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Abstract 

Background  Abstracting cerebrovascular disease (CeVD) from inpatient electronic medical records (EMRs) 
through natural language processing (NLP) is pivotal for automated disease surveillance and improving patient 
outcomes. Existing methods rely on coders’ abstraction, which has time delays and under-coding issues. This study 
sought to develop an NLP-based method to detect CeVD using EMR clinical notes.

Methods  CeVD status was confirmed through a chart review on randomly selected hospitalized patients who were 
18 years or older and discharged from 3 hospitals in Calgary, Alberta, Canada, between January 1 and June 30, 2015. 
These patients’ chart data were linked to administrative discharge abstract database (DAD) and Sunrise™ Clinical 
Manager (SCM) EMR database records by Personal Health Number (a unique lifetime identifier) and admission date. 
We trained multiple natural language processing (NLP) predictive models by combining two clinical concept extrac-
tion methods and two supervised machine learning (ML) methods: random forest and XGBoost. Using chart review 
as the reference standard, we compared the model performances with those of the commonly applied International 
Classification of Diseases (ICD-10-CA) codes, on the metrics of sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV).

Result  Of the study sample (n = 3036), the prevalence of CeVD was 11.8% (n = 360); the median patient age 
was 63; and females accounted for 50.3% (n = 1528) based on chart data. Among 49 extracted clinical documents 
from the EMR, four document types were identified as the most influential text sources for identifying CeVD disease 
(“nursing transfer report,” “discharge summary,” “nursing notes,” and “inpatient consultation.”). The best performing NLP 
model was XGBoost, combining the Unified Medical Language System concepts extracted by cTAKES (e.g., top-ranked 
concepts, “Cerebrovascular accident” and “Transient ischemic attack”), and the term frequency-inverse document 
frequency vectorizer. Compared with ICD codes, the model achieved higher validity overall, such as sensitivity (25.0% 
vs 70.0%), specificity (99.3% vs 99.1%), PPV (82.6 vs. 87.8%), and NPV (90.8% vs 97.1%).

Conclusion  The NLP algorithm developed in this study performed better than the ICD code algorithm in detecting 
CeVD. The NLP models could result in an automated EMR tool for identifying CeVD cases and be applied for future 
studies such as surveillance, and longitudinal studies.
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1  Introduction
Accurate identification of patients with cerebrovascular 
diseases (CeVD) is important for health services research, 
surveillance and monitoring, risk adjustment, and quality 
improvement measurement [1, 2]. The standard approach 
to identify conditions is coded administrative hospital 
data using International Classification of Disease (ICD) 
terminology. Although structured codes are widely avail-
able and highly standardized, some conditions, including 
CeVD, are under-coded. Quan et al. [3] validated the ICD 
algorithms against chart review and reported a sensitiv-
ity of 46.3% for detecting CeVD diseases in both ICD-9 
and ICD-10-CA. To overcome the shortcomings of ICD 
code-based algorithms, medical chart reviews act as a 
gold standard for case identification. Unfortunately, chart 
review is time- and resource-intensive requiring health 
professionals familiar with specific conditions [4, 5].

Electronic medical records (EMRs) are becoming 
increasingly popular for collecting health information 
[6], and can be used to improve the accuracy of identi-
fying conditions such as CeVD. Among the components 
of EMR, free text notes contain detailed descriptions and 
give health professionals great flexibility to report condi-
tions and comorbidities. Natural Language Processing 
(NLP) is an artificial intelligence technique to analyze 
human languages and retrieve clinically relevant infor-
mation for detecting and predicting medical conditions 
[7]. A recent literature conducted by our team yielded 
few studies using NLP on clinical notes for patients with 
CeVD conditions [8]. Existing studies have focused on 
identifying ischemic stroke [9–11] and cerebral aneu-
rysms [12], predicting the cerebrovascular causes of 
ischemia [13], and detecting complications of stroke [14]. 
Most previous studies focus on specific conditions within 
CeVD and have limited access to a complete set of clini-
cal notes from EMRs, using only admission notes or radi-
ology reports.

