature information. Notably, the attention-based 
LSTM model with 250 ms per segment and 300 ms per 
segment temporal sampling revealed a higher classifica-
tion accuracy than other architectures. Hence, the study 
demonstrates an attention-based deep learning frame-
work to perform a robust classification of complex, dis-
tant cortical engagement and communication caused by 
cognitive task engagements based on the novel, quasi-
stable frequency microstates.
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