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Abstract
Mapping neural connections within the brain has been a fundamental goal in neuroscience to understand 
better its functions and changes that follow aging and diseases. Developments in imaging technology, such as 
microscopy and labeling tools, have allowed researchers to visualize this connectivity through high-resolution 
brain-wide imaging. With this, image processing and analysis have become more crucial. However, despite the 
wealth of neural images generated, access to an integrated image processing and analysis pipeline to process 
these data is challenging due to scattered information on available tools and methods. To map the neural 
connections, registration to atlases and feature extraction through segmentation and signal detection are 
necessary. In this review, our goal is to provide an updated overview of recent advances in these image-processing 
methods, with a particular focus on fluorescent images of the mouse brain. Our goal is to outline a pathway 
toward an integrated image-processing pipeline tailored for connecto-informatics. An integrated workflow of 
these image processing will facilitate researchers’ approach to mapping brain connectivity to better understand 
complex brain networks and their underlying brain functions. By highlighting the image-processing tools available 
for fluroscent imaging of the mouse brain, this review will contribute to a deeper grasp of connecto-informatics, 
paving the way for better comprehension of brain connectivity and its implications.
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1  Introduction
The brain consists of a complex network, intricately 
interconnected through countless neurons connecting 
various brain regions. These networks form the founda-
tion for critical brain functions such as movement, social 
interaction, memory formation, decision-making, and 
perception. By investigating the structural and func-
tional properties of neural circuits, researchers seek to 
understand and uncover the fundamental principles of 
information processing in the brain. A key focus in neu-
roscience has been to map neural circuits, which involves 
visualizing and characterizing the connections between 
neurons to deepen our understanding of brain organiza-
tion. This mapping is crucial for grasping normal brain 
functions and addressing related disorders.

Over the past decade, significant progress has been 
made in mapping the connectivity of the brain at the 
mesoscale level, which encompasses intermediate scales 
between individual neurons and large brain regions [1–
5]. Although various connectivity studies utilize numer-
ous animal models [1, 3, 6–9], connectome research 
primarily leverages mouse models due to their preva-
lence. This review will focus on the mouse brain, examin-
ing mesoscale connectivity through fluorescent imaging. 
This mesoscale connectivity mapping provides insights 
into the structural and functional relationships between 
brain regions, shedding light on information flow, neu-
ral circuits, and their contributions to overall brain 
functionality.

The term connecto-informatics, first introduced in 
a study that investigated the circuit- and cellular-level 
connectivity of the STN-GPe [10], is analogous to neu-
roinformatics but focuses specifically on extracting and 
analyzing information about neural connectivity. In the 
context of connecto-informatics, researches employ vari-
ous imaging and computational techniques, data analy-
sis and modeling to deepen our understanding of brain 
structure and function through brain circuit connectiv-
ity. Recently, advances in neural labeling, tissue clearing, 
and imaging methods – such as mGRASP, CLARITY, 
iDISCO, MOST, fMOST, and ExM – have significantly 
accelerated neural circuit mapping efforts [11–20]. The 
datasets primarily used in connecto-informatics are fluo-
rescence-based, and there has been a high throughput of 
fluorescence imaging [21]. However, fluorescence imag-
ing datasets often contain discrepancies due to biological 
variations such as brain size differences among animals, 
inevitable damages from histological sample processing, 
and technical problems like artifacts and optical aberra-
tions [22, 23]. These can lead to signal loss and image dis-
tortion, underscoring the critical need for sophisticated 
image processing tools and methodologies in mesoscopic 
connectivity mapping.

By extracting information through analysis of neu-
ral connectivity mapping from neural images obtained 
through various microscopies and using various emerg-
ing image processing tools, extraction, analysis, and 
interpretation of complex brain connectivity data is pos-
sible. The image processing pipeline in connecto-infor-
matics begins with the vital step of aligning neural images 
to a standardized template atlas. This is followed by seg-
mentation of specific brain regions or structures, essen-
tial for isolating areas of interest for detailed analysis. To 
improve image quality and clarity, the pipeline incorpo-
rates low-level techniques such as denoising and super-
resolution, enabling the visualization of finer structural 
details [57–62, 71–77]. Advanced procedures, including 
cell segmentation and neuronal morphology reconstruc-
tion [91–110], are also employed to comprehend the 
intricate connectivity and dynamics of neural circuits at 
the mesoscopic scale. The ultimate goal of these image 
processing steps is to accurately map and analyze neural 
circuits, providing insights into the complex networks of 
connectivity and interactions that underpin various brain 
functions (Fig. 1a).

Despite advancements, the availability and integration 
of image-processing resources remain scattered, posing 
challenges in their effective utilization. The substantial 
data volume generated by sophisticated imaging tech-
niques demands significant computational resources 
and processing time. Variability in biological samples 
and imaging conditions adds complexity, often requiring 
customized approaches and manual intervention, which 
impedes the development of streamlined, automated 
workflows. Moreover, integrating and analyzing diverse 
data types to map neural circuits efficiently remains a 
formidable challenge, highlighting a gap between the 
capabilities of current tools and research needs.

In this updated review, we delve into the advancements 
in image processing tools for mapping mesoscopic brain 
connectivity, addressing the challenges encountered and 
introducing tools to overcome them.

 	• Mapping brain connectivity through atlas-based 
registration.

 	• Types of Brain Atlases.
 	• Atlas-based Registration and Segmentation.
 	• Atlas-based registration and segmentation open-

source tools.
 	• Deep learning-based atlas-based registration and 

segmentation tools.

 	• Mapping brain connectivity through feature 
extraction.
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 	• Low-level image processing

 	• Image Denoising.
 	• Image super-resolution.

 	• Cell Segmentation.
 	• Neurononal morphology reconstruction.

Starting with a brief introduction to the importance and 
significance of each image processing step, we discuss 
latest advancements in tools and methods tailored for 
analyzing neural images in the context of connecto-infor-
matics at the mesoscale (Abbreviations listed in Table 1). 
This review aims to provide insights into the current state 
of image processing techniques and their pivotal role in 
advancing our understanding of brain connectivity.