In this study, we explored all available types of inpatient 
clinical notes from an EMR to identify a broad spectrum 
of CeVD cases. The CeVD cases were defined by our pre-
vious ICD-10 algorithm [3]. We hypothesized that using 
NLP techniques on these clinical notes would better 
detect CeVD cases than ICD-based algorithms and exist-
ing ML algorithms with limited data source types.

2 � Methods
2.1 � Study population
In this retrospective cohort study, we randomly selected 
patients who were at least 18 years of age and discharged 
from three acute care facilities in Calgary, Canada, 
between January 1 and June 30, 2015. Obstetric admis-
sions were excluded because they have a short length 
of stay and lack conditions of interest. We randomly 

selected one hospitalization per patient if multiple dis-
charges occurred during the study period [15]. Six nurses 
reviewed charts to determine the existence of CeVD [15].

2.2 � Data sources
2.2.1 � EMR: Sunrise Clinical Manager (SCM)
The EMR data are from SCM, a city-wide, population 
level EMR system used in the three acute care hospitals 
in Calgary. SCM provides patient-level clinical informa-
tion containing medical and nursing orders, medication 
records, clinical documentation, diagnostic imaging and 
lab results [16].

2.2.2 � Administrative Discharge Abstract Database: DAD
The inpatients’ administrative, clinical, and demographic 
information at the time of discharge is coded in the DAD 
[17]. The clinical coder records up to 25 diagnostics 
codes for each inpatient based on available information 
from patient charts. The DAD, EMR data and chart data 
were linked with Personal Health Number (a unique life-
time identifier), chart number (a distinctive number asso-
ciated with a patient’s admission), and admission date.

2.3 � Phenotyping algorithm framework
We trained, validated, and tested an EMR data-driven 
phenotyping algorithm using NLP techniques to detect 
CeVD. NLP techniques are used to process and ana-
lyze human language, and contain a wide range of tasks, 
including named entity recognition (NER), information 
extraction, and text classification [11, 16]. They were 
applied to analyze the free text clinical notes and derive 
a CeVD phenotype to detect the disease automatically. As 
depicted in Fig. 1, the general framework consists of (1) 
input document selection from patients’ clinical notes, 
(2) model training, and (3) performance evaluation using 
chart review as a reference standard.

2.3.1 � Document selection and feature engineering
Many types of clinical notes could be generated dur-
ing the hospitalization of patients involved in this study, 
such as nursing transfer reports, inpatient consulta-
tions, discharge summaries, and surgical assessment 
and history. However, not all document types contribute 
equally to the detection of CeVD. Noise and redundant 
information can hamper the detection performance of 
ML models [18]. The first step is determining and select-
ing the appropriate document type(s) sensitive to CeVD 
identification.

The method we used is a feedforward sequential 
selection method [19], to iteratively add the document 
type that contributes most to model performance, until 
the performance stops increasing or reaches a prede-
fined criterion, as shown in Fig. 2. All the documents 
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are first converted into vectors by (1) extracting rel-
evant medical concepts from the text and (2) turn-
ing concepts into numeric features [20]. To examine 
the extraction performance, we compared two types 

of commonly used concept extraction methods: Bag 
of Words (BOW) using ScispaCy [21] and Concept 
Unique Identifiers (CUIs) from the Unified Medical 
Language System using cTAKES (see Additional file 1 

Fig. 1  NLP-based CeVD detection framework using EMR data. It consists of manual chart review, data preprocessing, featurization, and model 
training, development, and validation. FPR represents three acute care facilities in Calgary, Foothills Medical Centre, Peter Lougheed Centre 
and Rockyview General Hospital; NER represents Named Entity Recognition (NER), a subtask of NLP that seeks to identify named objects 
from free-text; CUI represents Concept Unique Identifiers which map synonyms to a unique identifier; BOW represents bag of words; TF-IDF 
represents term frequency and inverse document frequency
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for a detailed explanation) [22]. We also compared 
two types of feature construction methods: Term Fre-
quency-Inverse Document Frequency (TF-IDF) and 
word count. The obtained vectors are fed into the ML 
models and validated by the model performance. To 
estimate better generalization of the selected docu-
ment types, fivefold cross validation was applied to the 
selected patients (i.e., 80% training, n = 2429 and 20% 
test, n = 607). The model development is detailed in 
the following section.

