
The TYR Dataflow Architecture:
Improving Locality by Taming Parallelism
Nikhil Agarwal, Mitchell Fream, Souradip Ghosh, Brian C. Schwedock,† Nathan Beckmann
{nikhilag, mfream, souradip}@cmu.edu b.schwedock@samsung.com beckmann@cs.cmu.edu

Carnegie Mellon University †Samsung

Abstract—Architectures should aim to maximize parallelism
within a machine’s finite memories, but prior designs tend to
extremes, either maximizing parallelism or minimizing state. In
particular, prior unordered dataflow architectures suffer from
a parallelism explosion that creates unbounded state, requires
prohibitively large associative memories, and risks deadlock. The
few architectures that successfully navigate the parallelism-state
tradeoff are limited to embarrassingly parallel programs.

TYR is a new, general-purpose unordered dataflow architecture
that achieves high parallelism with bounded state. The key
insight is that prior unordered dataflow architectures are overly
conservative, unnecessarily allocating tags from a single, global
tag space. TYR exploits program structure to break up tags into
local tag spaces that operate independently. Local tag spaces
eliminate tag competition between co-dependent parts of the
program, provably guaranteeing forward progress with only two
tags per local tag space. TYR thus opens the door to an efficient,
scalable implementation of unordered dataflow. Simulation of
parallel programs demonstrates that TYR achieves parallelism
nearly identical to a naïve unordered dataflow architecture with
orders-of-magnitude less state.

Keywords-Dataflow, parallelism, locality

I. INTRODUCTION

THERE IS A FUNDAMENTAL TRADEOFF in computing be-
tween parallelism and live state. The more work done

in parallel, the more state is required to track it. Too much
live state can lead to a loss of locality, so more parallelism is
not always better. Generally, the optimal operating point is a
middle ground with sufficient parallelism to keep a processor
busy, but not so much that state overwhelms on-chip memory.

Limitations of existing architectures. Unfortunately, even
though the parallelism-state tradeoff has been recognized
for decades [4, 17, 32], no existing architecture satisfactorily
navigates this tradeoff. At one extreme, sequential architectures
like von Neumann CPUs reduce state by severely constrain-
ing parallelism. Recovering parallelism from a sequential
architecture is challenging, and these architectures are hard
to scale. At the other extreme, unordered dataflow architec-
tures [52, 58] suffer from “parallelism explosion,” as some
parts of a computation run far ahead of others. Dataflow’s
unbounded state is a longstanding unresolved challenge with
the architecture, which complicates implementation and risks
deadlocking the machine. Existing techniques to limit state in
dataflow are not general [52] or impose arbitrary orderings,
losing parallelism [22, 66, 73].

†This work was done while the author was at Carnegie Mellon University.

Other approaches to trade off parallelism and state have
limited scope. Data-parallel architectures (e.g., GPUs [11, 39],
TPUs [37], scalable vectors [64, 71], and stream dataflow [54,
62]) assume a large amount of identical, independent work,
allowing the microarchitecture to choose how much work to
execute in parallel. Data-parallel architectures can thus dynam-
ically throttle parallelism to fit live state within the machine’s
finite memories. While highly effective, this approach requires
an SPMD programming model that does not suit all programs,
and these architectures also impose other inessential constraints
on parallelism (e.g., due to branch divergence in GPUs [80]).

Goal: Taming parallelism to improve locality. This paper seeks
a general-purpose architecture that balances parallelism and
live state. Fig. 1 depicts our goal and approach, sketching a
dataflow graph (DFG) of instructions and their dependencies in
a mock program. A sequential architecture like a CPU executes
the DFG in “depth-first” fashion, limiting execution to a narrow
slice of the program at a time and frequently backtracking for
independent work that could have been executed in parallel.
By contrast, the dataflow architecture executes the DFG in
“breadth-first” fashion, eagerly expanding work as it becomes
available and thus having to track an exponentially increasing
amount of state. Our architecture, TYR, explores a wide, but
bounded, segment of the DFG at a time to saturate parallelism
without blowing up the amount of live state.

(a) Seq. von Neumann (b) Dataflow (c) TYR

Figure 1: How architectures execute a dynamic dataflow graph (DFG).
Sequential von Neumann architectures have too little parallelism,
exploring the DFG “depth-first”. Dataflow architectures have too
much parallelism, exploring the DFG “breadth-first” and exploding
live state. TYR seeks a general-purpose solution that balances both,
maximizing parallelism within a machine’s finite resources.

Problem: Dataflow cannot safely limit parallelism. Given the
well established difficulty of extracting parallelism from a

1

sequential architecture, our starting point is dataflow. Dataflow
architectures use tags to disambiguate values from, e.g.,
different loop iterations. Naïvely, a simple way to throttle
parallelism in a dataflow machine would be to limit the tag
space, e.g., the number of loop iterations that can be active at
once. However, limiting the tag space leads to deadlock, e.g.,
when an earlier loop iteration cannot proceed because all tags
have been allocated to later, dependent loop iterations. Unable
to safely limit the number of tags, prior dataflow architectures
have been forced into large token stores, which have proved
impossible to implement efficiently.