2  Mapping brain connectivity through atlas-based 
registration
Many connectivity datasets are derived from various res-
olutions and imaging modalities, necessitating the cru-
cial first step of registering images onto a standardized 
reference framework. This alignment enables compara-
tive analyses across different experiments, datasets, and 
subjects, providing valuable information about neuronal 
structures and functions. Moreover, registering images 
to a common coordinate space facilitates the annotation 
of brain regions and is fundamental for qualitative and 
quantitative assessments. This allows for more precise 
comparisons and analyses of specific regions of interest. 
Systematic image processing, including steps like reg-
istration and segmentation against reference atlases, is 
essential for accurately mapping neural connectivity.

Fig. 1  Workflow of image processing for connecto-informatics at mesoscale. (a) Schematics diagram of key image processing steps for neural data 
obtained from imaging. (b) Whole brain images obtained in 2D are aligned into a 3D stack and is registered to the Allen CCFv3 [26]. (c) The registered 
neural images are segmented using the annotated Allen CCFv3. (d) Noisy images are processed using denoising algorithm to remove unwanted artifacts 
that can arise from numerous factors [65]. (e) Cell segmentation using CNN allow automatic detection and segmentation of cells in neural images, allow-
ing cellular level connectivity analysis [97]. (f) 3D reconstruction of neuron using neuTube 1.0 shows synaptic connectivity of hippocampal region with 
mGRASP labeled synapses [110]. All scale bar represents 1000μm
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2.1  Types of brain atlases
A brain atlas is a comprehensive and detailed map illus-
trating the brain’s anatomical structures and functional 
organization. In connecto-informatics, whole-brain 
atlases provide a spatial framework for analyzing whole-
brain images. The Franklin-Paxinos atlas [24] and the 
Allen reference atlas [25] are among the most widely 
used for mouse brains. However, these are 2D reference 
atlases, primarily derived from Nissl and acetylcho-
line esterase antibody staining in histological sections. 
Although reference atlases such as the Franklin-Paxi-
nos or Allen have assisted researchers in locating and 

annotating brain regions of interest, their 2D nature lim-
its their effectiveness and application.

The shift to 3D brain atlas, like the Allen Com-
mon Coordinate Framework v3 (CCFv3) offers several 
advantages including spatial accuracy, depth visualiza-
tion, cross-sectional view of volumetric data, and navi-
gational aids. The Allen CCFv3 is a 3D whole-brain 
mouse atlas available through the Allen Institute for 
Brain Science (https://mouse.brain-map.org). It was 
created interpolating serial two-photon tomography 
(STPT) images from 1675 adult mice and features 658 
delineated brain regions. This atlas integrates data from 

Table 1  List of abbreviations used in this review
Abbreviation Full name Reference
Allen CCFv3 Allen Common Coordinate Framework v3 [26]
ANTs Advanced Normalization Tools [38]
BIRDS Bi-channel image registration and deep-learning segmentation [53]
CARE Content-aware image restoration [59]
CNN Convolution neural network [49, 52, 55–58, 61, 77, 99, 105, 106, 139–141]
DNN Deep neural network [53, 57, 78, 98, 100]
ExM Expansion Microscopy [11]
FNT Fast Neurite Tracer [120–122]
GAN Generative adversarial networks [74, 75, 79, 142]
ITK Insight toolkit [37]
mGRASP mammalian GFP reconstitution across synaptic partners [12]
MIRACL Multimodal Image Registration And Connectivity anaLysis [45]
MOST Micro-optical sectioning tomography [20, 117, 120]
mPFC Medial prefrontal cortex [120]
SNR Signal-to-noise ratio [54]
STN Subthalamic nucleus [10]
STPT Serial two-photon tomography [26, 87]
Vaa3D 3D Visualization-Assisted Analysis [113]

Fig. 2  Comparison of mouse brain atlases. Rebuilt illustration using publicly available atlases for comparison between the enhanced and unified ana-
tomical atlas, and the molecular atlas of the mouse brain combined. (a) The left hemisphere is the Allen reference atlas [26] and the right hemisphere is 
the enhance and unified mouse brain atlas that combines labels from the Franklin-Paxinos atlas and the common coordinate framework from the Allen 
Institute to create a unified mouse brain atlas [27]. (b) The left hemisphere is the Allen reference atlas and the right hemisphere is the molecular atlas 
of the adult mouse brain that shows anatomical divisions based molecular composition [29]. (c) Comparison of the hippocampus region delineation 
between mouse brain atlases. Scale bars for (a-b) represents 1000μm; scale bar for (c) represents 500μm
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immunohistochemistry, transgene expression, in situ 
hybridization, and anterograde tracer connectivity data 
[26].

To enhance anatomical delineation, the 2D segmenta-
tion labels from the Franklin-Paxinos atlas have been 
merged onto the Allen CCFv3, creating an enhanced 
and unified mouse brain atlas [27] (Fig. 2a). Though this 
atlas is based on the Allen CCFv3, additional anatomical 
regions were further segmented by combining data from 
cell type-specific transgenic mice and MRI. Other mouse 
brain 3D atlases were also developed using unsupervised 
classification single-cell RNA profiles to define anatomi-
cal divisions based molecular composition (Fig. 2b). The 
gene expression signatures are obtained using spatial 
transcriptomics of mRNAs [28, 29]. These atlases help 
in identifying distinct subregions by segmenting the hip-
pocampal subfields into sublayers or revealing unique 
patterns at the dorsoventral borders in the hippocampal 
subfields (Fig.  2c). Using the Allen CCFv3, these atlases 
have added important information about region segmen-
tation, gene, and cell expressions, allowing researchers 
to compare significant results across experiments onto a 
common reference framework.

Creating an atlas that accurately delineates regions to 
match biological features remains challenging. Efforts are 
also underway to develop a developmental mouse brain 
atlas covering various age points, which is critical for 
understanding growth and development stages [30–32]. 
Given that providing a generalized adult brain atlas is a 
challenge, creating a lifespan atlas is an even more signifi-
cant challenge. Currently, easy online access to compre-
hensive 3D atlas similar to those available of adult mice 
is not yet reality for developmental stages. However, the 
establishment of a standardized developing mouse atlas 
would mark a significant advancement. It would provide 
a generalized framework for studying the developing 
mouse brain and analyzing the connecto-informatics of 
brain circuits throughout various stages of development.