2.3.2 � Model development
The model outcome is a binary classification where 
hospitalized patients with CeVD are considered posi-
tive cases. Two supervised ML methods were trained, 
validated, and tested using the obtained input vectors 
and chart review output labels, including random for-
est (RF) and XGBoost [23, 24]. The two methods are 
known for handling datasets with high dimensionality, 
missing data and outliers, and providing accurate and 
reliable predictions, especially for NLP tasks contain-
ing thousands of concept features [25, 26].

With the different combinations among methods of 
concept extraction, vectorization, and ML models, we 
have 8 model variations, such as “BOW + TF-IDF + RF” 
and “CUI + TF-IDF + XGBoost.” As both methods, RF 
and XGBoost, use decision trees as the base models, 
we assigned 100 decision trees to them, respectively. 
These models’ performance was then estimated by 
fivefold cross validation, maintaining the same propor-
tion of positive and negative patients in each group.

2.3.3 � Performance metrics
To evaluate and compare the models developed, we cal-
culated their sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and F1 
score using chart data as a reference standard. We also 
calculated binomial proportional confidence intervals 
for all the metrics.

We compare the results with ICD-based CeVD iden-
tification algorithms in DAD after defining CeVD using 
ICD-10 codes (e.g., G45-46, I60-69, H34, see Additional 
file  1: Table  S1) [3]. The performance metrics of the 
developed NLP models were reported on the same level 
of specificity as with the ICD-based algorithm.

3 � Results
3.1 � Characteristics of the study cohort
Among the 3036 patients, chart reviewers identified 
360 patients with CeVD (see Table  1). Characteristics 
that were statistically significantly different (P < 0.05) 
between the CeVD positive cohort and negative cohort 
are: age, comorbidities such as atrial fibrillation, angina, 
hypertension, peripheral vascular disease (PVD) and 
obesity.

3.2 � Characteristics of selected document types
We collected 49 types of clinical documents of patients 
during hospitalization, such as nursing transfer reports, 
inpatient consultations, and discharge summaries. 
The detailed text statistics for these document types 
can be found in Additional file 1: Table S2. For a better 

Fig. 2  Document selection and featuring process based on the developed NLP models. All the document types are from 3036 patients’ clinical 
notes during hospitalization
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explanation, we consolidated these document types into 
9 categories (see Additional file 1: Table S3).

Using the feedforward sequential selection, we iden-
tified four essential document types, “nursing transfer 
report,” “discharge summary,” “nursing notes,” and “inpa-
tient consultation.” These documents are sensitive and 
informative for CeVD detection. Table  2 shows the sta-
tistics of patients, documents, and words. At least 90% of 
patients (with or without CeVD) have at least 2 types of 
documents. These four types of documents complement 
each other in providing sufficient clinical information to 
identify CeVD. 

To examine how these document types contribute to 
CeVD detection, the top ten key concepts in each docu-
ment type were analyzed, as shown in Fig.  3. There are 
some common and vital concepts across four docu-
ment types, such as “C0038454” (stroke-related con-
cepts) and “C0007787” (transient ischemic attack). It 
is reasonable that the existence of these concepts can 
directly reflect the CeVD status. The remaining con-
cepts are less overlapped and unique to each document 
type, such as “C0012169” (low sodium diet) in “nursing 

notes,” “C0004134” (ataxia) in “nursing transfer report,” 
“C0202691” (CAT scan of head) in “discharge summary,” 
and “C0001962” (ethanol) in “inpatient consultation.” 
This demonstrated that these document types contain 
essential concepts and can supplement each other to gain 
more comprehensive information in CeVD detection.

3.3 � Classification performance
The top 4 trained models were shown in Table  3. 
XGBoost generally outperformed the random for-
est method. TF-IDF performed better than term count 
when comparing models “CUI + word count + XGBoost” 
and “CUI + TF-IDF + XGBoost.” Similarly, the concept 
extraction method “CUI” had better performance than 
“Bag of Words (BOW).” Consequently, the combination 
of XGBoost, TF-IDF, and CUI achieved the best perfor-
mance over other ML models in the metrics of sensitivity 
(70%), specificity (99.1%), PPV (87.8%), NPV (97.1%), F1 
(77.8%), and accuracy (96.5%).

