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Abstract 

Brain age, a biomarker reflecting brain health relative to chronological age, is increasingly used in neuroimag-
ing to detect early signs of neurodegenerative diseases and support personalized treatment plans. Two primary 
approaches for brain age prediction have emerged: morphometric feature extraction from MRI scans and deep learn-
ing (DL) applied to raw MRI data. However, a systematic comparison of these methods regarding performance, inter-
pretability, and clinical utility has been limited. In this study, we present a comparative evaluation of two pipelines: 
one using morphometric features from FreeSurfer and the other employing 3D convolutional neural networks (CNNs). 
Using a multisite neuroimaging dataset, we assessed both model performance and the interpretability of predictions 
through eXplainable Artificial Intelligence (XAI) methods, applying SHAP to the feature-based pipeline and Grad-
CAM and DeepSHAP to the CNN-based pipeline. Our results show comparable performance between the two 
pipelines in Leave-One-Site-Out (LOSO) validation, achieving state-of-the-art performance on the independent test 
set ( MAE = 3.21 with DNN and morphometric features and MAE = 3.08 with a DenseNet-121 architecture). SHAP 
provided the most consistent and interpretable results, while DeepSHAP exhibited greater variability. Further work 
is needed to assess the clinical utility of Grad-CAM. This study addresses a critical gap by systematically comparing 
the interpretability of multiple XAI methods across distinct brain age prediction pipelines. Our findings underscore 
the importance of integrating XAI into clinical practice, offering insights into how XAI outputs vary and their potential 
utility for clinicians.
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1 Introduction
Brain age, the estimation of an individual’s brain health 
relative to chronological age, has emerged as a valu-
able biomarker in neuroimaging studies [1, 2]. Accurate 
brain age prediction can provide critical insights into the 
aging process, identify early signs of neurodegenerative 

diseases, and facilitate the development of personal-
ized treatment plans [3–6]. Indeed, brain age prediction 
studies have been conducted in a wide range of clinical 
populations, including neurological conditions such as 
Alzheimer’s disease (AD) [7], mild cognitive impair-
ment (MCI) [8], multiple sclerosis (MS) [9], and trau-
matic brain injury [1, 10]. These studies aim to assess 
brain aging in individuals at various stages of health and 
disease, supporting diagnosis, prognosis, and treatment 
decisions. Other clinical conditions investigated include 
epilepsy [11], stroke [12], and psychiatric disorders like 
schizophrenia [13], bipolar disorder [14], and autism 
spectrum disorder [15], among others. These studies 
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underline the broad applicability of brain age prediction 
as a tool in clinical settings to evaluate neurological and 
psychiatric conditions, providing insights into disease 
progression and individualized care. As a result, various 
machine learning (ML) approaches have been employed 
to enhance the accuracy and reliability of brain age pre-
diction models [10, 16].

Recent research has focused on two primary meth-
odologies for brain age prediction: the use of morpho-
metric features extracted from MRI scans [17, 18] and 
the application of deep learning (DL) techniques to raw 
or minimally preprocessed MRI data [19]. Traditional 
approaches often involve feature extraction using tools 
like FreeSurfer1 to derive morphometric features, which 
are then fed into machine learning models for age pre-
diction [15]. Conversely, deep learning architectures, 
particularly three-dimensional convolutional neural net-
works (3D CNNs), have gained traction for their ability 
to directly process volumetric T1-weighted MRI scans 
without requiring extensive preprocessing or intermedi-
ate feature extraction steps [1]. Both methodologies have 
demonstrated promising results, yet they have seldom 
been compared systematically in terms of performance, 
interpretability, and clinical usability.

Explainable Artificial Intelligence (XAI) has become 
increasingly relevant in the context of brain age pre-
diction, as it addresses the black-box nature of many 
advanced ML and DL models [20, 21]. The goal of XAI is 
to make model predictions more transparent and under-
standable, which is particularly important in clinical 
settings where healthcare professionals must trust and 
validate decisions [22, 23]. Various XAI methods, such 
as SHAP (SHapley Additive exPlanations) [24, 25], Grad-
CAM (Gradient-weighted Class Activation Mapping) 
[26], and DeepSHAP [24], offer different mechanisms 
to interpret model outputs. However, existing literature 
often employs a single XAI method per class of algo-
rithms and presents aggregated results without delving 
deeply into the insights provided by different combina-
tions of machine learning methods and XAI techniques.

To bridge the gap between interpretability and trust-
worthiness in clinical practice, it is crucial to investigate 
the stability and utility of XAI methods. This involves 
examining how XAI outputs vary with different param-
eters and determining if these explanations can be inte-
grated into tools that are practically useful for clinicians. 
This paper addresses these needs by exploring several 
research questions:

• RQ1: do different pipelines yield statistically signifi-
cant differences in performance?

• RQ2: are different XAI methods stable across various 
parameter settings, and how do they enhance inter-
pretability in the context of these pipelines?

• RQ3: how effectively can the combined insights from 
pipeline performance and XAI explanations sup-
port clinical decision-making in brain age prediction 
tasks?

To answer these questions, we use a multisite dataset 
of healthy control groups to compare multiple machine 
learning architectures within two distinct pipelines-one 
based on morphometric features and the other one on 
3D DNNs trained on minimally preprocessed MRI data. 
The primary objective of these pipelines is the predic-
tion of brain age, which requires using data exclusively 
from healthy subjects to establish a normative baseline 
for chronological age estimation. We select SHAP for the 
first pipeline and Grad-CAM and DeepSHAP for the sec-
ond, conducting a thorough analysis of individual expla-
nations across various parameter settings. Additionally, 
we perform a correlation analysis between the most sta-
ble XAI methods and the subjects’ ages to identify sta-
tistically significant age biomarkers. This work presents 
a systematic framework for comparative evaluation of 
the two most adopted brain age prediction pipelines. 
Unlike isolated statistical comparisons, our framework 
integrates XAI methods to assess how the explanations 
provided by different pipelines align with clinical require-
ments. By offering a unified approach to performance 
and interpretability assessment, this study contributes 
to the development of robust and interpretable brain age 
prediction models for clinical applications.

2  Related works
2.1  Morphometric feature‑based pipelines
Morphometric feature-based pipelines leverage anatomi-
cal features such as cortical thickness and brain volume 
extracted from MRI scans to predict brain age. These 
methods offer a structured approach to understanding 
brain aging. Cole and colleagues [27] utilized a compre-
hensive set of neuroimaging phenotypes from the UK 
Biobank to model brain age, achieving a mean absolute 
error (MAE) of 3.5 and a correlation coefficient R = 0.78 . 
Their study effectively used a broad range of neuroimag-
ing phenotypes to enhance predictive accuracy. Similarly, 
Madan et al. [28] used different parcellation approaches 
to predict age from cortical structure, achieving an MAE 
of 6.5. This comprehensive approach underscored the 
variability and robustness of cortical measures in brain 
age prediction. Guan et  al. [29] focused on multimodal 
MRI data, achieving an MAE = 8.24 and an R = 0.85 . 1 https:// surfer. nmr. mgh. harva rd. edu/ fswiki/ recon- all.

https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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Their use of partial least squares regression (PLSR) high-
lighted specific brain regions significant in predicting 
brain age. In [30] different feature selection techniques 
were employed in a multimodal approach, achieving a 
remarkable MAE of 1.17, demonstrating how focusing 
on the most relevant features can enhance model perfor-
mance. In the work of Aycheh et  al. [31], the brain age 
of 2911 healthy subjects was predicted with MAE = 4.05 
by using cortical thickness data with gaussian process 
regression (GPR) emphasizing significant cortical fea-
tures. Lombardi et  al. compared different ML mod-
els with a set of morphological features, reporting an 
MAE = 4.6 on a hold-out test and underscored the value 
of detailed feature importance analysis [32].

2.2  DNN pipelines
Deep neural networks excel in brain age prediction by 
processing raw or minimally preprocessed MRI data. 
These models capture complex patterns and relationships 
within the data that traditional methods might miss.

Peng et al. [33] utilized a lightweight CNN architecture 
with 3D convolutions, achieving an MAE = 2.58 and an 
R = 0.9 , showcasing the efficiency of CNNs in handling 
volumetric data. In Dartora et  al. [34], different CNN 
models were compared to verify generalizability with var-
ious populations and MRI scan characteristics. In [35], 
sections of brain-extracted T1-weighted MRI scans were 
used as input to produce a single scalar regression output 
by adapting the successful VGG-16 architecture for age 
regression, achieving an MAE = 2.9 and R = 0.87 . Lev-
akov et  al. [36] achieved a mean MAE = 3.72 , illustrat-
ing the challenges of maintaining high accuracy across 
diverse datasets with 3D CNN architectures.