2.2  Atlas-based registration and segmentation
From connecto-informatics analysis, integrating images 
into a reference space is crucial for extracting neural 
information, requiring a registration process. Image 
registration involves spatially aligning two images from 
various modalities to identify or correlate changes in 
structure or function [33] (Fig.  1b). Specifically, this 
process entails merging a neural image with a reference 
image – typically a corresponding 2D section from an 
atlas – for detailed analysis of neural circuit. There are 
two primary methods for this integration. One approach 
maps the reference image onto a neural image, maintain-
ing the integrity of the neural image without distortion. 
Alternatively, the image data can be transformed to fit 
the reference space, which, while potentially distorting 

the original image data, facilitates comparison across dif-
ferent datasets and experiments within the same refer-
ence framework.

Image registration is a critical step in neural analy-
sis, typically performed using transformations provided 
by open-source libraries [34, 35], such as NiftyReg [36], 
Elastix [37], and ANTs [38], which are widely recognized 
for their effectiveness. Elastix and ANTs, built on the ITK 
framework, employ both linear and non-linear trans-
formations to align sample data with reference images 
through deformation processes. This precise alignment is 
crucial for the subsequent step of brain region segmen-
tation, as the accuracy of segmentation directly depends 
on how well the brain and atlas have been registered. 
This segmentation step usually occurs after the reference 
image has been aligned with the data image (Fig.  1c). 
Even though these open-source libraries are readily avail-
able, they require a degree of computational expertise, 
posing a barrier for many biologists. Additionally, the 
lack of standardized methods implementing data compli-
cated the use of these tools on diverse datasets, present-
ing ongoing challenges for researchers in the field.

Atlases serve as essential backbone for connecto-
informatics, with registration and segmentation of brain 
regions heavily dependent on them. However, incon-
sistencies in the boundaries of each segmented region 
across different atlases can significantly impact analysis 
outcomes. Therefore, selecting the appropriate atlases is 
crucial for ensuring reliable results, and the use of uni-
form atlases could facilitate the establishment of a stan-
dardized research pipeline.

Efforts are underway to address these challenges and 
improve the accessibility for researchers. One notable 
attempt is the BrainGlobe [39], a platform that consoli-
dates available atlases to offer a common interface pro-
cessing data across various model organisms. While 
significant progress has been made in creating more 
accurate and accessible atlases, the need for standardized 
and precise reference atlases remains paramount. These 
atlases not only support atlas based image processing but 
also enhance the integration and combination of diverse 
datasets from different research projects, fostering col-
laborative efforts in brain connectivity mapping.

2.3  Atlas-based registration and segmentation open-
source tools
The advancement of atlas-based registration and seg-
mentation tools, alongside with the development of 
standardized brain atlases, has significantly advanced 
neuroscience image processing, particularly in mapping 
mesoscale neural circuits. These tools, by simplifying the 
alignment of neural images to brain atlases, address criti-
cal challenges like the need for high-level computational 
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resources and expertise. They also help mitigate issues 
associated with damaged or incomplete datasets.

One of the recent developments are tools designed for 
2D and 3D image processing tasks. Software like Whol-
eBrain [40] and Neuroinfo [41] has emerged to offer 
semi-automatic solutions for 2D registration and seg-
mentation, utilizing advanced algorithms and integrating 
the comprehensive Allen CCFv3 brain atlas. These tools 
are specifically engineered to simplify the initial stages 
of image processing, enabling researchers to accurately 
align experimental data with reference spaces and auto-
matically annotate critical regions based on the atlas. 
This process is significantly facilitated by the software’s 
capability to automatically register image data to the 
reference slice once the researcher identifies the corre-
sponding region in the 2D section image. However, these 
tools are not without limitations; they can be time-con-
suming to use and may not offer the necessary flexibil-
ity for handling various image modalities, highlighting a 
trade-off between automation and adaptability.

Recognizing the time-intensive nature of manual 2D 
registration, QuickNII offers an advanced semi-auto-
matic approach that significantly reduces the effort 
required to register serial section data to a 3D reference 
atlas [42]. By applying affine spatial transformations, 
QuickNII efficiently aligns each section across the entire 
series, alleviating one of the most laborious aspects of 
neural image processing. Similarly, FASTMAP, a plugin 
for ImageJ, generates custom mouse brain atlas plates 
[43]. This feature address the unique requirements of 
diverse experimental setups, enhancing the tool’s utility 
and flexibility in registration tasks.

Transitioning from 2D to 3D, tools like aMAP, 
MIRACL, and MagellanMapper are each designed to 
address the complexities of 3D registration and segmen-
tation. aMAP, leveraging the NiftyReg framework, offers 
a validated approach that aligns with expert manual seg-
mentation for fluorescent mouse brain images [44]. This 
validation ensures that researchers can rely on aMAP for 
accurate 3D analysis. MIRACL [45] and MagellanMapper 
[46] further extend the capabilities of 3D image process-
ing, implementing fully automated registration pipelines 
tailored for cleared brain images and diffusion MRI data. 
By utilizing frameworks like ANTs and Elastix, these 
tools not only automate the processing of high-resolution 
data but also assure precision in aligning and segmenting 
images within the 3D neural features.

The transition from manual registration libraries to 
sophisticated, user-friendly software tools in neurosci-
ence reflects ongoing efforts to address image processing 
challenges. While these tools have significantly stream-
lined processing and reduced manual intervention, they 
continue to evolve to meet the increasing complexity 
of imaging data and analysis demands. Despite these 

advancements, practical challenges persist, particularly 
with atlas-based registration and segmentation. Vari-
ability among individual brains can lead to registration 
errors, and the existing atlases may not capture all ana-
tomical variations needed for specific research, under-
scoring the limitations in completeness and specificity. 
Consequently, expert judgment remains crucial in inter-
preting and correcting misalignments, ensuring accurate 
segmentation and integration. This blend of technological 
advancement and the need for skilled human oversight 
highlights the enduring necessity for expert involvement 
in refining and utilizing these advanced tools.