We also compared the model performance with 
ICD-10-CA-based methods. With similar speci-
ficity (99.3% in ICD-10-CA vs 99.1% in model 

Table 1  Patients characteristics

IQR Interquartile range

Characteristics All (percentage) Patients with CEVD 
(percentage)

Patients without CEVD 
(percentage)

P value

N =  3036 (100%) 360 (11.9%) 2676 (88.1%)

Demographic

 Median of age (IQR) 63.0 (48.9–76.5) 77.4 (67.0–85.9) 60.9 (46.4–74.2)  < 0.0001

 Female 1528 (50.3%) 175 (48.6%) 1353(50.6%) 0.5

Comorbidities

 Atrial fibrillation 370 (12.2%) 106 (29.4%) 264 (9.9%)  < 0.0001

 Angina 203 (6.7%) 41 (11.4%) 162 (6.1%) 0.0002

 Myocardial infarction 102 (3.4%) 18 (5.0%) 84 (3.1%) 0.06

 Hypertension 1469 (48.4%) 267 (74.2%) 1202 (44.9%)  < 0.0001

 Peripheral vascular disease 148 (4.9%) 46 (12.8%) 102 (3.8%)  < 0.0001

 Obesity 736 (24.2%) 68 (18.9%) 668 (25.0%) 0.01

 Alcohol abuse 230 (7.6%) 19 (5.3%) 211 (7.9%) 0.08

 Smoking 605 (19.9%) 66 (18.3%) 539 (20.1%) 0.4

Table 2  Characteristics of extracted documents

Detailed document types: nursing transfer report—emergency department to inpatient, discharge summary-medical; surgical assessment and history, inpatient 
consultations, and discharge summary

Document type All (n = 3036) Patients with CeVD (n = 360) Patients without 
CeVD (n = 2676)

Median number of notes per patient (IQR) 2.0 (1.0–2.0) 2.0 (1.0–2.0) 2.0 (1.0–2.0)

Number of patients with at least 2 types of docu-
ments (%)

2774 (91.4) 344 (95.6) 2430 (90.8)

Median word count per note (IQR) 430.0 (310.0–678.0) 434.5 (322.2–723.0) 428.0 (308.0–675.0)
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“CUI + TF-IDF + XGBoost”), the performance in other 
metrics is improved hugely by the obtained model, 
such as sensitivity increased from 25.0 to 70.0%, and F1 
increased from 38.4% to 77.8%.

We included the four metrics of the four NLP mod-
els with changing threshold values from 0.05 to 0.95, as 
shown in Fig. 4. Since the ICD algorithm is deterministic, 
its threshold is not changeable. The PPVs of “CUI + TF-
IDF + RF,” “CUI + word count + XGBoost,” “BOW + TF-
IDF + XGBoost,” and “CUI + TF-IDF + XGBoost” 
started to exceed the performance of ICD at thresh-
olds 0.32, 0.25, 0.28, and 0.17 within the threshold 

bound, respectively. “CUI + word count + XGBoost” and 
“CUI + TF-IDF + XGBoost” had very similar and robust 
performance with the change of thresholds, whereas 
“CUI + TF-IDF + RF” was affected significantly. Gener-
ally, the “CUI + TF-IDF + XGBoost” algorithm achieved 
better and more robust performance with smaller 
thresholds.

4 � Discussion
This paper shows that EMR textual information 
abstracted by NLP techniques outperforms traditional 
ICD codes for assessing cerebrovascular disease, and 

Fig. 3  Top 10 key concepts for detecting CeVD in each selected document type. The concepts were UMLS terms extracted by cTAKES. The 
impurity-based feature importance measured the importance of classifying CeVD

Table 3  CeVD case identification with DAD and EMR

The value in bold indicates the best among other approaches in that specific metric

Model Sensitivity% (95% CI) Specificity% (95% CI) PPV% (95% CI) NPV% (95% CI) F1% Accuracy% (95% CI)