Besson et  al. [37] adapted geometric deep learning 
techniques, achieving R = 0.92 and MAE = 4.91 . This 
study demonstrated the versatility of graph CNN in han-
dling complex brain shapes.

2.3  XAI methods and interpretability insights
Interpretability is crucial for clinical applications of brain 
age prediction models. Various studies have employed 
different XAI methods to elucidate the decision-making 
processes of their models.

Among the morphometric feature-based studies, in 
most of the works, detailed analyses were performed 
to highlight significant neuroimaging phenotypes and 
brain regions [27, 29, 30, 32]. These analyses provided 
clear evidence of specific anatomical features that could 
serve as biomarkers of aging. In general, among the mor-
phometric feature-based studies, most works focus on 
feature importance analysis and visualizing the most rel-
evant features for age prediction. Only a smaller portion 

of studies employ local XAI methods to extrapolate the 
impact of morphometric features individually [38].

In DNN-based approaches, gradient-based techniques 
and relevance maps are predominantly used for inter-
pretability. Grad-CAM is a visualization technique that 
highlights important regions in an input image by using 
the gradients of the target concept flowing into the final 
convolutional layer to produce a coarse localization map. 
This method has been applied to 3D CNNs to visual-
ize which brain regions contribute most to age predic-
tion. Gradient-based methods generate attention maps, 
providing intuitive visual insights into the specific brain 
regions the model focused on [39]. Similarly, relevance 
maps show how much each input feature contributes 
to the final prediction. Techniques like Layer-wise Rel-
evance Propagation (LRP) can be used to create these 
maps. In [37] the cortical regions involved in their pre-
dictions were identified, using relevance maps to bridge 
the gap between complex model outputs and clinically 
meaningful interpretations.

A critical issue with DNN-based XAI methods such 
as Grad-CAM, and relevance maps is that they often 
present heatmaps averaged over groups of individu-
als. While these group-level explanations can highlight 
common patterns and regions of interest, they do not 
always translate effectively to individual patient care 
[36, 40]. In clinical practice, medical specialists need to 
understand the predictions for individual patients to 
make informed decisions. Most studies have focused on 
group-level interpretations without thoroughly exploring 
the usability of individual-level explanations [36, 37, 41]. 
The challenge lies in ensuring that these XAI methods 
can provide reliable and interpretable insights for single 
patients, which is essential for clinical applications. Indi-
vidual-level heatmaps must be clear and actionable, help-
ing specialists understand the brain regions influencing 
each patient’s predicted age.

3  Materials
3.1  Dataset
In this study, we used publicly accessible data from 
OpenBHB.2 OpenBHB aggregates data from 10 pub-
licly available datasets, including IXI, ABIDE 1, ABIDE 
2, CoRR, GSP, LOCALIZER, MPI-Leipzig, NAR, NPC, 
and RBP. OpenBHB provides data for a specific challenge 
that includes separate training and validation sets, as well 
as a private test set [42]. For our study, we exclusively 
used the publicly accessible data, designating the train-
ing set as our training data and the validation set as our 

2 https:// ieee- datap ort. org/ open- access/ openb hb- multi- site- brain- mri- 
datas et- age- predi ction- and- debia sing.

https://ieee-dataport.org/open-access/openbhb-multi-site-brain-mri-dataset-age-prediction-and-debiasing
https://ieee-dataport.org/open-access/openbhb-multi-site-brain-mri-dataset-age-prediction-and-debiasing
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test data. The use of the OpenBHB dataset is particularly 
justified given the potential biases introduced by imaging 
characteristics and acquisition sites [15, 38, 43]. Indeed, 
scanner differences, acquisition protocols and individual 
characteristics in the training set, such as sex and age dis-
tribution, can significantly affect the generalizability of 
machine learning models trained on neuroimaging data 
[44]. We aim to test our algorithms’ ability to generalize 
across different studies and populations by employing a 
dataset aggregated from multiple international sites with 
different imaging protocols. This approach helps to iden-
tify and mitigate any biases that may arise due to specific 
scanner types, imaging conditions, and demographic 
characteristics, thereby improving the robustness and 
applicability of the brain age prediction models in varied 
clinical and research settings.

It must be noted that the OpenBHB project organizes 
the validation set (our test set) in a particular way. It is 

divided into two partitions: the internal test set and the 
external test set. The former consists of observations 
from the same sites as the training set, while the latter 
includes examples from patients treated at five sites not 
considered in the training set. Both partitions were cre-
ated using stratified sampling based on age and sex. For 
the internal set, stratification also considered sites. This 
particular division of the validation set allows for evalu-
ating the models in scenarios involving both previously 
seen sites and new, unknown settings, thereby assessing 
the model’s generalization capability on unseen examples.

We utilized N = 3984 T1-weighted MRI scans of a 
cohort of Healthy Controls (HC) in the OpenBHB data-
set, collected from 62 international sites (Table 1).

The subjects included in the study came from dis-
tinct backgrounds, including European-American, 
European, and Asian origins, ensuring a varied sample. 
The overall age and sex distributions for OpenBHB are 
shown in Fig.  1. The T1-weighted MRI scans were col-
lected using 1.5 Tesla and 3 Tesla scanners, with varying 
characteristics such as manufacturers and acquisition 
parameters (e.g., repetition time, echo time, sequence 
name, flip angle, and acquisition coil). Three modali-
ties derived from the same T1-weighted MRI scans are 
available: Voxel-Based Morphometry (VBM), Surface-
Based Morphometry (SBM), and quasi-raw (minimally 
preprocessed) data. This study focuses on the quasi-raw 
T1-weighted images and Surface-Based Morphometry 
indices derived using FreeSurfer.

3.2  Preprocessing of quasi‑raw MRI images
Minimally preprocessed data were generated using a 
series of neuroimaging preprocessing tools. Initially, 
ANTS3 was used for bias field correction to address 
intensity inhomogeneities in the MRI scans. Next, FSL 

Table 1 OpenBHB demographic information

Study Subjects Age Sex (%M) Sites

ABIDE I 453 17.09 ± 7.85 82.56 20

ABIDE II 462 14.97 ± 9.31 72.29 16

CoRR 600 24.73 ± 15.25 48.33 18

GSP 1342 21.46 ± 2.79 41.73 5

IXI 484 48.52 ± 16.47 45.04 1

Localizer 65 24.06 ± 6.39 46.15 2

MPI-Leipzig 237 34.57 ± 17.32 57.81 1

NAR 251 21.93 ± 4.70 40.24 3

NPC 56 26.32 ± 4.23 46.43 1

RBP 34 23.06 ± 4.99 50.00 1

Total 3984 24.92 ± 14.29 52.38 62

Fig. 1 Overall age and sex distributions of the subjects in the OpenBHB dataset

3 https:// github. com/ ANTsX/ ANTs.

https://github.com/ANTsX/ANTs
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FLIRT4 was employed with 9 degrees of freedom (exclud-
ing shearing) followed by affine registration to the MNI 
template. Finally, a brain mask was applied to remove 
non-brain tissues, ensuring that only brain structures 
were retained in the final images.

Following these initial steps, the data underwent fur-
ther preprocessing. First, undersampling was performed, 
reducing each dimension of the MRI scans by half. 
This process decreased the resolution, resulting in final 
dimensions of 91 × 109 × 91 voxels. Undersampling helps 
in reducing the computational load and storage require-
ments while preserving essential structural information.

Subsequently, z-score normalization was applied to 
standardize the intensity values across the dataset. This 
step involved calculating the mean and standard devia-
tion of the voxel intensities and transforming each voxel 
value to its corresponding z-score.

3.3  Extraction of morphological features
Morphological features were obtained from the 
T1-weighted raw scans using the recon-all pipeline from 
the FreeSurfer software. This pipeline processes and 
analyzes structural MRI data through a series of steps, 
including intensity normalization, skull stripping to 
remove non-brain tissues and segmentation of gray mat-
ter and white matter. It also performs hemispheric-based 
tessellations to create a mesh representation of the cor-
tical surface, followed by topology correction and infla-
tion to visualize cortical folding patterns. The final step 
registers the cortical surfaces to the “fsaverage” template, 
a standardized brain template used to facilitate compari-
sons across subjects.

Based on the data, FreeSurfer derives various morpho-
logical measures. In this study, we focused specifically on 
seven ROI-based features computed using the Desikan-
Killiany atlas [45]. These features include cortical thick-
ness (mean and standard deviation), gray matter volume, 
surface area, integrated mean curvature, integrated 
Gaussian curvature, and the intrinsic curvature index.