Key insight: A global tag space is unnecessary. We observe
that this problem arises because all prior dataflow architectures
allocate tags from a single, global tag space. Allocating tags
from a global tag space guarantees that all tags are unique, but
this is overly conservative. It is not a problem if the same tag
is used by different parts of a program, so long as one can be
sure that the tags will never interact.

TYR: A dataflow architecture with local tag spaces. TYR1

is a new dataflow architecture that assigns each concurrent
block in a program (i.e., function or loop body) its own local
tag space. TYR exploits program structure to guarantee that
the local tag spaces are disjoint, i.e., that their tags will never
interact. Each local tag space can be tiny (two tags is enough)
without risking deadlock. TYR can thus be implemented with
small, private token stores and opens the door, for the first time,
to a practical, scalable implementation of unordered dataflow.

TYR is general-purpose. We compile programs from C to
TYR’s dataflow ISA, breaking the program into local tag spaces
at loop and function boundaries. TYR introduces new tag-
management instructions to manage the local tag spaces. We
describe the semantics required of allocate and free to
guarantee forward progress on arbitrary programs, and we
prove that TYR is deadlock-free and bounds the number of
live tokens. TYR achieves high parallelism on arbitrary loops
and acyclic call graphs, and it enables designers to trade off
parallelism and state by scaling the number of tags.

Contributions. TYR is the first general-purpose architecture to
bound state without artificially constraining parallelism or risk-
ing deadlock. This paper focuses on the high-level architectural
primitives to navigate the parallelism-state tradeoff:
• We characterize the parallelism-state tradeoff in prior

architectures and show that they all either limit parallelism,
suffer from unbounded state, or have limited scope.

• We observe that global tag spaces in unordered dataflow
architectures are overly conservative and are the root cause
of parallelism explosion.

• We present local tag spaces, a general-purpose technique
that exploits program structure to tame parallelism and
improve locality.

• We introduce TYR, a new dataflow architecture and com-
piler, that implements local tag spaces.

• We prove that TYR is deadlock-free and bounds live state.

1After the Norse god who slayed the monstrous wolf Fenrir [1, 72].

Sequential Dataflow

Ordered Dataflow

Unordered Dataflow

Tyr

0.0 0.2 0.4 0.6 0.8 1.0

Time (in Execution Steps) ×107

101

102

103

104

105

106

S
ta

te
(N

um
.

T
ok

en
s)

(l
og

)

Figure 2: Results for sparse matrix multiplication (spmspm). Un-
ordered dataflow suffers from parallelism explosion that exponentially
increases live state. Sequential and ordered dataflow have poor
performance. Only TYR achieves high performance with low state.

Summary of results. We evaluate TYR in high-level simulation
against several prior architectures (Sec. II): sequential, ordered
dataflow, and unordered dataflow. Our results show that TYR
achieves the best of all worlds: it achieves nearly the same
performance as a naïve unordered dataflow architecture with
orders-of-magnitude less live state. Fig. 2 shows a representative
execution trace of total live state (y-axis, log-scale) over
timesteps (x-axis) for sparse matrix-matrix multiplication. Each
trace ends when the program completes. Sequential and ordered
dataflow architectures have little state, but also poor perfor-
mance. Meanwhile, tagged dataflow architectures complete the
program quickly, but have orders-of-magnitude more live state
than other designs. Only TYR balances parallelism and locality,
keeping state bounded while completing the program quickly.

II. BACKGROUND AND MOTIVATION

A. Resurgence of dataflow for programmable acceleration

Our work is motivated by the need for an efficient, general-
purpose architecture. The end of Dennard scaling has made
processors power-limited [26, 76], and sequential CPU ar-
chitectures are horribly inefficient, wasting upwards of 99%
of their energy [28, 36]. Some foresee a future of “dark
silicon,” where systems feature a wide variety of specialized
accelerators [26,40,76]. Such accelerators have already gained
traction in industry for some workloads [13, 37].

However, specialized accelerators have serious drawbacks
and deliver lower benefits than generally advertised. Amdahl’s
Law tells us that specialization is at odds with efficiency [29,35],
since an application is quickly limited by whatever runs
least efficiently. Custom hardware requires large and growing
non-recurring engineering (NRE) costs [40], which only a
few applications can justify. Specialized hardware is very
disruptive to software, and there is no scalable and maintainable
solution for integrating an increasing variety of accelerators
into existing software development flows. Finally, the cost

2

and carbon footprint of idle silicon is considerable, meaning
dark silicon is not the free lunch it initially appears [9, 33].
These considerations will limit specialized accelerators to a
few high-value domains, like deep learning [12, 13, 37].

Most applications will rely on general-purpose (i.e., software-
programmable) architectures. Recent spatial architectures, like
coarse-grained reconfigurable arrays (CGRAs) and reconfig-
urable dataflow architectures (RDAs), are increasingly general-
purpose and easy to program [6,14,15,19,25,28–31,38,44–49,
54,59,60,62,65–67,70,74,75,77,79,81,84,85]. They have led
to a resurgence of interest in dataflow [18,19,22,28,29,53–56,
62, 79, 82].

B. Dataflow basics

Dataflow architectures represent programs as graphs of
instructions, with edges denoting producer-consumer relation-
ships. Each instruction follows the dataflow firing rule [22,52],
executing once all its inputs are available. There is no program
counter or global order on instructions. Data is communicated
between producers and consumers in packets called tokens.