2.4  Deep learning-based atlas-based registration and 
segmentation tools
With the rapid progress in artificial intelligence (AI), 
significant efforts have been made towards developing 
deep learning-based tools for automatic registration and 
segmentation, aiming to ease the bottleneck caused by 
the vast volumes of image data generated. DeepSlice, an 
automated registration library, aligns and registers mouse 
brain histology data to the Allen CCFv3 from the Allen 
Brain Institute [47]. This tool uses estimated Euclidean 
data to provide a standardized and simplified registra-
tion process. Additionally, Mesonet facilitates automatic 
mouse brain segmentation by utilizing landmarks on 
brain image to automate segmentation according to the 
atlas [48]. Furthermore, DeepMapi, a fully automated 
registration method for mesoscopic optical brain images, 
uses convolution neural network (CNN) to predict defor-
mation field to align mesoscopic images with the atlas, 
demonstrating how deep learning can be used to stream-
line these processes [49].

Another notable software is mBrainAligner, an open-
source software for cross-modal registration that employs 
deep neural network (DNN) to align whole mouse brain 
with the the standard Allen CCFv3 atlas [50]. mBrain-
Aligner has shown more accurate segmentation results 
compared to the tools mentioned above. The implemen-
tation of deep learning in such software not only accel-
erates processing but also achieves results comparable to 
manual registration and segmentation, thereby ensuring 
high accuracy. Additionally, D-LMBmap has been devel-
oped as a fully automated, deep learning-based end-
to-end package for comprehensive profiling of neural 
circuity across the entire brain [51]. This tool provides an 
integrated workflow that encompasses whole-brain reg-
istration, region segmentation, and axon segmentation, 
facilitating brain circuit profiling with minimum manual 
input. Although currently limited to light sheet fluores-
cent microscopy, D-LMBmap features a novel method 
of registration and segmentation with a user-friendly 
graphical interface. Once validated on high-resolution 
images, it will be a powerful tool with competitiveness 



Page 7 of 16Choi et al. Brain Informatics           (2024) 11:15 

comparable to other already available software. These 
developments in deep learning-based software allow 
high throughput automatic registration without manual 
intervention. This capability allows for the rapid precise 
analysis of vast dataset generated by advanced imaging 
technology.

Deep learning-based registration and segmenta-
tion tools like DeepBrainSeg and BIRDS have not only 
streamline the processes of registration and segmentation 
but have also addressed more complex challenges inher-
ent in neural data processing. DeepBrainSeg is an auto-
mated brain region segmentation tool for micro-optical 
images that employs dual-pathway CNN to capture both 
local details and broader contextual information across 
various scales [52]. This approach significantly enhances 
the accurate segmentation of brain regions, even in noisy 
datasets, through sophisticated image registration and 
the application of domain-specific constraints.

BIRDS, a Fiji plugin software, extends the utility of deep 
learning by offering an open-source algorithm that can 
be implemented on various image modalities, allowing 
easy access and usability to many users [53]. In addition 
to providing automatic registration and segmentation, 
BIRDS offers a deep learning-based direct-inference seg-
mentation on incomplete datasets, such as irregularly or 
partially cut brain sections or hemispheres. These types 
of datasets often present considerable challenges due 
to their lack of comprehensive morphological informa-
tion, making traditional segmentation based on standard 
atlases like the Allen brain atlas difficult. By integrating 
DNN, BIRDS effectively segments these partial images.

The continued development of deep learning-based, 
open-source tools for registration and segmentation 
represents a significant advancement in preprocessing 
neural images. These tools have transformed the image 

processing procedure, making it more convenient and 
time-efficient for researchers, and effectively alleviating 
the possible bottleneck in the analysis pipeline. More-
over, they have shown promising results in address-
ing common challenges in biological experiments, such 
as image noise and partial image section. While these 
tools have substantially improved the efficiency and 
throughput of image processing pipelines, accuracy and 
methodologies continue to evolve, with ongoing devel-
opment providing insight refining these technologies. 
Despite the advancements, the role of expert judgement 
and the quality of input images remain crucial. Even the 
most advanced algorithms require high-quality data to 
function optimally, and expert oversight is essential to 
accurately interpret the complexities of neural images. 
Therefore, quality control is indispensable when using 
these advanced tools to maintain the integrity and reli-
ability of the results. (Table 2)

3  Mapping brain connectivity through feature 
extraction
So far, we have discussed atlas-based registration and 
segmentation tools, which are indispensable for compre-
hensive region-to-region connectivity analysis. However, 
obtaining more detailed insight into individual neuronal 
compositions – such as the number of specific cell types 
or synaptic proteins – require additional steps. Research-
ers typically utilize high-resolution imaging of cells and 
specific immunostaining-labeled molecules to extract 
these crucial features. These image datasets require other 
processing steps beyond basic atlas-based registration 
and segmentation, although they similarly rely on fea-
ture extraction through segmentation. Firstly, despite 
significant advancements in imaging technologies, fur-
ther image processing is essential to eliminate noise and 

Table 2  Summary of selected whole-brain registration and segmentation tools
Software Platform Reference Atlas Registration Segmen-tation Axon 

Tracing
Pretrain Refer-

ence
aMAP Open-source software Allen Mouse Brain Atlas 3D using NiftyReg Yes No No [44]
BIRDS ImageJ plugin Allen Mouse Brain Atlas 3D using Elastix Yes No No [53]
D-LMBmap Open-source software Allen Mouse Brain Atlas 3D using Elastix Yes Yes No [51]
DeepMapi Open-source software Allen Mouse Brain Atlas 2D using ANTs Yes No Yes [49]
DeepSlice Open-source software Allen Mouse Brain Atlas 2D using QuinkNII No No No [47]
FASTMAP ImageJ plugin Custom, based on Allen 

Mouse Brain
2D using reference 
points

Yes No No [43]

Magallen Mapper Standalone software Multiple 3D using Elastix Yes No No [46]
mBrainAligner Open-source software Multiple 3D using reference 

points
Yes No No [50]

Mesonet Open-source software Allen Mouse Brain Atlas 2D using reference 
points

Yes No No [48]

MIRACL Standalone Software Allen Mouse Brain Atlas 3D using ANTs Yes Yes No [45]
Neuroinfo Standalone software Allen Mouse Brain Atlas 3D using ANTs Yes No No [41]
WholeBrain Standalone software Custom, based on Allen 

Mouse Brain
2D using reference 
points

Yes No No [40]
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enhance resolution, enabling accurate segmentation of 
somas and neurons. Neuro-reconstruction poses par-
ticular challenges due to the difficulty of extracting fine 
structures from often noisy images. In the following sec-
tions, we will outline image processing techniques aimed 
at image quality through noise reduction and resolution 
enhancement, followed by detail methods for cellular 
detection and neuron morphology reconstruction.