Normalization of volumetric data is a crucial step in 
neuroimaging studies to mitigate the confounding effects 
of individual differences in brain size [46]. Intracranial 
volume (ICV) can vary significantly between individu-
als due to factors such as age, sex, and overall body size. 
By normalizing brain volumes, we ensure that compari-
sons across subjects focus on specific regions of interest 
(ROIs) rather than being influenced by variations in over-
all brain size. Notably, cortical thickness measures were 
excluded from this normalization process, as they are less 

susceptible to variations in total brain size and do not 
require such adjustment.

To achieve this normalization, we first calculated the 
mean ICV across the entire sample to establish a refer-
ence point. Subsequently, a regression analysis was per-
formed with ICV as the independent variable and the 
volume of each ROI as the dependent variable, yielding 
the B-weight, which quantifies the relationship between 
ICV and ROI volume. This B-weight was then used to 
normalize the volume of each ROI for each subject. 
The normalization was performed using the following 
formula:

where “ss ICV” represents the single subject’s intracranial 
volume. This normalization adjusted the raw volumes 
based on each subject’s ICV relative to the sample mean 
ICV.

Finally, all features underwent min-max normalization, 
which was applied to the seven characteristics across 
each of the 68 anatomical regions (34 per hemisphere) 
defined by the Desikan-Killiany atlas [45]. This process 
rescaled the features to a fixed range of [0,  1], ensuring 
that all features were on a comparable scale. This normal-
ization step is crucial as it facilitates subsequent analy-
sis and machine learning applications by eliminating the 
effects of differing measurement scales across features 
[47].

4  Methods
4.1  Overview of the ML framework
To address our research questions, we implemented a 
ML framework organized into two distinct pipelines. 
These pipelines differ primarily in their tuning processes 
and the types of architectures employed. The first pipe-
line, referred to as “Pipeline 1”, utilizes established CNN 
architectures widely used in computer vision and brain 
age prediction tasks. The second pipeline, “Pipeline 2”, is 
centered around training and testing DNNs.

Both pipelines follow the workflow depicted in Fig. 2. 
The initial phase in each pipeline involves a tuning pro-
cess, where various architecture configurations are 
explored using only the training set data to optimize 
model performance. Although the tuning process varies 
between the two pipelines, it consistently results in the 
selection of the most effective model. Once the optimal 
architecture is identified, it is employed in a Leave-One-
Site-Out (LOSO) cross-validation scheme and a standard 
training-evaluation process.

(1)

Normalized Volume = Raw Volume− (B-weight× (ss ICV

−mean ICV))

4 https:// web. mit. edu/ fsl_ v5.0. 10/ fsl/ doc/ wiki/ FLIRT. html.

https://web.mit.edu/fsl_v5.0.10/fsl/doc/wiki/FLIRT.html
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Before delving into the specific differences between 
the two pipelines, we will first discuss the two steps that 
are common to both: the Leave-One-Site-Out (LOSO) 
scheme and Age-Bias Correction.

The Leave-One-Site-Out scheme (illustrated in Fig.  3) 
is an iterative process applied exclusively to the train-
ing set. Consider a dataset consisting of examples from 
N different sites. In each iteration of the LOSO scheme, 
the observations from one specific site are excluded from 
the training set and designated as the validation fold. A 
model is then trained on the remaining data from N − 1 
sites and subsequently evaluated on the validation fold, 
which contains data from the site excluded during train-
ing. This approach allows us to rigorously assess the 
model’s ability to generalize to new data, as the validation 
fold contains examples from a site that the model has 
never encountered during training. By iterating this pro-
cess across all sites, we can evaluate the robustness and 

generalizability of the model across different acquisition 
settings.

Brain age prediction is typically formulated as a regres-
sion problem. A common limitation of regression mod-
els is the phenomenon known as regression toward the 
mean [48, 49], which in the context of brain age prediction 
is called age-bias. Age-bias manifests as a systematic ten-
dency of the model to underestimate the age of younger 
individuals and overestimate the age of older individuals. 
To address this issue, an age-bias correction method [50] 
has been proposed.

Let Y represent the age predictions generated by our 
model on the training set, and let X denote the corre-
sponding true ages. Assuming that Y is a function of X, the 
relationship between the predicted and true ages can be 
modelled using linear regression, as shown in Eq. 2.

Fig. 2 General workflow of the pipelines

Fig. 3 Leave-One-Site-Out (LOSO) scheme. At each iteration, one site’s data is used as the validation set while the remaining data is used 
for training
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The correction process aims to adjust the predictions 
and mitigate the age-bias effect, thereby improving the 
accuracy and reliability of the brain age predictions. The 
parameters a and b are used to correct the predictions 
following the formula in Eq. 3, where Ycorr is the collec-
tion of corrected predictions. Once these parameters are 
derived from the training set, they can also be applied to 
correct predictions on an independent test set.

Each pipeline includes a tuning step and a LOSO step. 
The age-bias correction is applied after the tuning phase, 
following the training of the optimal architecture con-
figuration on the whole training set. At the conclusion 
of both pipelines, an explanation module is embedded, 
which will be discussed in detail later.

The performance of the models was evaluated using the 
MAE and the correlation coefficient. The MAE is defined 
as:

where t is the sample size for the specific test site, yi is the 
chronological age, and ŷi is the predicted brain age.

Additionally, the correlation coefficient between the 
chronological age and the predicted age of the subjects 
was computed to assess the performance of the mod-
els over the whole dataset. The correlation coefficient is 
defined as:

where ȳ and ¯̂y denote the sample mean of the chronologi-
cal age and the predicted brain age, respectively.

4.2  Pipeline 1
In Pipeline 1, we implemented several widely recog-
nized CNN architectures, commonly used in computer 
vision and brain age prediction tasks. These models were 
trained using MRI images from the OpenBHB dataset, 
pre-processed as described in Sect. 3.2. Specifically, this 
pipeline employed four architectures: an updated ver-
sion of AlexNet [51], ResNet-18 [52], DenseNet-121 
[53], and SFCN [33]. Each architecture was modified and 
adapted to meet the specific requirements of our study. 
For all models except SFCN, we developed 3D versions 
of the architectures as described in the original publica-
tions. Additionally, for ResNet, AlexNet, and DenseNet, 
we introduced a fully convolutional layer with a dropout 

(2)Y = a · X + b

(3)Ycorr = Y + [X − (a · X + b)]

(4)MAE =
1

t

t
∑

i=1

|ŷi − yi|

(5)r =

∑

(yi − ȳ)(ŷi − ¯̂y)
√

∑

(yi − ȳ)2
∑

(ŷi − ¯̂y)2

rate of 0.5 to function as the regression module. Further 
modifications were made to the SFCN and ResNet-18 
architectures to accommodate the resolution of the input 
images, ensuring optimal performance on the given data. 
These adjustments were essential to align the models 
with the unique characteristics of our dataset and the 
task at hand.

Table  2 presents the complexity of each architecture 
both before and after the modifications were applied. 
As shown, the selected architectures provide a range of 
solutions with varying levels of complexity, enabling 
a comprehensive investigation across different model 
complexities.

The first step in the pipeline is the tuning phase. For 
each architecture, a grid search with k-fold cross-valida-
tion was performed to identify the optimal combination 
of optimizer and learning rate scheduler, both of which 
are critical choices for ensuring robust model perfor-
mance. The grid search explored the ADAM and SGD 
optimizers, as well as two learning rate schedulers: the 
step scheduler and cosine annealing with warm restarts. 
The step scheduler was configured with a period of 20 
epochs and a decay factor of 0.3. The cosine anneal-
ing with warm restarts scheduler was initialized with a 
17-epoch period, which doubled at the end of each cycle. 
Both schedulers were initialized with a learning rate of 
0.01, and a minibatch size of 16 was used.

Each point in the grid search was evaluated using a 
fivefold cross-validation on the training set, with a maxi-
mum of 50 epochs per training run and early stopping 
implemented with a patience parameter of 7 epochs. The 
model configuration that resulted in the lowest MAE 
during the k-fold cross-validation was selected as the 
optimal setup.

Following the tuning phase, the best configuration for 
each architecture was identified. The four models were 
then trained on the complete training set for 100 epochs 
without early stopping, and the model with the lowest 
MAE on the test set was selected for further analysis.

Finally, the best-performing model was employed in 
the LOSO cross-validation scheme and subsequently 

Table 2 Comparison per architecture of number of parameters 
between original and adapted version

Architecture Number of parameters (M)

Original Adapted

AlexNet 60 2.5

ResNet-18 11 33

DenseNet-121 8 11

SFCN 3 1.1
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subjected to an explanation analysis to interpret its 
predictions.