Fig. 3 shows pseudocode and a corresponding dataflow
graph for dense matrix-vector multiplication (dmv). The
yellow circular nodes represent classic arithmetic and memory
instructions, while the red triangles represent control-flow
instructions. In a dataflow machine, control flow takes the
form of steer instructions, not branches, that conditionally
route a data token depending on a boolean decider token. For
example, in Fig. 3b, a steer routes w around the loop based on
the for-loop comparison (i.e., so long as i != m), and another
steer routes w to the store after the loop (i.e., once i == m).

Figure 3: A running example:
dense matrix-vector multiplication.
We zoom in on the innermost loop
body (green box) to demonstrate
dataflow execution.

def dmv (A, B, Z, m, n):
for i = 0..m:
w = 0
for j = 0..n:
w += A[i,j] * B[j]

Z[i] = w

(a) Pseudocode.

= =i++

*n
Z

m

0

0

w+=

*

LD
LD

n

A
B

ST

0 0
= =

j++

+

(b) Dataflow graph (DFG).

A

B
LD LD

*

A

B
LD LD

*

w+=

A

B
LD LD

*

w+=

A

B
LD LD

*

w+=

A

B
LD LD

*

w+=w+=

Time

A

B
LD LD

*

w+=

(c) Execution trace of innermost loop.

Fig. 3c illustrates tokens flowing through the innermost
loop body of dmv. Tokens are shown as diamonds, and their
color represents a tag that indicates, in this example, which

loop iteration they belong to. Initially, tokens from iteration 0
(cyan) arrive at the two loads and at w+= at the bottom. The
loads immediately fire, since they have all inputs ready, but
the add must wait for its remaining input. The load from B
completes first, followed by the load from A. Once both return,
the multiply is ready and fires, at last enabling w+= to fire.
Finally, the updated value for w is sent back to the top of the
loop, with a new tag representing iteration 1 (orange). Note
that w+= does not fire after step 4 because, although input
tokens are available, their tags do not match (green vs. cyan).

C. Surveying the parallelism vs. state tradeoff

To characterize how prior architectures balance parallelism
and state, we introduce the notion of token synchronization.
A running program spawns many dynamic instances of the
same instruction(s) (e.g., across iterations of a loop). For
correct execution, architectures must route values (tokens)
to the appropriate dynamic instruction (e.g., the right loop
iteration). Token synchronization is merely how an architecture
does this, i.e., how it disambiguates between dynamic instances
of an instruction, either by ordering them or giving them
unique names (or both). For example, a sequential architecture
disambiguates loop iterations by serializing them, whereas a
dataflow architecture assigns each iteration a unique tag.

Token synchronization is the lens through which we un-
derstand how prior architectures balance parallelism vs. state.
We consider a wide range of sequential, ordered, unordered,
and data-parallel architectures. This section surveys how each
balances parallelism and state, using an execution trace of dmv
to drive the discussion.

Figure 4: Partial execution trace of dmv.

Fig. 4 zooms into a trace of dmv. We show the dynamic
execution graph, unrolling execution to show realized con-
trol flow and communication. Purple nodes are outer-loop
instructions, and yellow nodes are inner-loop instructions. Black
edges are communication, and red edges show other orderings
required by the execution model. The width of the graph
corresponds to time steps; height corresponds to parallelism.
Parallel instructions running in the same time step are vertically
adjacent, and the number of black edges crossing a vertical
cut is the number of live tokens in the program at that point
in time. The graph is simplified to show only necessary edges,
i.e., redundant orderings are removed.

Sequential von Neumann (vN). At one extreme, vN archi-
tectures (i.e., CPUs) impose a sequential program order on
instructions; sequential ordering is vN’s token synchronization
scheme. Fig. 5a illustrates this as red edges between pairs
of subsequent instructions. These extra edges enforce a total
ordering on instructions, modeling the program counter. In a

3

...
(a) Sequential von Neumann (execution continues past the edge of the page).

Figure 5: Execution traces for
dmv on prior architectures. Trace
width indicates execution time,
and trace height indicates paral-
lelism. The number of black edges
along a vertical cut is the number
of live values, which increases
in proportion to parallelism. Red
edges are additional orderings en-
forced by the architecture, accord-
ing to its token synchronization
scheme, that limit parallelism.

(b) Out-of-order superscalar von Neumann with instruction window = 4.

(c) Sequential dataflow (e.g., WaveScalar [73]).

(d) Ordered dataflow (e.g., RipTide [29]).
(e) Unordered tagged dataflow (e.g.,
TTDA [52]).

sense, vN’s sequential ordering restricts execution to a “depth-
first” traversal of a program’s full dynamic execution graph
(Fig. 1). The result is minimal parallelism, so that program
execution takes a long time (the graph is wide) but live state
is minimized (the graph is short).

Parallelism can be increased by having multiple vN execu-
tion streams, i.e., multithreading. Token synchronization now
includes a token’s thread id, in addition to its vN ordering.
Multithreading punts all of the problems of parallelism,
including balancing parallelism and state, to the programmer.