3.1  Low-level image processing
Low-level image processing is essential to remove 
unwanted attributes and artifacts that may be misinter-
preted as meaningful signals in biological image sets. 
Image denoising and super-resolution techniques are 
crucial for enhancing the quality and resolution of neural 
images, thereby facilitating studies in connecto-informat-
ics. These images are often compromised with noise, arti-
facts, and limited resolution, which can obscure accurate 
interpretation and analysis. Image denoising techniques 
aim to reduce noise and improve the clarity of images, 
while super-resolution methods aim to increase the res-
olution and detail of low-resolution images. Together, 
these image processing techniques hold immense prom-
ise for advancing our understanding of the brain’s struc-
ture and function. High-quality neural images, refined 
through denoising and super-resolution processes, enable 
more accurate segmentation, precise localization of neu-
ral activity, and detailed analysis of brain connectivity.

3.1.1  Image denoising
Image denoising involves removing or reducing 
unwanted noise while preserving essential image features 
and structures in neural images. This noise can originate 
from various sources, including labeling imperfections, 
signal acquisition processes, and innate tissue features. 
Image denoising techniques utilize statistical models, 
filtering algorithms, and increasingly, machine learning 
approaches to effectively suppress noise and improve the 
image’s signal-to-noise (SNR) [54]. These techniques are 
particularly crucial for fluorescence images, where spe-
cific noise patterns and characteristics must be accurately 
managed to ensure precise data analysis and interpreta-
tion. However, the challenges of image denoising are sig-
nificant, especially when the original images are of low 
quality. High noise levels and low resolution complicate 
the denoising process, making it difficult to distinguish-
ing between noise and essential image features.

The advent of deep learning has brought significant 
attention to advanced image denoising algorithms. Ini-
tially, supervised learning methods like denoising CNNs 
were prevalent, but they require extensive high-reso-
lution training data, which can be challenging to obtain 
for fluorescent biological images [55–58]. Consequently, 
recent developments have shifted towards self-supervised 

methods, which can operate with minimal or even single-
image datasets.

One of the earliest deep learning-based image denois-
ing methods that presented a solution to the difficulty in 
obtaining training data was CARE, which used the U-Net 
architecture to enhance the quality of images using pairs 
of low and high SNR images as training datasets [59]. 
More recently, frameworks like Wang et al.’s [60] use 
transfer learning to integrate supervised and self-super-
vised learning to maintain denoising performance with-
out extensive training datasets. Noise2Void introduced 
a novel approach using CNNs to leverage the inherent 
noise characteristics within single noisy images, employ-
ing a blind-spot strategy that allows training directly 
on the data without needing a clean target image [61]. 
Despite these advancements, practical challenges remain, 
such as the correlation of noise among adjacent pixels in 
microscopy, which Noise2Void’s assumptions may not 
address. Structured Noise2Void [62] and Noise2SR [63] 
have evolved these concepts by enhancing self-supervised 
learning techniques and integrating super-resolution 
modules to improve training and denoising outcomes.

MCSC-net is another image-denoising approach tai-
lored exclusively to fluorescent images that utilizes DNN 
for training and modeling the noise in the image using 
a Poisson-Gaussian distribution [57]. Real-time denois-
ing methods like DeepCAD-RT uses adjacent frames 
for training, enabling denoising during ongoing imaging 
processes [64]. However, challenges such as brightness 
shift due to non-zero-mean noise have been addressed 
by innovative algorithms like ISCL: Independent Self-
Cooperative Learning for Unpaired Image Denoising 
[65] (Fig. 1d). This method uses self-supervised learning 
and cyclic adversarial learning for unpaired learning and 
has been shown to outperform other unpaired and blind 
denoising methods.

The primary goal of image denoising in fluorescent 
imaging is to facilitate further processing, and accord-
ingly, many algorithms are designed to incorporate 
additional processing steps beyond mere denoising. 
For instance, DenoiSeg used a self-supervised learning 
approach for denoising and segmentation using a single 
noisy image [66]. Similarly, Deconoising employs a self-
supervised method that combines denoising with decon-
volution of fluorescent images, allowing sharper and 
clearer images, essential in images with fine structures 
such as axons [67].

As deep learning-based image denoising continues to 
evolve, it remains essential for enhancing feature detec-
tion in neural imaging, crucial for analyzing neural con-
nectivity and function. However, the application of these 
tools involves careful consideration of balance between 
reducing noise and preserving crucial image details [68]. 
Over-denoising may results in the loss of important 
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details, while under-denoising may leave excessive noise, 
potentially leading to data misinterpretation, which 
makes diligent judgement from the users to maintain 
balance. Additionally, the generalizability of these algo-
rithms is challenged by variability in imaging conditions 
and data diversity, underscoring the need for compre-
hensive training datasets. Despite these challenges, 
these algorithms significantly enhance the SNR, facili-
tating more accurate segmentation, visualization, and 
interpretation of neural structures. This improvement is 
indispensable for neural circuit analysis and mesoscale 
connectome mapping, serving as a key preprocessing 
step in fluorescence microscopy.

3.1.2  Image super-resolution
Super-resolution image processing techniques are crucial 
for enhancing spatial resolution and detail, particularly 
important in 3D microscopy, where axial resolution is 
typically two times worse than the lateral resolution, cre-
ating resolution anisotropy [69]. These techniques, using 
interpolation, regularization, and advanced learning-
based methods, reconstruct missing details by leverag-
ing spatial and contextual information within images [70, 
71]. Reconstruction-based approaches combine multiple 
low-resolution images to recapture lost high-frequency 
components, whereas deep learning-based methods pre-
dict these components to refine image resolution [72].

Despite these advances, practical challenges persist, 
including high computational demands, sensitivity to 
input image quality, and steep learning curves, particu-
larly for users without a background in computational 
imaging or machine learning. Additionally, the depen-
dency on extensive, high-quality training datasets for 
learning-based methods limits their applicability across 
different microscopy modalities due to data availability 
and representativeness issues.