ICD-10-CA-codes in DAD 25.0 (20.6–29.8) 99.3 (98.9–99.6) 82.6 (74.5–88.5) 90.8 (90.3–91.3) 38.4 90.5 (89.4–91.5)

CUI + TF-IDF + RF 65.8 (60.7–70.7) 98.5 (98.0–99.0) 85.9 (81.5–89.3) 95.5 (94.9–96.1) 74.1 94.7 (93.8–95.4)

CUI + word count + XGBoost 68.1 (63.0–72.8) 98.6 (98.1–99.0) 86.9 (82.7–90.2) 95.8 (95.2–96.4) 76.2 95.0 (94.2–95.7)

CUI + TF-IDF + XGBoost* 70.00 (65.0–74.7) 99.1 (98.7–99.3) 87.8 (83.7–91.0) 97.1 (96.6–97.5) 77.8 96.5 (95.8–97.0)
BOW + TF-IDF + XGBoost 59.2 (53.9–64.3) 98.7 (98.1–99.1) 85.5 (80.9–89.2) 94.7 (94.1–95.3) 69.4 94.0 (93.1–94.8)
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compares favourably with resource-intensive chart 
review using a fraction of human resources. With the 
prevalence of 11.8% CeVD in over 3000 records, the 
developed NLP model significantly improves the valid-
ity of DAD-based ICD algorithm (sensitivity: 70% vs. 25% 
and PPV: 88% vs. 83%).

EMR data is more informative and efficient in identi-
fying CeVD patients than conventionally used hospi-
talization data (i.e., DAD). First, due to the high volume 
of discharges, coders have limited time to code patients 
comprehensively, causing missing codes and low quality. 

Second, there is no uniform international definition of 
the most responsible diagnosis, which varies between 
the primary reason for admission and the condition 
with intensive resource usage [27]. When looking for 
conditions contributing primarily to the length of stay 
in hospital (a Canada-wide used definition), CeVD is 
likely under-coded as it can be a comorbidity causing 
admission. Conversely, EMRs contain many documents 
not usually used by medical coders. As identified in 
this study, four types of documents (i.e., “nursing trans-
fer report,” “discharge summary,” “nursing notes,” and 

Fig. 4  PPV, NPV, sensitivity, and specificity of the four NLP models and ICD algorithm, with changing thresholds ranging between 0.05 
and 0.95. The two dashed lines in each subfigure represent the 0.05 and 0.95 threshold bounds, respectively. TFIDF-CUI-RF represents 
algorithm “CUI + TF-IDF + RF”; WC-CUI-XGBoost represents algorithm “CUI + word count + XGBoost”; TFIDF-BOW-XGBoost represents algorithm 
“BOW + TF-IDF + XGBoost”; TFIDF-CUI-XGBoost represents algorithm “CUI + TF-IDF + XGBoost”; ICD represents the ICD-10-CA-codes in DAD 
algorithms, respectively
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“inpatient consultation”) jointly contribute to the accu-
rate detection of CeVD by providing more comprehen-
sive medical information. Restricting the analysis to a 
specific document type, therefore, has the potential to 
impede detection.

To abstract the knowledge from these EMRs textual 
data, NLP techniques are essential. Information extrac-
tion from unstructured text is known to be difficult, and 
contains subtasks including NER, relation extraction, and 
pattern extraction. The text-based classification assigns 
categorical labels for a text fragment by finding the pat-
terns composed of NERs and their relationships. By 
comparing different combinations of NLP models, we 
identified the optimal model, CUI + TF-IDF + XGBoost. 
The TF-IDF performs better than word count because 
it can efficiently eliminate low-sensitive concepts in 
differentiating positive and negative groups. CUI is a 
better concept extraction method than the NER by scis-
paCy because cTAKES can merge similar concepts into 
one, such as “stroke,” “CVA,” and “brain vascular acci-
dents” are mapped to the same CUI “C0038454”. Sine 
XGBoost has better capability in dealing with overfitting 
and allows a more general model than random forest, it 
shows a slightly better performance in detecting CeVD, 
as shown in Table 3.