Unordered (tagged) dataflow. At the other extreme, an un-
ordered dataflow machine uses the most permissive token
synchronization. Unordered dataflow architectures assign each
dynamic instance of an instruction a unique name, or “tag.”
Instructions fire whenever inputs with matching tags are present.
Tag matching is unordered dataflow’s synchronization scheme.
Data dependencies are the only constraint on parallelism,
unleashing parallelism across the entire program. Examples
include TTDA [52], Monsoon [58], and the Manchester
Dataflow Machine [34]. Fig. 5e illustrates unordered dataflow.
Execution is much different from sequential vN: all five inner-
loop iterations execute in parallel, and execution is short (the
graph is narrow) but with much more live state (the graph is tall).
As the number of outer-loop iterations increases, parallelism
explodes along with live state.
• Problem #1: Parallelism explosion. The abundant paral-

lelism in unordered dataflow architectures is both a blessing
and a curse. A longstanding problem with these designs is
parallelism explosion, where runaway parallelism exhausts
the machine’s finite memory, hurting performance or even
causing deadlock [4,17]. Parallelism explosion arises as the
architecture greedily explores available work (Fig. 1). Prior
unordered dataflow architectures recognized this problem
but offered ad hoc solutions: e.g., TTDA limits the number
of outstanding innermost loop iterations [52]. Parallelism
cannot be constrained without risking deadlock (Sec. V).

• Problem #2: Implementation complexity. Unordered
dataflow machines require an associative memory to match

(f) Data-parallel (e.g., vector, GPU).

tags for instruction scheduling, which grows with paral-
lelism because it must track all live tokens. Token stores are
expensive to implement in hardware and scale poorly. Thus,
as a corollary to Problem #1, the inability to bound the
size of token storage is a major unsolved implementation
challenge in unordered dataflow architectures.

Prior work has recognized these problems and has explored
limiting parallelism by constraining tags. Unfortunately, prior
work on constrained tag spaces is not general-purpose. TTDA
targets innermost loops of scientific applications, limiting the
number of tags available to some bound k (Sec. VIII). But
k-bounding only applies to affine loops. By contrast, TYR’s
techniques are general-purpose, targeting, e.g., arbitrary loops
and function calls.

Because they are unable to constrain tags, other unordered
dataflow architectures are forced to track unbounded state.
For example, the Manchester Dataflow Machine provides an
“overflow unit” that spills tokens to main memory, delaying
deadlock from unconstrained parallelism at the cost of extra
data movement [34]. Deadlock is still possible if parallelism
exhausts main memory.

Out-of-order vN. In between these extremes are architectures
that trade off parallelism and state. The obvious hybrid of vN
and dataflow is the out-of-order (OoO) superscalar processor.
These architectures synchronize tokens through a combination
of ordering and naming, executing instructions from within a
window of the vN order and renaming values to disambiguate
duplicates of the same instruction. Fig. 5b illustrates dmv on
OoO with a window of 4 instructions; red edges now order

4

instructions 4 or more apart in vN order. Parallelism increases
by nearly 4×, and live state is kept small. However, OoO is
still fundamentally vN: reordering is limited to a small region
of the vN execution order, preventing the OoO processor from
discovering parallelism across, e.g., outer-loop iterations. The
scaling, efficiency, and implementation challenges of OoO
processors are well documented [36, 73] and, despite decades
of effort, remain unresolved.

Ordered dataflow. From the other direction, ordered dataflow
machines impose a partial ordering on dataflow execution.
These architectures synchronize tokens by having instructions
communicate through FIFO queues. FIFO queues sequentialize
execution of the same instruction but allow parallel execution
of different instructions [28, 29, 31, 62, 69, 86]. Since tokens
are ordered, there is no need for a tag, other than the
instruction itself. The queue size also limits the number of
dynamic instances of each instruction, applying back pressure to
upstream instructions. Similar to vN, back pressure does not risk
deadlock due to the global order enforced at each instruction.2

Ordered dataflow thus avoids parallelism explosion.
However, ordered dataflow loses parallelism and perfor-

mance. While ordered dataflow allows instruction-level paral-
lelism and fine-grained pipelining, it is prone to stalls as long-
latency operations block later instances of the same instruction
from executing. Fig. 5d illustrates ordered-dataflow execution.
Instructions within a single loop iteration run in parallel, but
across loop iterations are serialized because they share a FIFO
queue — see the red edges in the graph. Moreover, outer-loop
instructions are pulled far forward in the execution (vs. the vN
order) because there is no data dependence to prevent their
execution earlier. The result is a middle ground between vN
and unordered dataflow, both in performance and live state.

Ordered dataflow promises more parallelism than OoO,
with simpler hardware than OoO or unordered dataflow. Most
CGRAs are thus ordered-dataflow architectures. However,
simplicity comes at increasing loss in parallelism with, e.g., the
number of outer-loop iterations in dmv. Hence, unordered (i.e.,
tagged) dataflow has recently re-gained interest in CGRAs for
irregular programs with unpredictable latency, e.g., in sparse
workloads, or with multiple threads [43, 68, 79, 81].

Sequential dataflow. Sequential dataflow architectures impose
orderings even stricter than ordered dataflow. These archi-
tectures implement global ordering points, corresponding to
the vN ordering at basic- or hyper-block boundaries, that
limit parallelism from spanning code regions. Sequential
dataflow processors use the dataflow firing rule within small
regions, but this is not their main token-synchronization scheme.
Rather, sequential dataflow’s token synchronization scheme is
its total ordering on the basic- or hyper-blocks. Examples
include WaveScalar [73] and TRIPS [66]. WaveScalar orders
instructions via a monotonically increasing tag, or “wave
number.” The wave number is advanced (incremented) at the
end of each loop iteration or function call.