Addressing these problems, recent innovations have 
been proposed. Weigert et al. [73] introduced a super-
resolution framework that reconstructs isotropic 3D data 
by pairing high-resolution lateral images with low-reso-
lution axial images blurred from a non-isotropic image 
for training the network. Generative adversarial net-
work (GAN)-based frameworks have been pivotal, uti-
lizing matched pairs of low- and high-resolution images 
acquired through experiments for training [74]. Another 
GAN-based approach uses an image-degrading model 
to artificially create low-resolution images required for 
training, derived from their high-resolution counter-
parts, allowing the network to reconstruct super-resolu-
tion images from new low-resolution inputs [75].

In scenarios where training data is scarce, particu-
larly in fluorescent microscopy, Eilers and Ruckebusch 
[76] introduced a non-deep learning super-resolution 
algorithm that employs interpolation on single images, 

requiring no training for a fast, simple resolution 
improvement. For cases with a limited training set avail-
able, a CNN-based approach was proposed for super-
resolution [77]. Deep-SLAM, focusing on light-sheet 
microscopy, uses DNNs to restore z-axis resolution using 
raw lateral slices and degraded resolution as paired train-
ing data to restore the isotropic resolution of axial slices 
[78].

Particularly noteworthy are cycleGAN-based algorithm 
[79] and Self-Net’s [80] rapid, self-supervised learn-
ing approach, which minimize the need for extensive 
datasets by leveraging high-resolution lateral images as 
training targets for low-resolution axial counterparts. 
These methods streamline the training process, reduce 
computational requirements, and facilitate high-quality 
image restoration across all types of 3D fluorescence 
microscopy.

Super-resolution processing not only enhances image 
resolution beyond the limits of current imaging tech-
nology but also improves visualization of fine struc-
tures, such as neuronal components. Although there are 
numerous promising developments and research efforts 
on super-resolution algorithms, a universally applicable 
method for various modalities has not yet been devel-
oped. Establishing a standardized method would greatly 
benefit researchers, integrating these advancements into 
the connecto-informatics image processing pipeline.

3.2  Cell segmentation
The brain comprises a multitude of cell types, such as 
neurons and glial cells, ditinguished by their morphol-
ogy, topographic position, molecular signatures and so 
forth. Cell segementaion (i.e. cell body or soma) provide 
information about cell density and type in distinct brain 
regions that is crucial for understanding the intricate 
organization of brain connectivity at the cellular level. 
Variations in these attributes, like cell density and type, 
within specific brain regions have been linked to neuro-
logical disorders such as Parkinson’s disease [81–86]. The 
3D topographical organization of cells, which relates to 
cell-type-specific connectivity, further highlights the 
complexity of neural networks [10]. Techniques like 
STPT have enabled researchers to map spatial cell type 
distributions withn the cerebrovascular network, reveal-
ing the elaborate cellular organization underlying brain 
circuits [87, 88]. Accurate detection and identification of 
cells are essential for unraveling the complexities of neu-
ral circuit connectivity, function, and organization. This 
understanding is pivotal for advancing our knowledge 
of brain functionality in both health and disease, poten-
tially leading to improved treatments for neurological 
conditions.

However, accurate detection and identification of cells 
pose significant challenges, including the resolution 
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limitations of current imaging technologies and the dif-
ficulty of distinguishing between cell types in densely 
packed regions. These issues underscore the need for 
advanced segmentation and identification tools for pre-
cise analysis. ImageJ, a conventional image analysis tool, 
facilitates soma detection through plugins that allows 
segmentation and quantification via manual parameter 
adjustments [89, 90]. Yet, the rapid advancement in imag-
ing technology has produced large-scale, high-resolution 
images, making manual segmentation time-consuming 
and labor-intensive.

To address this, several automatic 3D soma detection 
algorithms for fluorescent images have been developed 
[91–93]. One algorithm focused on automatic large-scale 
3D soma detection through multiscale-morphological 
closing and adaptive thresholds implemented to the 
images [94]. The shift from manual manipulation to auto-
mated algorithms marks a significant development in cel-
lular-level analysis in neural circuit mapping. Continuous 
efforts are being made to overcome the almost impossi-
ble manual-intensive cellular segmentation, and recently, 
AI has been implemented to overcome the issue [95]. 
Particularly, deep learning-based approaches have been 
instrumental in advancing cell detection [96]. CNNs have 
been trained to detect and segment densely packed cells 
automatically, even in partially labeled datasets, revealing 
crucial topographical information and into possible cell-
type-specific functions about PV cells in the STN [10, 97] 
(Fig.  1e). Another method uses DNN to automatically 
detect 3D soma in a mouse whole-brain image, which 
allows the detection of a large population of cells [98].

Tools like Fiji/ImageJ, enhanced with deep learn-
ing plugins such as DeepImageJ, allow users to either 
use pre-trained CNN models or train their models for 
cell detection tasks [99]. Despite the advantages of deep 
learning-based methods, they often face challenges such 
as slow processing due to the need for extensive data 
training, limitations in applying to whole-brain images, 
or handling high-throughput image generation. Recent 
methods like a two-stage DNN-based algorithm have 
been developed for fast and accurate soma detection in 
whole mouse brain images, addressing these challenges 
by filtering images without somas and segmenting those 
with identified somas [100].

Further advancements include weak- and self-super-
vised cell segmentation methods developed to reduce 
the burden of manually making pixel-level ground-truth 
training labels [101, 102]. Open-source software like 
Cellpose, which uses a U-Net-based algorithm, requires 
minimal user intervention and allows rooms for addi-
tional training, making it accessible and user-friendly for 
various cell segmentation tasks [103].

While accurate cell segmentation is crucial for fur-
ther brain mapping analysis at the cellular level, further 

quantification and identification are also essential in fol-
lowing connecto-informatics analysis. CellProfiler [104], 
an early software widely used for cell phenotype iden-
tification, and newer tools such as CellCognition and 
CellSighter, use deep learn and unsupervised learning to 
automate the analysis of cell based on their phenotypes 
[105, 106]. Another algorithm demonstrated the accurate 
classification of cells by their phenotypes in a mixed cell 
population image with high accuracy [107]. This algo-
rithm used self-label clustering, where the primary objec-
tive was to achieve precise cell identification based on 
morphological characteristics. These tools offer potential 
for expedited circuit mapping analysis, alleviating a time-
consuming bottleneck in the workflow.