We recognized that there were new NLP techniques 
being applied to EMR data, such as transformer-based 
language model [28]. In our previous work on identifying 
pressure injuries using ClinicalBERT [29], the model did 
not outperform XGBoost and random forest algorithms 
due to the relatively small sample size. Without special 
treatments, such as fine-tuning of transformer-based 
language models, data augmentation for imbalanced 
classes, architecture tuning of neural networks, and cost-
sensitive learning, the native deep learning model cannot 
perform well on the proposed identification task. Com-
pared with deep learning models, XGBoost and random 
forest algorithms are easier to be deployed in local set-
tings with better interpretability and less computational 
cost. We expect deep learning models to eventually have 
superior performance with the mentioned comprehen-
sive investigations. Our additional works were concur-
rently conducted for the identification of CeVD and other 
conditions using transformer-based NLP techniques.

The widespread use of text based EMR algorithms to 
supplement ICD codes and traditional chart reviews has 
many potential advantages for epidemiology and health 
outcomes research. CeVD status is frequently used as an 
important factor in stratifying outcomes in population 
health research. While some outcomes, such as ischemic 
stroke, have reasonable validity, other aspects of CeVD, 
such as carotid atherosclerosis, are likely poorly coded. 
This probably explains the poor sensitivity (25%) of ICD 

codes for CeVD in our study. We achieved 88% PPV and 
70% sensitivity, an improvement over the widely adopted 
ICD-based algorithm. Given the amount of knowledge 
contained in clinical text, the algorithm is applicable to 
detecting many other diseases, especially conditions with 
under-coding issues. Text based EMR algorithms may be 
used to periodically re-evaluate the validity of existing 
ICD code-based approaches and ensure that ICD code 
validity is not changing over time.

Although our findings demonstrate the superior per-
formance compared to ICD codes, there is still ample 
room for further exploration into the comprehensive uti-
lization of EMR data for CeVD case identification. The 
detailed stratifications of patients were often beneficial 
for producing tailored treatment strategies and inclusion 
or exclusion criteria in clinical trials [30]. To enable the 
appropriate stratification, many efforts were underway to 
phenotype subclasses of various CeVD categories, such 
as ischemic stroke [9, 10] and cerebral aneurysms [12]. 
Further NLP methods could facilitate the identification 
of other categories, such as hemorrhagic stroke and tran-
sient ischemic attack. The EMR data-based algorithms 
can be utilized to potentially examine underlying patterns 
and risk factors. Some researchers were using text data to 
analyze the causes of transient ischemic attack [13] and 
complications of ischemic stroke [14]. Additionally, these 
algorithms can be applied for real-time monitoring and 
surveillance of CeVD at a population level. Public health 
authorities can thus identify trends, assess disease bur-
den, and implement targeted interventions. With demon-
strated richness of knowledge in EMR data, NLP models 
can expedite and facilitate data usage for these purposes.

5 � Limitations
There are some limitations in this study. First, further 
examination of missing cases is needed, as 30% of cases 
are still missed by the proposed algorithm using EMR 
data. The missing cases are likely caused by variations 
in clinical documents and the capability of NLP models 
to detect them. We believe that the performance of the 
NLP models can be further improved by having better 
NER and incorporating sequential and contextual pat-
terns among recognized concepts. Second, the data we 
studied is only from one city (i.e., Calgary). EMR diver-
sities in format and content could be subject to change 
when larger populations and geographies are considered. 
The identified sensitive document types will vary accord-
ingly. Then, we recognize that the time span of the study 
dataset is short, as they lie between January to June 2015. 
Therefore, the model might not account for variations or 
trends over a longer time period, such as seasonal varia-
tions in disease occurrence or changes in medical prac-
tice. Lastly, we did not validate the algorithms in external 
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databases. We aim to collaborate with other institu-
tions and collect data from multiple geographic regions 
to strengthen the external validity of our findings and 
encourage researchers to apply this method to their data-
sets for validation and improvement using our project 
publicly available on GitHub.1

6 � Conclusion
Compared to the widely used ICD-based algorithm, the 
EMR NLP model significantly improved the sensitivity 
and PPV while maintaining similar specificity. This algo-
rithm could be used to enhance existing ICD databases, 
for health research and surveillance.
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