4.3  Pipeline 2
In Pipeline 2, we employed DNN models for brain age 
estimation based on the extracted morphological fea-
tures. The input to the DNN comprised 476 features (7 
features for each of the 68 ROIs). Two distinct feed-for-
ward configurations were developed for this pipeline: a 
homogeneous network architecture and a pyramidal net-
work architecture.

In the homogeneous configuration, a uniform num-
ber of neurons was maintained across all hidden layers. 
In contrast, the pyramidal configuration was charac-
terized by a progressively decreasing number of neu-
rons across the hidden layers, starting with a wide 
initial layer that narrowed in subsequent layers. The 
neuron arrangements in the Pyramidal configuration 
followed predefined setups such as (512,  256,  128), 
(1024,  256,  128), (1024,  512,  128), (1024,  512,  256), and 
(1024, 512, 256, 128).

Table 3 presents the range of hyperparameters consid-
ered during the optimization process for both network 
configurations. As shown, these configurations provide 
different levels of complexity, allowing for a comprehen-
sive investigation of model performance across various 
setups.

The first step in this pipeline was the hyperparameter 
optimization phase. A nested cross-validation strategy 
was employed, combining LOSO cross-validation with 
an inner fivefold cross-validation (k = 5). For each LOSO 
iteration, a fivefold cross-validation was performed 
on the remaining training data to identify the optimal 
combination of hyperparameters. The Random Search 
method was used to explore a wide range of hyperpa-
rameters, including the number of neurons per layer, 
the number of hidden layers, activation function, learn-
ing rate, dropout rate, and optimizer. A total of 60 itera-
tions were conducted for the Random Search, ensuring 

a comprehensive exploration of possible parameter 
combinations.

Each hyperparameter configuration was evaluated 
using the nested cross-validation scheme, with a maxi-
mum of 50 epochs per training run and early stopping 
applied with a patience parameter of 6 epochs. The con-
figuration that resulted in the lowest MAE during the 
inner fivefold cross-validation was selected as the opti-
mal setup for each LOSO iteration.

Following the hyperparameter optimization phase, 
the best configuration for each DNN model was identi-
fied. The selected models were retrained on the complete 
training set, excluding the data from the left-out site, for 
100 epochs without early stopping. The model with the 
lowest MAE on the validation set for the left-out site was 
chosen for further analysis.

Finally, the best-performing model for each configu-
ration was identified by selecting the model most fre-
quently chosen across all LOSO iterations. These optimal 
models were then trained on the entire training set and 
evaluated on an independent test set, with MAE as the 
primary performance metric.

4.4  Statistical comparison of the pipelines
A statistical analysis was conducted to evaluate and com-
pare the performances of the two pipelines on both the 
LOSO validation and an independent test set. To com-
pare the performance of these models, a Wilcoxon rank 
sum test ( α = 0.05 ) was applied to pairs of MAE distri-
butions resulting from LOSO validation and independent 
test set.

4.5  XAI
In this work, we adopted different types of explanation 
algorithms: SHAP [54], DeepSHAP [54] and Grad-CAM 
[26]. The objective of using these methods is to compare 
their effectiveness in different settings and to assess their 
reliability.

4.5.1  SHAP‑based explanations
SHapley Additive exPlanations (SHAP) is a local, model-
agnostic, post-hoc feature attribution method based on 
Shapley values from cooperative game theory [55]. This 
method can be applied to any type of model (agnostic) 
after the training phase (post-hoc) to assign importance 
scores to individual features in the context of a specific 
prediction (local). Typically, SHAP is used to generate 
explanations for models that handle tabular data, such 
as deep neural networks. When applied to CNNs, SHAP 
does not assign scores to features but rather to the pixels 
or voxels of the input image. To facilitate the application 
of SHAP to CNNs, DeepSHAP is used. DeepSHAP is a 
pixel-attribution method that estimates the importance 

Table 3 Hyperparameter distribution for Random Search in 
homogeneous and pyramidal networks

Hyperparameter Homogeneous network Pyramidal network

Neurons per layer 128, 256, 512, 1024 Decreasing per layer

Number of layers 3, 4, 5 3, 4

Activation function relu, tanh relu, tanh

Dropout rate 0.0, 0.3, 0.5 0.0, 0.3, 0.5

Learning rate 1e−2, 1e−3, 1e−4 1e−2, 1e−3, 1e−4

Optimizer adam, sgd adam, sgd
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of each pixel (or voxel) in the input image using an 
approximation inspired by DeepLIFT [56]. SHAP and 
DeepSHAP methods require a reference dataset, often 
referred to as the “mask” or “background,” to perform 
their calculations effectively. This background set consists 
of a sample of observations from the training dataset, 
which serves as a baseline for interpreting the contribu-
tion of individual features to the model’s prediction. The 
use of such a reference is grounded in the need to evalu-
ate the marginal contribution of each feature to a given 
prediction in a consistent and unbiased manner.

The Shapley value for a particular feature xi is com-
puted as the average marginal contribution of that fea-
ture across all possible coalitions (subsets) of features. 
Mathematically, the Shapley value φi for feature xi can be 
expressed as:

where N  is the set of all features.  S is a subset of N  that 
does not contain feature xi . f (S) is the model prediction 
when only the features in subset S are present. f (S ∪ {i}) 
is the model prediction when feature xi is added to subset 
S.

To estimate f (S) and f (S ∪ {i}) , SHAP uses a back-
ground dataset of representative samples from the 
training set. This background set acts as a baseline distri-
bution over which the model’s output is evaluated. When 
computing the SHAP values:

• baseline prediction: the value f (S) is obtained by 
replacing the features not in S with their correspond-
ing values from the background dataset, effectively 
marginalizing them out. This provides the model’s 
output when features in S are present, but others are 
not considered.

• Marginal contribution: to compute the marginal 
contribution of xi , the difference f (S ∪ {i})− f (S) is 
evaluated. The feature xi is included, and its value is 
compared against the background data to understand 
its effect on the model’s output.

• Averaging over samples: by using multiple samples 
from the background dataset, SHAP averages the 
marginal contributions across different representa-
tive data points, ensuring the robustness and stability 
of the explanation.

In practice, a background dataset (mask) is selected that 
captures the typical distribution of the training data. 
Each feature’s contribution is then evaluated by replac-
ing its value with the corresponding values from the 
background set, simulating scenarios where the feature 

(6)

φi =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |!
[f (S ∪ {i})− f (S)]

might be missing or irrelevant. This method ensures that 
the importance scores reflect realistic and diverse input 
conditions rather than overly specific to individual data 
points.

4.5.2  Grad‑CAM
Gradient-weighted Class Activation Mapping (Grad-
CAM) is a widely used post-hoc, local explanation 
method specifically designed for CNNs. Unlike SHAP, 
which is model-agnostic, Grad-CAM is tailored to 
CNNs and leverages gradient information flowing into 
the final convolutional layer of the network to produce 
saliency maps [26]. These saliency maps highlight the 
regions of the input image that are most influential in 
making the model’s prediction, effectively visualizing 
where the model is “looking” to make its decision.

The core idea behind Grad-CAM is to use the gradi-
ents of a target class c (e.g., brain age in this context) 
with respect to the feature maps Ak of a convolutional 
layer to generate a coarse localization map. The Grad-
CAM algorithm computes the importance weights αc

k 
for each feature map k by performing a global average 
pooling of the gradients:

where yc is the score for class c (the output of the model 
for class c ); Ak

ij denotes the activation at position (i, j) in 
feature map k ; Z is the number of pixels in the feature 
map (i.e., Z =

∑

i

∑

j 1).
Using these weights, the Grad-CAM heatmap 

LcGrad-CAM is computed as a weighted combination of 
the feature maps followed by a ReLU activation to focus 
only on the positive influence of the features:

This heatmap is upsampled to the size of the input image 
to provide a visual representation of the regions that are 
most relevant for the model’s prediction of class c.

Grad-CAM differs significantly from SHAP and 
DeepSHAP in its approach. It does not require a back-
ground dataset (or mask) for the computation of feature 
importance scores. Instead, Grad-CAM relies solely on 
the gradient information and the input image, making 
the process computationally less expensive and faster 
than SHAP-based methods. However, Grad-CAM’s 
reliance on gradients means that it may be more sensi-
tive to small perturbations in the input image, poten-
tially affecting stability.

(7)αc
k =

1

Z

∑

i

∑

j

∂yc

∂Ak
ij

(8)LcGrad-CAM = ReLU

(

∑

k

αc
kA

k

)
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4.5.3  Evaluation of feature attribution axioms
When using feature attribution methods, it is desirable 
that they adhere to the following three axioms [57]:

• Local Accuracy (Additivity): for each observation, 
the sum of the contributions of each feature plus the 
average prediction of the model must equal the final 
prediction.