Accurate cell detection and identification are piv-
otal for exploring the morphological, connectivity, 
and functional aspects of cells, thereby enhancing our 
understanding of mesoscale neural circuits. Although 
automated and manual detection methods offered by 
various software tools facilitate this analysis, challenges 
such as high variability in cell morphology and potential 
algorithmic bias in automated tools can affect the reli-
ability of cell identification and subsequent analyses. Rec-
ognizing and addressing these challenges is essential for 
advancing our comprehension of neural circuitry, func-
tion, and organization.

3.3  Neuronal morphology reconstruction
Neurites are cellular processes that project from the cell 
body of a neuron. These extensions encompass both 
axons and dendrites, essential for neural communication 
and connectivity, facilitating information transmission 
throughout the nervous system. Digitally reconstruct-
ing these neuronal morphologies from imaging data 
enables the analysis and integration of neural networks 
across various modalities. Recent advancements in com-
puter-assisted tracing algorithms and technologies have 
enabled large-scale neuron reconstruction efforts, pro-
viding insights into the brain’s mesoscale connectivity 
patterns and enhancing our understanding of its struc-
ture and organization [108, 109]. However, challenges 
such as high computational cost and the technical com-
plexity of capturing detailed neuronal structures per-
sists, highlighting the need for advances tools in neuron 
reconstruction.

NeuTube1.0, an open-source platform, allows for 
detailed neuron reconstruction neural tracing [110]. It 
facilitates both 2D and 3D visualization and tracing of 
neurons for reconstruction from fluorescent images, 
employing a semi-automatic approach, with seed-based 
tracing and path-searching algorithms within a cylindri-
cal fitting model. This method allows efficient visualiza-
tion, reconstruction, and editing of neuron structures, 
providing a valuable resource for researchers (Fig.  1f ). 
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Through neuTube1.0, researchers have analyzed the spa-
tial synaptic connectivity pattern of the hippocampus 
region using mGRASP and shown in reconstructed 3D 
neuron structures [12, 111]. Additionally, neuTube1.0 
was used to create a comprehensive atlas of the larval 
zebrafish brain at cellular resolution by systematically 
mapping the cellular composition and connectivity pat-
terns of 1,955 reconstructed single neurons [112].

Another open-source program, Vaa3D, integrated with 
TeraFly and TeraVR, is a cross-platform visualization 
and analysis system that allows visualization on tera-
byte scale images and neuron tracing in a virtual-reality 
environment [113, 114]. TeraFly efficiently handles large-
scale 3D image data, focusing on specific regions of inter-
est with varying levels of details, while TeraVR provides 
an immersive environment for neuron reconstruction, 
facilitating precise tracing and annotation [115, 116]. 
Utilizing the ‘Virtual Finger’ algorithm, Vaa3D has facili-
tated the semi-automatic tracing of over 1,700 neurons 
from mouse brain images obtained using the fMOST, 
revealing the morphological diversity of single neurons 
in a brain-wide scale [117]. Additionally, the same tools 
were used to characterize neurons in the human brain by 
reconstructing 852 neurons from images obtained using 
a newly proposed cell adaptive tomography (ACTomog-
raphy) to capture cortical neurons injected with dyes that 
targeted individual neurons in the human brain tissues 
[118].

The MouseLight project has reconstructed the mor-
phology of 1,000 projection neurons using a semi-auto-
matic pipeline that classifies axonal structures, generates 
a probability stack for skeleton extraction and segmenta-
tion, and refines axonal segment reconstructions through 
human annotation [119]. This project has uncovered pre-
viously unknown cell types and elucidated the organiza-
tion of long-range connections within the mouse brain.

Recent work in cortical cell subtype mapping has 
reconstructed 6,357 single neurons in the mPFC through 
the Fast Neurite Tracer (FNT) software tool using 
images obtained with fMOST, classify axon projections 
into subtypes and revealing the topographical organiza-
tion of PFC axon projections [120]. The FNT software 
facilitates the tracing of large image datasets by dividing 
them into smaller three-dimensional cubes. It employs 
Dijkstra’s algorithm, a method for finding the shortest 
paths between nodes in a graph, which in this context, 
helps visualize and trace neurons accurately by deter-
mining the most efficient routes for neuron paths. Fur-
thermore, using the single-neuron reconstruction data 
traced through neuTube and FNT, Gao et al. [121] fur-
ther reconstructed over 2,000 neurons and classified the 
organization into finer subtypes based on the axon-den-
drite features, which revealed inter-connectivity among 
projection neuron types in the PFC. Most recently, Qui 

et al. [122] reconstructed 10,100 single neurons to map 
the brain-wide spatial organization of neurons in the 
mouse hippocampus. By manually reconstructing single 
neurons, they revealed patterns and subtypes of neu-
rons within the hippocampus, which serve as a basis for 
understanding its functions further.

Although semi-automatic tools predominate, signifi-
cant strides have been made in developing automatic 
algorithms for neuron reconstruction [123–126]. Yet, the 
inherent variability in datasets, influenced by different 
animal models, imaging techniques, and neuron types, 
presents considerable challenges to solely rely on auto-
matic algorithms [127–131]. Automated algorithms also 
face challenges with densely interwoven dendrites and 
axons from multiple labeled neurons.

While existing methods excel in single neuron mor-
phology, they struggle with accurately reconstructing 
densely structured neurons. Computational strategies 
like the TREES toolbox simulate and analyze the complex 
branching patterns of neurons based on branch order 
to reconstruct multiple neurons, while NeuroGPS-Tree 
utilizes spatial information of cell bodies and statisti-
cal distribution to iteratively detect and eliminate incor-
rect connections between two neuron reconstructions 
to accurately separate intertwined neurons [132, 133]. 
Li et al. [134] introduced G-Cut, a novel development 
that segments densely interwoven neuron clusters. This 
tool uses a graph-based representation of cell bodies to 
calculate the global optimum, automatically segmenting 
individual neurons within a cluster. G-Cut demonstrates 
higher accuracy in segmentation compared to previously 
mentioned methods. GTree was developed as an open-
source tool for brain-wide dense neuron reconstruction 
by building on NeuroGPS to identify neurons and inte-
grate a display module to check errors for higher recon-
struction accuracy [135].