2Sec. VIII discusses deadlock in functional vs. imperative languages.

One might think that, by using tags, WaveScalar unleashes
the unconstrained parallelism of unordered dataflow. How-
ever, because wave numbers must increase monotonically,
instructions must wait until their wave number is resolved,
which depends on the dynamic control flow of all earlier
hyperblocks. In other words, instructions must wait for their
“turn” in the global block-order. In fact, all live values must
replicate the control flow of all preceding blocks to arrive
at the right wave number [61]. Fig. 5c illustrates dmv in
WaveScalar. Inner-loop iterations execute in parallel, but all
tokens must advance alongside these inner loops to synchronize
wave numbers. Outer-loop iterations (purple) are thus ordered
globally between inner-loop nests, unlike in ordered dataflow.
The result is closer to wide-issue OoO vN than to unordered
dataflow, but implemented in a fully distributed fashion. Indeed,
WaveScalar’s (and TRIPS’s) original motivation was to create
a more scalable superscalar vN core. Accordingly, sequential
dataflow architectures’ parallelism is limited to the current
block, akin to OoO’s instruction window.

Data-parallel. Finally, data-parallel architectures like vector
machines and GPUs apply the same sequence of instructions
to many data concurrently. These architectures require that
programs have an “embarrassingly parallel” structure to make
this possible, corresponding to, e.g., some loop or map. Fig. 5f
illustrates a data-parallel execution of dmv. First, there is a
section of sequential code, in this case to compute the usable
vector width and the offset of each row in the matrix. Then
data-parallel execution starts wherein vectorized operations act
on multiple data simultaneously, ending with a vectorized store
for the entire output. Several recent dataflow architectures have
adopted a similar approach, executing a data-parallel program
as many independent streams [19, 54, 62, 65, 67, 69, 78, 79, 81].

The embarrassingly parallel program structure is essential
to data-parallel architectures. Like unordered dataflow, data-
parallel is not limited to a small instruction window; in dmv,
data-parallel exploits parallelism across entire loop iterations.
But unlike unordered dataflow, a data-parallel architecture is
free to choose as much parallelism as it wants to maximize
performance while staying within the machine’s resources.
This strategy is only safe for embarrassingly parallel programs,
where each thread is doing independent work, and would
otherwise risk deadlock.

Summary. Architectures seek to maximize parallelism within
a machine’s finite resources. Unordered dataflow architec-
tures look promising, but parallelism explosion necessitates
impractically large token stores to avoid deadlock. Other
architectures (vN, OoO, ordered/sequential dataflow) add
artificial orderings to the program execution that limit state
at a severe cost in parallelism, usually limiting execution to a
small window around a “program counter.” Existing techniques
that successfully navigate parallelism and state, e.g., TTDA’s k-
bounding and data-parallel architecture, are not general-purpose
and only apply to embarrassingly parallel programs. TYR’s
contribution is to generalize these techniques across other
program structures.

5

III. LOCAL TAG SPACES

TYR is a new unordered dataflow architecture that achieves
high parallelism with bounded state. As shown in Fig. 6,
TYR breaks the tag space into several local tag spaces that
correspond to program structure. Local tag spaces allow TYR
to tame parallelism to fit token state within a machine’s finite
memories without risking deadlock, unlike prior unordered
dataflow architectures. Moreover, TYR is fully general-purpose
and makes no assumptions on program structure, unlike data-
parallel approaches to parallelism.

Tag Space

Allocated Free

(a) Unstructured DFG.

Outer Loop

Inner
Loop

(b) Structured DFG.

Figure 6: Local tag spaces allow TYR to balance parallelism and state,
shown with DFGs of dmv. (a) Prior unordered dataflow architectures
allocate tags from a global tag space, failing to exploit structure
or bound tag usage. (b) TYR allocates tags from local tag spaces
corresponding to program structure, allowing TYR to scale parallelism
by tuning the number of tags. TYR ensures forward progress with
just two tags per local tag space.

Insight: Unordered dataflow architectures over-synchronize.
Fig. 6 shows the dataflow graph of dmv (pseudocode in Fig. 3a).
Prior unordered dataflow architectures (Fig. 6a) execute an
unstructured dataflow graph and allocate tags from a single,
global tag space. By contrast, TYR (Fig. 6b) leverages program
structure to break the dataflow graph into subgraphs, each with
its own local tag space.

A global tag space is sufficient to ensure that there are no tag
collisions, but we observe that it is far more conservative than
necessary. A new tag is allocated whenever entering a loop,
so tags from inner and outer loops can never interact. Prior
designs are synchronizing tokens that were never at risk of
collision to begin with. The inner and outer loops can allocate
tags completely independently — in fact, it is safe for them to
simultaneously use the same tag.