• Consistency (Monotonicity): the attribution of a spe-
cific feature should increase or remain constant if its 
contribution increases or remains constant when the 
considered model changes.

• Missingness: if a feature is missing, its contribution 
should be zero.

Grad-CAM does not inherently satisfy all these axioms, 
particularly consistency and local accuracy, which SHAP 
and DeepSHAP fully meet. Grad-CAM is, however, pop-
ular in computer vision due to its efficiency and effective-
ness in generating intuitive explanations.

4.5.4  Background sets for comparison
While Grad-CAM does not require a background set for 
generating explanations, SHAP and DeepSHAP do. Con-
sidering M = 57 sites in the training set and N = 757 
test examples, in this study, three types of background 

sets were utilized to evaluate and compare the perfor-
mance of these methods:

• random background: a collection of 200 observations 
randomly selected from the training set.

• Stratified background: for a given test observation 
with a specific age, four training examples closest in 
age are selected from each site, resulting in a total of 
228 samples.

• Site-specific background: for a test observation with a 
specific age and site, up to 200 training samples from 
the same site with the nearest age to the test observa-
tion are selected. This background type is only used 
for test observations from sites that are also present 
in the training set and have at least 30 observations 
available. If the number of samples exceeds 200, only 
the first 200 observations are considered.

These different background settings were employed to 
investigate the stability and consistency of the SHAP, 
DeepSHAP, and Grad-CAM methods across various sce-
narios, enabling a robust comparison of their explanation 
capabilities.

4.5.5  Explanation workflow and evaluation
For each of the 757 examples in the test set, the first two 
types of background (random and stratified) were always 
computed. In contrast, the third type (site-specific) was 

Fig. 4 General workflow of the explanation computation phase: for each test observation, explanations are computed by each method and then 
collected
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only computed for certain samples from specific sites 
where sufficient data was available. The general workflow 
of this explanation phase is illustrated in Fig.  4. Subse-
quently, the explanations generated by different methods 
were compared, as outlined in Fig. 5.

In Pipeline 1, the DeepSHAP and Grad-CAM scores 
were calculated for each test sample using the best-per-
forming CNN model identified during the tuning phase. 
Both methods produced a 3-D saliency map for each test 
observation, which was serialized and stored for further 
analysis. Each test observation resulted in three (or four, 
when the site-specific background was available) sets of 
scores. To evaluate the consistency of the explanations 
provided by different methods, pairwise correlations 
were computed using the Pearson correlation coefficient 
ρ , defined in Eq. 5. For each pair of methods, the average 
correlation ( ρ̄ ) and standard deviation ( σρ ) across all test 
samples were calculated.

A similar methodology was applied to Pipeline 2, where 
the optimal model was a DNN. In this workflow, only the 
SHAP method was used to generate explanations. For 
each test sample, this resulted in two (or three, depend-
ing on the availability of site-specific background) sets 
of scores. The pairwise correlations of these scores were 
computed using the Pearson correlation coefficient ρ , and 
the mean ( ρ̄ ) and standard deviation ( σρ ) were reported 
for each pair of backgrounds.

This approach allowed us to systematically compare the 
stability and reliability of the explanation methods across 
different configurations and backgrounds, providing 
insights into the effectiveness of each method in gener-
ating interpretable and consistent explanations for brain 
age prediction models.

To assess a proxy of usability of the SHAP outcomes in 
clinical settings, we investigated the relationship between 

the SHAP importance scores for each feature and the 
chronological age of the subjects. This analysis was con-
ducted separately for each pipeline. For Pipeline 1, the 
correlation analysis was performed using a ROI-based 
approach. Specifically, the voxel-level importance scores 
of each subject were averaged within each ROI defined 
by the atlas. The resulting region-level importance val-
ues were then correlated with the chronological age of 
the subjects. For Pipeline 2, the analysis focused on two 
distinct subsets of features: one representing the gray 
matter volume of each region and the other capturing 
the average thickness of each region. The SHAP impor-
tance scores for these features were correlated with the 
subjects’ chronological age in order to evaluate whether 
the importance assigned to these anatomical attributes 
by the model corresponds with established age-related 
changes in the brain. A Bonferroni correction was 
applied to account for multiple comparisons, with a sig-
nificance threshold of α = 0.05.

To provide a more in-depth exploration of the results, 
particularly the correlations between SHAP values 
derived from each model for specific ROIs and the sub-
jects’ chronological age, we integrated an interactive 
dashboard built with Plotly Dash and publicly available 
at github repository.5 This dashboard serves as a power-
ful visual exploration tool designed to help users navigate 
and interpret complex model outputs. Key features of the 
dashboard include:

• Manhattan plot: this plot offers a visual summary of 
the correlation significance between the SHAP values 
of various cortical thickness ROIs (e.g., “lh-bankssts”, 

Fig. 5 General workflow of explanation comparison phase: for each observation, correlations in couples of explanation distribution are computed; 
then, for each couple of methods, the average Pearson is computed

5 https:// github. com/ sisin flaba ibio/ Brain Age- Dashb oard. git.

https://github.com/sisinflabaibio/BrainAge-Dashboard.git
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“lh-caudalmiddlefrontal”) and the subjects’ age. The 
x-axis represents the features (ROIs), while the y-axis 
shows the −log10 of the p-values, allowing users to 
quickly identify which ROIs contribute most signifi-
cantly to brain age prediction across different mod-
els. This view aids in comparing how feature impor-
tance shifts across different methods and age groups.

• Dependence plot: this plot provides an intuitive way 
to explore the relationship between the SHAP val-
ues (representing feature importance) and the age of 
the subjects. It allows users to see how variations in 
specific cortical thickness features affect the model’s 
predictions. Users can dynamically switch between 
different ROIs to investigate the impact of specific 
regions on brain age predictions.

By providing these visual representations, the dashboard 
enables a detailed exploration of how individual brain 
regions influence model outputs, with a focus on the cor-
relation between SHAP values and subject age for each 
ROI.

5  Results
5.1  Performance of pipeline 1
The results from the tuning phase of Pipeline 1 on the 
training set are summarized in Table  4. This table pre-
sents the mean and standard deviation of the MAE for 

each configuration across a fivefold cross-validation for 
each architecture.

Notably, ResNet-18 and DenseNet-121 demonstrated 
stable performance across different configurations, 
exhibiting higher average performance and lower stand-
ard deviations than AlexNet and SFCN. Among the 
architectures, DenseNet-121 was the most consistent, 
with the lowest standard deviation, indicating higher pre-
cision in its predictions.

The results also suggest that models trained using the 
Adam optimizer were generally more stable than those 
trained with the SGD optimizer, as evidenced by lower 
variance in performance across different folds. This indi-
cates that Adam may be better suited for this particular 
problem.

For each architecture, the optimal configuration was 
determined as follows: for SFCN, the best performance 
was achieved using the Adam optimizer combined with 
the cosine annealing scheduler. For ResNet-18, the most 
effective configuration involved using the SGD optimizer 
with a step scheduler. AlexNet produced the lowest MAE 
when using SGD with the cosine annealing scheduler; 
however, although the combination of SGD and the step 
scheduler resulted in a slightly higher MAE, it exhib-
ited more consistent performance, as indicated by its 
lower standard deviation. Finally, for DenseNet-121, the 
best configuration was found to be SGD with the cosine 
annealing scheduler featuring warm restarts.

Once the best configuration for each architecture was 
identified, the models were trained on the entire train-
ing set and evaluated on the test set. Following this step, 
the age-bias correction was applied to each model. The 
results are shown in Table 5. The MAE scores across dif-
ferent models on the overall test set consistently hovered 
around 3, which is comparable to results reported in the 
state of the art [33, 58].

It is important to note that the models performed bet-
ter on the internal partition of the test set, which consists 
of data from sites included in the training set. In contrast, 
performance on the external partition-composed of data 

Table 4 Average MAE (and standard deviations) on fivefold 
cross-validation for each configuration of the CNN architectures 
in the tuning phase

1 Step scheduler
2 Cosine annealing with warm restarts scheduler

Architecture Adam + 
step1

Adam + 
cos2

SGD + 
step1

SGD + cos2

SFCN 3.26 ± 0.12 3.18 ± 0.09 4.98 ± 2.20 6.91 ± 3.30

ResNet-18 3.11 ± 0.14 3.31 ± 0.41 3.00 ± 0.18 3.59 ± 1.11

AlexNet 3.63 ± 0.49 3.60 ± 0.74 6.00 ± 3.98 3.52 ± 1.32

DenseNet-121 3.45 ± 0.12 3.16 ± 0.08 2.81 ± 0.10 2.70 ± 0.10

Table 5 Performance comparison of different architectures on internal (Int), external (Ext) and global (Glo) test set before and after 
age-bias correction

No correction With correction

MAE r MAE r

Int Ext Glo Int Ext Glo Int Ext Glo Int Ext Glo

SFCN 2.86 4.77 3.86 0.95 0.81 0.87 2.71 4.51 3.64 0.95 0.83 0.88

ResNet-18 2.82 3.93 3.40 0.95 0.89 0.92 2.80 3.74 3.29 0.96 0.90 0.92

DenseNet-121 2.77 3.86 3.34 0.95 0.90 0.92 2.59 3.54 3.08 0.96 0.91 0.93

AlexNet 2.77 4.11 3.47 0.95 0.89 0.91 2.59 3.62 3.13 0.96 0.90 0.92
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from unseen sites-resulted in slightly higher MAE val-
ues. Nevertheless, even in the external test partition, the 
MAE never exceeded 5 years.