While software tools like NeuroGPS, TREES toolbox, 
and G-Cut advance neuron reconstruction, they often 
overlook errors such as neuron entanglement and inter-
ference from passing axons, which are crucial for prun-
ing. The SNAP pipeline addresses this gap by offering 
structured pruning to eliminate reconstruction errors 
and disentangle neuron reconstructions, enhancing accu-
racy and reducing the need for manual curation [136].

Despite these state-of-the-art advances, semi-auto-
matic methods are preferred in large-scale brain-wide 
neuron reconstruction efforts. Central to understand-
ing the limitations and potentials of automated trac-
ing algorithms is the BigNeuron project, a collaborative 
project aimed at benchmarking the performance of 
these algorithms across diverse light microscopy data-
sets [137]. BigNeuron aims to enhance automatic neu-
ron tracing tools by offering a standardized comparison 
platform. It creates a diverse, cross-species dataset for 
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benchmarking, provides gold standard annotations for 
select datasets, and evaluates 35 automatic tracing algo-
rithms. This initiative advances algorithm development 
for broader benchmarking and underscores the impor-
tance of human expertise in generating gold-standard 
datasets for accurate comparisons.

The evolution of AI, particularly deep learning, offers 
a promising future for neuron reconstruction, automat-
ing tasks that once heavily relied on human expertise, 
especially in dataset preparation. Emerging methods are 
significantly reducing, and in some cases eliminating, the 
need for human intervention in creating training datasets 
for neuron reconstruction. By combining traditional trac-
ing methods to create pseudo-labels needed for training 
and the 3D deep learning network for neuron reconstruc-
tion, Zhao et al. [138] suggested a neuron tracing frame-
work that does not require manual annotation. Another 
novel approach utilized a weakly supervised CNN for a 
fully automatic neuron tracing method, including gen-
erating automatic training labels [139]. This method was 
further improved to detect and trace distorted or broken 
structures using probability maps estimated by 3D resid-
ual CNN [140].

Additionally, using a self-supervised approach, a 3D 
CNN was used to predict the order of permuted slices 
in the 3D image, leveraging the tube-like structure of 
axons for label-free feature extraction and enhanc-
ing downstream segmentation with a 3D U-Net model 
[141]. MPGAN also utilized a self-supervised method to 
develop a two-stage generative model strategy that cre-
ates synthetic 3D images with voxel-level labels from 
unlabeled data, enhancing segmentation network perfor-
mance and improving neuron reconstruction methods 
[142]. These approaches promise to alleviate the bottle-
neck in neuron tracing by streamlining the process of 
generating training datasets and applications.

Neuron reconstruction is critical for analyzing neural 
circuits, including measurements like dendritic length 
and synaptic connections. Incorporating deep learn-
ing into this process marks a significant shift towards 
automation, reducing the dependence on human exper-
tise. Future improvements should focus on enhancing 
the models’ accuracy, reliability, and generalizability. 
As deep learning evolves, it offers biologists advanced 
tools for uncovering the complex organization of neural 
structures. However, challenges related to data quality, 
algorithmic adaptability, and the integration of diverse 
imaging data remain, highlighting the need for continued 
innovation in automated neuron reconstruction method-
ologies (Table 3).

4  Discussion & conclusion
In summary, this review provides an up-to-date over-
view of the current advances in image processing tools, 
highlighting the integration of AI to tackle the challenges 
arising from the growing volume and diversity of gener-
ated images. The integration of AI has shown promising 
results in alleviating the image processing bottleneck, 
potentially revolutionizing the field. However, the need 
for manual intervention persists due to factors such as 
quality variants and complexity in neural data. Addition-
ally, certain advanced tools may initially encounter acces-
sibility limitations or implementation constraints across 
different modalities.

While AI framework may provide enhanced accuracy 
and faster image processing speed, the inherent features 
found in neural data makes human intervention inevi-
table. Moreover, the challenge of gathering sufficient 
training datasets for deep learning poses as a signifi-
cant limitation. Ongoing efforts are being made to over-
come these challenges, aiming to integrate deep learning 
throughout the image processing workflow more com-
prehensively. This integration aims to minimize manual 

Table 3  Summary of selected cell and neuron reconstruction tools
Software Platform Language Function Learning-based Method Reference
CellCognition Open-source software Python Cell classifier Yes CNN [105]
Cellpose Open-source software Python Cell segmentation Yes U-Net [103]
CellProfiler Open-source software MATLAB/C++ Cell classifier No - [104]
CellSighter Open-source software Python Cell classifier Yes CNN [106]
DeepImageJ Fiji plugin Java Cell segmentation Yes CNN [99]
APP2 Vaa3d plugin C++ Neuron reconstruction No - [108]
FNT Standalone software C++ Neuron reconstruction No - [120]
G-Cut Open-source software Matlab Neuron reconstruction No - [134]
Huang et al. Open-source software Python Neuron reconstruction Yes CNN [139]
Klinghoffer et al. Open-source software Python Neuron reconstruction Yes 3D U-Net [141]
MPGAN Open-source software Python Neuron reconstruction Yes GAN [142]
NeuroGPS Vaa3d plugin C++ Neuron reconstruction No - [133]
neuTube1.0 Standalone software C++ Neuron reconstruction No - [110]
TeraVR Vaa3d plugin C++ Neuron reconstruction No - [116]
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input and provide a more unified, efficient image pro-
cessing pipeline that accommodates various experimen-
tal and imaging approaches. Such an approach is crucial 
for expedited analysis of mesoscale brain connectivity 
mapping data, highlighting continuous pursuit towards 
automation while acknowledging the indispensable role 
of human expertise.

Connecto-informatics, as applied at this level of anal-
ysis, holds great promise in illuminating the underly-
ing mechanisms behind diverse brain functions and the 
development of neurological diseases linked to disrup-
tions in neural circuits. Furthermore, it is essential to 
note that advanced tools for connecto-informatics at the 
microscale are equally significant despite being omitted 
in this review. As the field continues to evolve, the pivotal 
role of interdisciplinary collaboration and the integra-
tion of cutting-edge technologies cannot be overstated. 
These collaborative efforts will undoubtedly drive further 
advancements in our comprehension of brain connectiv-
ity at the mesoscale level, paving the way for new insights 
and potential therapeutic strategies.
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