TYR leverages program structure via local tag spaces. TYR
breaks the program into concurrent blocks, which allocate
tags independently. A concurrent block is a group of static
instructions that may have multiple instances executing con-
currently, but has no internal concurrency. Each concurrent
block thus requires a distinct tag, but requires no internal tag
changes. In other words, concurrent blocks are the natural
unit of tag management, akin to basic blocks or activation
frames [50, 58]. Concretely, a concurrent block is a directed
acyclic graph (DAG), i.e., straight-line or forward-branching

code. Within a DAG, instructions are not reused, so there is no
possibility of concurrency. Concurrency naturally arises across
loop iterations or function calls, so TYR breaks the program
into concurrent blocks at loop and function boundaries.3

Concurrent blocks communicate through transfer points,
which cut the dataflow graph at concurrent-block boundaries to
translate tags between the local tag spaces. Tags from different
concurrent blocks can never meet without having first been
translated by a transfer point, and so aliasing across local tag
spaces is impossible.

Local tag spaces in action. Fig. 7 shows the detailed dataflow
graphs for dmv in naïve unordered dataflow and TYR. In naïve
unordered dataflow (Fig. 7a), tags are allocated along every
backedge (T nodes) from a single, global tag space. Thus, the
inner and outer loop nests compete for tags, and a large number
of tags are needed to avoid deadlock. By contrast, TYR (Fig. 7b)
breaks dmv into two concurrent blocks (CBs) corresponding
to the outer and inner loop. Each concurrent block gets its
own local tag space, and the loops do not compete for tags.
Forward progress can be guaranteed with minimal tags — as
little as two per concurrent block.

= =i++

*n
ST

Z

m
0

0

00

w+=

*

LD
LD

+

j++

= =

n

A
B

TT

T

TTT

T T T

T

(a) Elaborated unordered DFG.

= =i++

*n
ST

Z

m

0

0

w+=

*

LD
LD

+
j++

= =

n

A
B

CB1XP1CB1XP2

CB2XP1

CB2XP2

CB1

CB2

(b) TYR’s structured DFG.

Figure 7: Unordered dataflow programs produce a large number of
Tag Change (T) operations that compete to allocate tags from a single
global tag space. TYR breaks dmv into two concurrent blocks (CBs),
each with its own local tag space. CBs are connected by transfer
points (XPs), which transfer between tag spaces. Tags are allocated
independently across CBs, and TYR ensures that a tag will always be
available when needed to ensure forward progress.

Each concurrent block (CB) is guarded by transfer points
(XPs) at its boundary. dmv has two transfer points per block:
e.g., CB2XP1 from the outer loop to start a new inner-loop
nest, and CB2XP2 along the backedge for each new inner-
loop iteration. (Loops always have exactly two transfer points,
unlike functions, which have one per caller.) A transfer point
is responsible for allocating a new tag in the child’s tag space

3Interprocedural analysis could allow for larger concurrent blocks, but using
loop and function call boundaries is simple and safe. goto statements that
transform into natural loops are supported, but gotos which create irreducible
control flow [3], such as by jumping into the middle of a loop, are not [24].

6

for all incoming tokens (e.g., arguments), and resetting back
to the parent’s tag for all outgoing tokens (e.g., return values).
In dmv, CB2XP2 allocates a new tag and assigns it to i, j, and
w, and restores w’s tag on exiting the inner loop.4

Local tag spaces allow TYR to always make forward progress.
Forward progress cannot be guaranteed in prior unordered
dataflow architectures because of unconstrained competition
for tags — there is no way to prevent the last tag from being
claimed by work that will later stall, waiting for something
earlier to finish. TYR structures the tag space, enabling us to
reason about the interactions between program regions and
ensure that a tag will be available when it is needed (Sec. V).

Local tag spaces enable smaller, simpler, and more scalable
hardware. For decades, unordered dataflow architectures have
been hamstrung by large, associative memories needed to
implement their unbounded global tag spaces. By contrast, TYR
distributes tag management across many, independent, bounded
local tag spaces. Thus, although an implementation is outside
the scope of this paper, TYR is far more amenable to simple,
scalable hardware than prior unordered dataflow architectures
(Sec. VIII). Moreover, local tag spaces give systems a new
knob to trade off parallelism and locality (Sec. IV-D).

IV. TYR ARCHITECTURE

TYR is a general-purpose unordered dataflow architecture
that implements local tag spaces. TYR introduces new instruc-
tions to manage local tag spaces (Fig. 8) that prevent the system
from running out of tags, even with only two tags per block.
TYR is agnostic to programming language, is highly parallel,
and guarantees forward progress with bounded state.

A. TYR instruction set
TYR has no program counter. Instead, instructions follow

the dataflow firing rule, executing whenever their inputs are
available (Sec. II-B). TYR’s ISA, summarized in Table I, has
four categories of instructions: arithmetic, memory, control
flow, and token synchronization. TYR provides a standard set of
arithmetic instructions. TYR implements control flow via steer
instructions that conditionally route tokens to the taken path
of a branch [22, 29, 73]. TYR supports conventional, mutable
memory via loads and stores, converting memory ordering
into explicit data dependencies in the dataflow graph [2, 29].
TYR’s main contribution is its token-synchronization instruc-
tions, which allow it to bound token state. We first describe
these instructions and then demonstrate them in an example.

Table I: TYR’s instruction set.

Category Instruction(s)

Arithmetic +, −, ×, ÷, <<, ̸=, etc.
Memory load, store

Control flow steer, join
Token synchronization allocate, free, changeTag, extractTag

4Alternatively, one could forward the parent context’s live values to match
the child, like WaveScalar [73]. But this strategy requires a global tag space
and a much larger number of tag-management operations (Sec. VIII).