The age-bias correction was applied to groups of 
predictions by estimating the regression parameters 
based on the training set predictions. In Fig. 6, the pre-
dictions by DenseNet-121 on the test set are shown 
in the predicted age vs. chronological age plane (see 
Figure  14 in Supplementary Material for other archi-
tectures). The plot before correction shows how the 
model does not suffer deeply from the age-bias, and 
this observation is also true for the other architec-
tures inspected. The trend is confirmed by Table  5, 
which presents the performance metrics for each 
model before and after the correction. Overall, the 
application of the age-bias correction did not lead to 
significant improvements in performance. This sug-
gests that the models were not substantially affected 
by the regression toward the mean issue. However, 
the correction had a more noticeable effect on simpler 
models, such as SFCN, where a slight performance 
improvement was observed. Across all models, both 

before and after the correction, DenseNet-121 consist-
ently showed the lowest error, making it the selected 
model for the explainability phase.

5.2  Performance of pipeline 2
For the homogeneous network, the configuration that 
was most frequently selected as the best-performing 
model included the Adam optimizer, 128 neurons per 
layer, 3 hidden layers, the tanh activation function, a 
dropout rate of 0.0, and a learning rate of 0.001. This con-
figuration was identified as the top performer in 6 out of 
the 57 sites (Table 6).

For the pyramidal network, the configuration most 
frequently selected as the best-performing model con-
sisted of the Adam optimizer, a neuron arrangement of 
(1024,  512,  256,  128) across 4 layers, the ReLU activa-
tion function, a dropout rate of 0.0, and a learning rate of 
0.0001. This configuration was identified as the top per-
former in 12 out of the 57 sites (Table 7).

The final performance of the optimal models was eval-
uated on an independent test set. For the homogeneous 
DNN, the results were as follows: MAE = 3.05 (internal), 

Fig. 6 Predictions on the test set for the DenseNet-121 model, visualized in the predicted age vs. chronological age plane. In each graph, the data 
points are scattered around the trend line, with greater deviations observed at older ages. The red line represents the regression line calculated 
from the training set predictions. The color of the points indicates the MAE, with a gradient ranging from blue (low error) to red (high error)

Table 6 Best configurations for the homogeneous DNN

Optimizer Neurons Layers Activation Dropout rate LR Frequency

adam 128 3 tanh 0.0 0.0010 6

adam 1024 5 relu 0.0 0.0001 5

adam 512 5 relu 0.0 0.0001 5

adam 1024 5 tanh 0.0 0.0001 3

adam 1024 4 tanh 0.0 0.0001 3
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Table 7 Best configurations for the pyramidal DNN

Optimizer Neurons Layers Activation Dropout rate LR Frequency

adam 1024, 512, 256, 128 4 relu 0.0 0.0001 12

adam 1024, 512, 256 3 tanh 0.0 0.0001 9

adam 512, 256, 128 3 tanh 0.0 0.0001 4

adam 1024, 256, 128 3 relu 0.0 0.0001 3

adam 1024, 256, 128 3 tanh 0.0 0.0001 3

Fig. 7 Predictions on the test set for the two DNN models in the predicted age vs. chronological age plane. a shows the homogeneous DNN model, 
while b depicts the pyramidal DNN model. In both graphs, data points are scattered around the trend line, with larger deviations observed at older 
ages. The red line represents the regression line derived from the training set predictions. The color of the points indicates the MAE, with a gradient 
ranging from blue (low error) to red (high error)
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MAE = 3.57 (global), and MAE = 4.05 (external). In 
comparison, the pyramidal DNN yielded MAE = 3.48 
(internal), MAE = 3.72 (global), and MAE = 3.86 (exter-
nal). The Pearson correlation coefficients for the Homo-
geneous DNN were r = 0.94 (internal), r = 0.90 (global), 
and r = 0.87 (external). For the Pyramidal DNN, the cor-
relations were r = 0.92 (internal), r = 0.90 (global), and 
r = 0.88 (external).

The application of age-bias correction further 
improved the performance of both models (Fig.  7a and 
b). For the homogeneous DNN, the corrected results 
were MAE = 2.72 (internal), MAE = 3.21 (global), and 
MAE = 3.67 (external). The pyramidal DNN showed 
improvements to MAE = 3.36 (internal), MAE = 3.44 
(global), and MAE = 3.60 (external), as summarized in 
Table 8.

5.3  Leave‑one‑site‑out
Figure  8a–c present the results of the LOSO evaluation 
for the DenseNet-121, homogeneous DNN, and pyrami-
dal DNN architectures, respectively. In each bubble plot, 
the x-axis denotes the site identifier, while the y-axis rep-
resents the number of subjects at each site. The size of 
the bubbles corresponds to the average real age of the 
subjects at that site. A color gradient from blue to red 
reflects increasing MAE values, providing a clear visual 
indication of model performance variations across differ-
ent sites.

Sites with older subjects tend to exhibit higher MAE 
values, underscoring the difficulty in accurately predict-
ing brain age in older populations. This challenge is fur-
ther compounded by the long-tail distribution of subjects 
aged between 30 and 80 years, resulting in fewer obser-
vations within this range. This trend is visible across all 
three figures, where the bubbles representing sites with 
older subjects are generally larger and redder, indicating 
higher prediction errors. Notably, all three models con-
sistently showed higher MAE values for sites 28 (average 
age: 57 years), 35 (69 years), and 36 (50 years).

In contrast, sites with younger populations, such as 
site 5 (average age: 37 years) and site 50 (35 years), were 
associated with lower MAE values compared to the 
aforementioned older sites. However, the error remains 

Table 8 Performance comparison with and without correction

MAE stands for Mean Absolute Error, and r  represents Pearson correlation coefficient. Int refers to internal test, Ext refers to external test, and Glo refers to global test

No correction With correction

MAE r MAE r

Int Ext Glo Int Ext Glo Int Ext Glo Int Ext Glo

Homogeneous 3.05 4.05 3.57 0.94 0.87 0.90 2.72 3.67 3.21 0.95 0.89 0.92

Pyramidal 3.58 3.86 3.72 0.92 0.88 0.90 3.26 3.60 3.44 0.93 0.90 0.91

Fig. 8 Bubble plots illustrating the LOSO evaluation for the a 
DenseNet-121, b homogeneous DNN, and c pyramidal DNN 
architectures. The x-axis denotes the site identifier, while the y-axis 
represents the number of subjects per site. The size of each bubble 
corresponds to the average chronological age of the subjects 
at that site, and the color gradient, ranging from blue to red, indicates 
increasing MAE values

Table 9 Mean absolute error per model in leave-one-site-out

Architecture MAE

DenseNet-121 3.80 ± 2.68

Homogeneous DNN 3.87 ± 2.22

Pyramidal DNN 4.09 ± 3.20
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significant, close to 7 years, which is still higher than the 
average results shown in Table  9. This table reports the 
average MAE and standard deviation for each architec-
ture across all LOSO iterations. The results indicate that 
DenseNet-121, the homogeneous DNN, and the pyrami-
dal DNN perform similarly in terms of average MAE, 
with DenseNet-121 achieving the lowest overall error. 
Meanwhile, the homogeneous DNN exhibited the small-
est standard deviation, indicating more consistent per-
formance. Among the three models, the pyramidal DNN 
demonstrated the lowest overall performance.

5.4  Statistical comparison of the pipelines
A statistical analysis was conducted on both the LOSO 
validation and independent test set results to evalu-
ate and compare the performances of the three selected 
models-DenseNet-121, pyramidal DNN, and homogene-
ous DNN. The violin plots showing the distributions of 
the MAE scores for the three architectures for both the 
LOSO validation and the independent test are shown in 
Figure 13 in the Supplementary Materials.