< t , ∅ >

ET

extractTag
< t , ∅ >

FR

free
<t , d1> … <t , dN>

join

JN

< t ,d1 >

< t , t' >

CT

changeTag
< t , d >

< t , ∅ > < t', d >

< t , ∅ >

AL

allocate
< t , ∅ >

< t ,t >< t , t'> < t , ∅ >

req rdy

Figure 8: TYR’s new instructions for token synchronization. Inputs
and outputs are tagged tokens, denoted as <tag, data> = <t, d>. Control
tokens are denoted with data = ∅.

Definition. A context is a dynamic instance of a concurrent
block, e.g., a single loop iteration or function invocation.

join is an n-input barrier that waits for all inputs to arrive and
then produces a copy of its left input. join has two roles in
token synchronization: (i) join checks if a context will make
forward progress, which is equivalent to waiting until all inputs
are ready (Sec. V); and (ii) join checks if it is safe to free a
tag, which is equivalent to waiting until all instructions have
completed (see free below).

allocate generates a new tag when a context is spawned. All
allocate instructions into the same concurrent block share the
same free list. When tags are plentiful, allocate simply pops
a tag from the free list. But, to guarantee forward progress,
allocate will pop the last tag only if the context is ready.

allocate takes two zero-bit inputs, request and ready,
with a special firing rule: request carries the parent context’s
tag and no data payload, <t, ∅>. If the free list has more than
one tag, allocate immediately pops and returns the new tag,
<t, free_list.pop>, and the ready input is consumed without
effect when it eventually arrives. Otherwise, to guarantee
forward progress, allocate waits for ready before popping
and returning, consuming both inputs.5

Tail-recursive allocations (e.g., loops) are a special case for
allocate because the parent and child are in the same tag
space. A tail-recursive context cannot finish until it allocates
its child, so a “spare tag” is required for forward progress. Thus,
allocates on the “external” (i.e., not-tail-recursive) edge only
pop from the free list if there are at least two tags remaining.

free returns a tag to the local tag space’s free list. free
consumes a single zero-bit input, <t, ∅>, and adds t to the
free list. In order to safely free a tag, free must ensure that
no other tokens exist with that tag. The compiler inserts a
join before the free whose transitive fan-in reaches every
instruction in the concurrent block.

The free barrier requires that all instructions create an output
token with the same tag as their inputs. Most instructions satisfy
this constraint automatically, but there are exceptions: store
normally produces no output, so TYR adds a control output
<t, ∅> for the free barrier, which is also used for memory
ordering. changeTag (see below) normally generates a token
with a different tag t’, so TYR similarly adds a <t, ∅> output.
steer conditionally generates a token on its primary output,

5allocate could return even earlier by tracking if any active context is
ready, at the cost of additional complexity.

7

(a) Two tags.

(b) Four tags.

(c) Eight tags.

Figure 9: Traces of dmv on TYR with different
numbers of tags per local tag space. TYR lets users
trade off parallelism and live state. (d) ∞ tags.

so TYR adds an unconditional <t, ∅> output. And allocate’s
special firing rule means it can execute before ready arrives, so
allocate generates <t,∅> when the ready input is consumed.
Correctly generating the free barrier for all cases was non-
trivial, and required in any unordered dataflow architecture,
yet we are unaware of any detailed discussion in prior work.

Finally, token synchronization in TYR requires two further
instructions to manipulate tags, similar to TTDA [52]:

extractTag returns a tag as data: <t, ∅>→ <t, t>.

changeTag replaces the tag and, for the free barrier, produces
a control token: (<t, t’>, <t, data>) → (<t’, data>, <t, ∅>).

When the token’s destination is not statically known (e.g.,
function pointer or return to arbitrary caller), changeTag must
also route the token to a dynamic location (i.e., instruction
pointer and operand index) [52]. Loops and local functions
can route tokens with ordinary control flow (i.e., steers).

B. Putting it all together: Concurrent block linkage in TYR

Fig. 10 shows how TYR uses these instructions to synchro-
nize tokens from two transfer points into a single concurrent
block. The transfer points are identical and share the block’s
free list. Each transfer point has an allocate (AL), which feeds
n changeTag (CT) instructions to pass arguments to the child
block [52]: The first are the parent’s tag and return instruction,
and the remaining are the program’s arguments. The allocate
is requested by the arrival of the first argument (a1),6 and it
is ready when all arguments arrive (see the join above the
allocate). Note that, if multiple tags are available, the context
starts executing as soon as a1 arrives, even if a2 has not yet
arrived.

The context then executes normally, using the tag allocated
by AL. Any exiting transfer points use changeTag to reset the
tokens’ tags and route them back to the parent context. Finally,
the callee’s join waits until all instructions have completed,
whereupon the tag is freed back to the child’s local tag space.