The results of the Wilcoxon test on the LOSO valida-
tion indicated no statistically significant differences 
between the distributions of DenseNet-121 and Homo-
geneous DNN ( p = 0.3691 ). This suggests that the per-
formance of the deep learning pipeline and the feature 
engineering-based approach might not significantly 
differ in the LOSO validation. Additionally, the pyrami-
dal DNN model showed comparable performance to 
DenseNet-121 ( p = 0.4769 ) and homogeneous DNN 
( p = 0.8672 ) in the LOSO analysis, further supporting 
the conclusion that no substantial performance gap exists 
between these pipelines under this validation scheme.

A similar approach was applied to the error distribu-
tions obtained from the independent test set. The Wil-
coxon rank sum test revealed that the pyramidal DNN 
distribution differed significantly from DenseNet-121 
( p < 0.0001 ) and homogeneous DNN ( p = 0.0164 ), sug-
gesting that the pyramidal DNN model is statistically 
less accurate on the independent test set. As shown in 
Tables  5 and 8, the pyramidal DNN consistently exhib-
ited lower performance compared to the other two mod-
els. In contrast, no significant difference was observed 
between the DenseNet-121 and homogeneous DNN 
models ( p = 0.1196 ), indicating that these two pipelines 
achieve similar performance on the independent test set.

5.5  XAI
Before presenting the results of the explanation analysis, 
it is important to address a methodological adjustment 
made for the application of Grad-CAM. This adjustment 
became necessary after DenseNet-121 was selected as the 
best-performing CNN model. According to the creators 

of Grad-CAM [26], the last convolutional layer of a CNN 
encoder typically offers the best balance between abstract 
feature representation and spatial detail despite the lower 
resolution compared to the original input image. Grad-
CAM generates a saliency map with the same resolution 
as the convolutional layer to which it is applied.

In the case of DenseNet-121, the last convolutional 
layer had a resolution of 2× 3× 2 , which is consid-
erably smaller than the original input dimensions of 
91× 109× 91 . Consequently, this layer did not suffi-
ciently preserve the spatial information of the original 
image, making it unsuitable for meaningful interpreta-
tion. Since the last convolutional layer of DenseNet-121 
corresponds to the output of the fourth dense block, 
we opted to apply Grad-CAM to an earlier layer. How-
ever, even the third dense block had a resolution of only 
5× 7× 5 , which was still too low for reliable interpreta-
tion. To achieve a more appropriate resolution for sali-
ency maps, we examined several layers, including the 
input convolutional layer ( 46× 55× 46 ) and the final lay-
ers of the first ( 23× 28× 23 ) and second ( 11× 14 × 11 ) 
dense blocks. In line with standard practices in Grad-
CAM, we averaged the saliency maps computed from 
these convolutional layers. This averaging approach cap-
tures the importance of each voxel across multiple layers, 
offering a more comprehensive explanation. For each test 
sample, we generated upsampled maps from the convo-
lutional layers, starting from the input layer and continu-
ing through the final layer of the second dense block, and 
then averaged them.

The results of the explanation analysis are visualized 
in Fig.  9a–c, which show the average Pearson correla-
tion coefficients and standard deviations for each pair of 
methods across different models. Only Pearson correla-
tions with a p-value smaller than α = 0.05 were consid-
ered statistically significant and included in the analysis.

For the DNN models (Fig.  9b and c), the SHAP dis-
tributions using different background sets exhibited a 
strong positive correlation across all comparisons, with 
correlation values consistently ranging from 0.80 to 0.95. 
This suggests a high degree of stability and consistency 
in SHAP’s behavior, irrespective of the background used.

In contrast, DeepSHAP did not demonstrate the same 
level of consistency. As shown in Fig. 9a, while there was 
a strong positive correlation between the “Random” and 
“Stratified” background distributions ( ρ̄ = 0.87 ), the cor-
relations involving the “Site” background were weaker. 
Specifically, the correlation between “Site” and “Random” 
was ρ̄ = 0.47 , and between “Site” and “Stratified” it was 
ρ̄ = 0.48.

Finally, we evaluated the correlations between Grad-
CAM and DeepSHAP with different backgrounds. As 
depicted in Fig. 9a, there was no meaningful correlation 
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between Grad-CAM and DeepSHAP distributions, with 
ρ̄ effectively zero.

The results of the correlation analysis between SHAP 
importance scores and chronological age are summa-
rized in Figs.  10, 11 and 12. These figures illustrate the 
relationship between feature importance values and age 
for each set of features and for each pipeline, providing 

some insights into the usability of SHAP outcomes in 
clinical practice.

In particular, Fig.  10 presents the violin plots dis-
playing the distributions of the Pearson correlation 
coefficients between the XAI importance scores and 
chronological age for three different explanation types: 
DeepSHAP (Pipeline 1), SHAP of gray matter volume 
(Pipeline 2), and SHAP of average thickness (Pipeline 2). 

Fig. 9 Heatmaps of correlations between explanation distribution for a DenseNet-121, b homogeneous DNN and c pyramidal DNN 
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A Kruskal–Wallis test revealed a significant difference in 
the Pearson correlation coefficients across the groups (H 
= 11.20, p = 0.0037), using a significance level of α = 0.05

.
Post hoc Dunn’s tests with Bonferroni correction were 

conducted to determine which specific groups differed. 
The results showed that the Pearson correlation coeffi-
cients for gray matter volume were significantly different 
from both average thickness (p = 0.0277) and DeepSHAP 
(p = 0.0054). In contrast, no significant difference was 
observed between average thickness and DeepSHAP (p = 
1.0000).

The Manhattan plots in Figs.  11a, b and 12 show the 
correlations between the SHAP values and chronological 
age across different ROIs for each feature subset. These 
figures represent static versions of the dynamic plots 
available in the interactive dashboard. In the dashboard, 
users can explore these correlations in a more granular 
and interactive way, allowing for real-time navigation and 
investigation of specific brain regions.

Fig. 10 Violin plots of Pearson correlation score distributions 
between each feature type and the age of the subjects

Fig. 11 Manhattan plots for SHAP for a gray matter volume and b average thickness features
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• Gray matter volume (Fig. 11a): out of 68 regions, 59 
exhibited significant correlations between SHAP 
importance scores and chronological age after apply-
ing the Bonferroni correction ( α = 0.05 ). Regions 
such as the left and the right superior frontal gyrus 
showed the strongest correlations. In contrast, 9 
regions did not show significant correlations, includ-
ing the left and the right transversetemporal, suggest-
ing that gray matter volume in these areas may be 
less influenced by age.

• Average thickness (Fig.  11b): in this plot, 54 out of 
68 regions were significantly correlated with SHAP 
importance scores for cortical thickness and chrono-
logical age. The most significant correlations were 
found in the superiortemporal pole. However, 14 
regions, including the temporalpole were not signifi-
cantly correlated, suggesting that cortical thickness in 
these regions is not strongly linked to aging.

• DeepSHAP (Fig.  12): the DeepSHAP analysis found 
significant correlations in 53 out of 68 regions. How-
ever, 15 regions, such as the left parahippocampal 
and right precuneus did not show significant cor-
relations, reflecting variability in how DeepSHAP 
captures the influence of age across different brain 
regions.

6  Discussion
6.1  RQ1: Do different pipelines yield statistically 

significant differences in performance?
In this work, we implemented and compared two dis-
tinct pipelines for brain age prediction: one utilizing deep 
learning with 3D CNNs and the other based on feature 
engineering through FreeSurfer for morphometric fea-
ture extraction. To rigorously evaluate the performance 
of these pipelines on both the LOSO validation scheme 

and an independent test set, we performed statistical 
analyses.

For the LOSO validation, the results revealed no sta-
tistically significant differences between the perfor-
mances of the DenseNet-121 and homogeneous DNN 
pipelines. This suggests that there is no clear advantage 
in terms of predictive accuracy between using CNNs 
or morphometric features in this context. This find-
ing is consistent with other studies, such as [59], where 
the CNN architecture yielded an MAE of 4.006. At the 
same time, the FreeSurfer-based features resulted in a 
higher MAE of 5.176, indicating that CNNs can outper-
form traditional morphometric approaches. However, 
our statistical tests suggest that for the specific case of 
LOSO validation, these pipelines might be comparable 
in terms of overall performance.

On the independent test set, however, our results 
indicate a statistically significant difference in per-
formance between the pyramidal DNN and the other 
models, DenseNet-121 and Homogeneous DNN, with 
the Pyramidal DNN consistently underperforming. 
Like the LOSO validation, the Wilcoxon rank sum 
test did not reveal significant performance differences 
between DenseNet-121 and homogeneous DNN on the 
test set. This mirrors the conclusions drawn in studies 
such as [42], where a ResNet model achieved an MAE 
of 2.85, outperforming a FreeSurfer-based pipeline with 
an MAE of 4.95. Although the results in both our study 
and Dufumier’s suggest that CNNs are generally more 
effective for brain age prediction, the statistical analysis 
in our work shows that CNN and feature engineering 
pipelines may achieve comparable results under certain 
conditions.

Our findings are also aligned with those reported in 
[43], in which MAE values of 4.7 and 3.4 were achieved 
for CNN and FreeSurfer models, respectively, with 

Fig. 12 Manhattan plot for mapped DeepSHAP data



Page 20 of 23De Bonis et al. Brain Informatics           (2024) 11:33 

the FreeSurfer-based approach slightly outperforming 
CNN in that specific context. This exception under-
scores the importance of dataset characteristics and 
preprocessing steps in determining the relative effec-
tiveness of each pipeline.

An important consideration that emerged from our 
analysis is that the choice between a deep learning frame-
work and a feature engineering approach may not solely 
depend on performance metrics like MAE. Instead, 
practical factors such as computational requirements 
and time efficiency play a crucial role. For instance, the 
FreeSurfer-based feature extraction process can take sev-
eral hours to a full day for each subject, whereas a trained 
CNN can process raw images in a matter of seconds. 
However, training a CNN requires significant computa-
tional power, memory storage, and a large collection of 
training data, making it resource-intensive. Once trained, 
however, the CNN is highly efficient, whereas the Free-
Surfer pipeline must process each new subject individu-
ally, leading to slower throughput.

6.2  RQ2: are different XAI methods stable across various 
parameter settings, and how do they enhance 
interpretability in the context of these pipelines?

We aimed to evaluate the stability of different XAI meth-
ods-specifically SHAP, Grad-CAM, and DeepSHAP-
across various parameter settings. Stability is a crucial 
factor for XAI methods, particularly in clinical applica-
tions, where consistency in the generated explanations is 
essential for building trust with healthcare professionals 
[60].

Our results showed that the stability of SHAP-based 
explanations was generally robust across different back-
ground datasets, including random, stratified, and site-
specific selections. The correlation values for SHAP 
explanations remained high, typically in the range of 
0.80 to 0.95, indicating that the method is highly resilient 
to changes in background data. This consistency sug-
gests that SHAP can reliably capture feature importance 
regardless of the background distribution, making it a 
stable option for explaining deep neural network models 
in brain age prediction tasks.

On the other hand, the performance of DeepSHAP was 
more sensitive to variations in background selection. The 
method displayed weaker correlations when using site-
specific backgrounds compared to random or stratified 
backgrounds, with correlation coefficients sometimes 
falling below 0.50. This variability suggests that DeepS-
HAP may not be as reliable as SHAP in certain contexts, 
particularly when dealing with site-specific data where 
subtle differences in the dataset characteristics may influ-
ence the interpretation.

Grad-CAM, which was applied to the deep learning 
pipeline, exhibited a different kind of challenge. While 
the method effectively highlighted important regions 
in brain MRI images, its outputs were not strongly cor-
related with SHAP-based explanations. The near-zero 
correlation values between Grad-CAM and SHAP sug-
gest that these methods provide different information 
about the models’ decision-making processes. This lack 
of agreement highlights the potential limitations of 
using Grad-CAM in isolation, as it may not capture the 
full range of important features that other methods like 
SHAP can identify.

Overall, the findings indicate that SHAP offers the 
most stable explanations across different parameter set-
tings and is, therefore, well-suited for applications where 
consistency is critical. DeepSHAP is a useful tool but 
may require careful consideration when selecting back-
ground datasets, especially in site-specific settings. Grad-
CAM, while useful for visualizing important regions in 
convolutional neural networks, may not be as reliable 
when compared to SHAP in terms of overall stability and 
consistency.

6.3  RQ3: how effectively can the combined insights 
from pipeline performance and XAI explanations 
support clinical decision‑making in brain age 
prediction tasks?

The final research question aimed to evaluate whether 
the explanations provided by the selected XAI meth-
ods can be effectively integrated into clinical practice. 
Providing interpretable and trustworthy model outputs 
is essential when deploying machine learning models 
in healthcare settings, where decisions directly impact 
patient outcomes and must be justified to clinicians [61].

Our analysis shows that SHAP explanations, particu-
larly those derived from gray matter volume and aver-
age cortical thickness, offer detailed and interpretable 
insights into the model’s decision-making process [38]. 
SHAP consistently highlighted the most relevant features 
contributing to brain age predictions, and these explana-
tions were generally aligned with existing clinical knowl-
edge [7, 34, 36, 37, 62]. For instance, SHAP emphasized 
regions known to be involved in cognitive decline, such 
as the hippocampus and prefrontal cortex. The feature 
importance rankings generated by SHAP for individual 
patients provide actionable insights that can guide per-
sonalized treatment plans, making SHAP a strong candi-
date for clinical adoption. On the other hand, DeepSHAP, 
while offering similar feature-level explanations, exhib-
ited less consistency across different parameter settings 
and dataset configurations. Although DeepSHAP was 
useful in identifying regions such as the entorhinal cortex 
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and posterior cingulate, which are strongly associated 
with memory and age-related cognitive changes, the vari-
ability observed in some regions raised concerns about 
its reliability in clinical practice. The inconsistencies 
between datasets suggest that DeepSHAP may require 
further refinement or careful parameter tuning before it 
can be fully trusted in a clinical setting, where reproduc-
ibility is paramount.

Grad-CAM, as a visualization tool, provided valu-
able insights into the regions of the brain that influenced 
model predictions. However, its coarse, image-level 
explanations may not always align with the level of detail 
required in clinical practice [63]. While Grad-CAM effec-
tively highlighted important areas in volumetric brain 
scans, its limited granularity and the lack of direct fea-
ture attribution make it more suitable as a supplementary 
tool for model interpretability rather than a standalone 
method for clinical use [64]. Clinicians typically require 
explanations that offer precise, feature-level insights, and 
Grad-CAM’s region-based heatmaps may fall short of 
these expectations.

An important consideration when evaluating the 
clinical utility of these methods is the overlap between 
regions found non-significant by SHAP (gray matter vol-
ume), SHAP (average thickness), and DeepSHAP. Several 
regions appeared consistently non-significant across all 
three methods, suggesting that these regions might not 
be strongly correlated with brain age or that the cur-
rent models struggle to capture meaningful age-related 
changes in these areas.

For example, regions such as the left cuneus and right 
supra-marginal gyrus were not significantly correlated 
with brain age in both the SHAP gray matter volume and 
DeepSHAP analyses. Similarly, the right temporal pole 
was found non-significant in both SHAP (gray matter 
volume) and SHAP (average thickness) analyses. These 
overlaps between non-significant regions across methods 
suggest that these areas may be less sensitive to structural 
changes related to aging, or that the structural metrics 
used (e.g., gray matter volume or cortical thickness) may 
not fully capture relevant age-related variability.

The identification of non-significant regions across 
multiple methods is informative for clinical practice, as 
it indicates that these areas may not be reliable markers 
of brain aging in the current models. Clinicians should 
exercise caution when interpreting predictions based on 
regions that consistently show non-significant correla-
tions across different models and methods. This insight 
reinforces the need for multimodal approaches that com-
bine different brain features with existing structural fea-
tures to better capture the complexity of brain aging [65].

7  Conclusion
In this study, we developed a systematic framework to 
compare two distinct pipelines for brain age prediction: 
a deep learning approach using 3D CNNs and a feature 
engineering pipeline based on FreeSurfer-derived mor-
phometric features. The framework was applied to a 
multisite dataset, allowing us to evaluate model perfor-
mance in a robust context. Our analysis demonstrated 
that the best models selected from both pipelines per-
formed similarly in cross-validation and on the inde-
pendent test set.

We also incorporated different XAI methods to assess 
the interpretability of the models. SHAP emerged as 
the most reliable tool for providing detailed and clini-
cally relevant explanations, while DeepSHAP showed 
more variability in its outputs. Grad-CAM, although 
visually informative, lacked the granularity required for 
direct clinical use.

One limitation of this work is that we did not con-
duct a formal comparison of the explanations gener-
ated by the different XAI methods. Future studies will 
address this limitation by formally comparing XAI out-
puts. Furthermore, we plan to involve clinical users to 
validate the utility of these explanations in practice, in 
line with the principles of Human-Centered AI (HCAI). 
This effort will focus on ensuring that the explanations 
provided by existing XAI methods are aligned with the 
needs of clinicians, thus enhancing their utility in mak-
ing informed decisions. Finally, we will aim to refine the 
interpretability framework to better integrate multi-
modal brain features and enhance the clinical relevance 
of brain age prediction models.
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