C. Compiling to TYR

TYR’s compiles programs with LLVM [42] into the UDIR [2]
intermediate representation, and then lowers UDIR to TYR.
UDIR is a high-level dataflow IR that converts imperative

6The first is arbitrarily chosen; any argument suffices.

a1

a2

a1

a1

a1

a2

a1

a1

a1

a2

ret ret

a2

a1CT

CT

CT CT

CT

CT

ALAL

JNJN

JN
JNJN CT

ETET

FR

FR

FR

Caller1CB Caller2CB

CalleeCB
XP1 XP2

Figure 10: TYR’s concurrent-block linkage. All communication
between concurrent blocks happens through changeTag instructions,
ensuring tags never escape from their concurrent blocks.

code (C/C++) into dataflow graphs, e.g., transforming branches
into steers and memory-ordering dependencies into data
dependencies. UDIR marks the boundaries of concurrent blocks
with abstract enter and exit instructions, which can be
lowered to many dataflow ISAs. We implement compiler passes
to transform UDIR into TYR by converting enter and exit
into the concurrent-block linkage shown in Fig. 10.

D. Trading off parallelism and live state

TYR gives architects a new knob to trade off parallelism and
locality: the size of the local tag space. Fig. 9 demonstrates
this feature by varying the number of tags per local tag space
in dmv. With unlimited tags (Fig. 9d), TYR behaves identically
to naïve unordered dataflow. However, TYR can tune the size
of the tag space (Fig. 9a-c) to tame parallelism and save state.
Even with few tags (e.g., eight in Fig. 9c), TYR achieves much
higher parallelism than other architectures (Sec. II).

Local tag spaces unlock additional opportunities for fine-
grained resource allocation. By independently sizing local
tag spaces of different program regions, TYR can selectively
control parallelism across a program. For instance, TYR can
aggressively parallelize “hot code” (e.g., an affine innermost
loop) by increasing its tags, and can reduce tags for outer-loops
that stall waiting for earlier work to finish (Sec. VII-E).

V. DEADLOCK FREEDOM AND BOUNDED STATE

TYR achieves high parallelism with bounded state, unlike
prior unordered dataflow architectures that produce an un-
bounded number of live tokens. Limiting the tag space in
prior architectures can lead to deadlock when all tags are
allocated to stalled work. Fig. 11 shows a simulation trace of
dmv deadlocking on a naïve unordered dataflow architecture
with 8 tags. As the system eagerly explores parallel work, all
of the tags are allocated to outer loop iterations, so that the
first iteration of the inner loop cannot finish because no tag is
available for the second. Since outer-loop iterations are waiting
for the inner loop to finish, the system deadlocks.

We now prove that TYR is deadlock-free and bounds live
state. Intuitively, our proof shows that small pieces of TYR

8

Figure 11: Deadlock seen in sim-
ulation: Unordered dataflow dead-
locks on dmv with 8 tags. Nodes
with green edges are successful tag
allocations, while nodes with red
edges are tag allocations which
were pending when the system
deadlocked. The number of tags
required to successfully complete
grows quickly with input size.

programs are deadlock-free and then composes them into larger,
deadlock-free programs. Without loss of generality, we assume
that cycles in the call graph (i.e., general recursion) have been
transformed into tail recursion with an explicitly managed
stack. This approach moves the unboundable state of general
recursion from dataflow tokens into memory, but introduces
memory ordering that may limit parallelism. We discuss an
alternate strategy for recursion in Sec. VIII-B.

A. Proof of deadlock freedom

We first consider a program consisting of a single concurrent
block, and then build up towards more complex programs.

Definition. A leaf block is a concurrent block that does not
contain any calls to other concurrent blocks.

Assumption 1. Once inputs are ready, a leaf block will
eventually produce all outputs and free its tag.

In other words, TYR’s compiler is correct.

Lemma 1. Leaf blocks are deadlock-free in TYR.

Proof: For programs consisting of a single leaf block, the
lemma follows immediately from Assumption 1. Concurrent
blocks are DAGs, so tokens flow through the block in finite
time, eventually reaching the output and the free.

By the same argument, for arbitrary programs, we only need
to show that a ready context for the block will eventually receive
a tag. TYR only allocates the last tag for a concurrent block
to a ready context, so there is always either (i) an available
tag or (ii) a ready context already executing, which will finish.
Thus, if a tag is not immediately available, one will become
available eventually, guaranteeing forward progress.

Definition. A tail-leaf block is a concurrent block that contains
exactly one call, which is tail-recursive.

Lemma 2. Tail-leaf blocks are deadlock-free in TYR.

Proof: A tail-leaf block context is guaranteed to complete
so long as it can allocate a tag for its child context (i.e., the
next loop iteration). TYR’s allocate instruction ensures that
at least one tag in a tail-leaf will always be available for the
tail-recursive self edge by not allowing an external (i.e., not-tail-
recursive) allocate to consume the last tag (Sec. IV-A). Thus,
a tag will eventually be available for any tail-recursive child
call, so by the same argument in Lemma 1, ready tail-recursive
contexts will eventually complete.

Theorem 1. TYR is deadlock-free.

Intuitively, deadlock-free concurrent blocks should compose
to make deadlock-free programs. As long as a concurrent
block’s children do not deadlock, and it cannot internally
deadlock, it must finish. Arbitrarily large programs can be
proven deadlock-free by induction.

Proof: Per above discussion, the program is in a tail-
recursive form. The call graph is, thus, a rooted DAG where
the root is the entry point of the program (e.g., main). We will
show by induction that every node in the graph is deadlock-free.

Base case: Consider a leaf node in the call graph. This node
is either a leaf block or a tail-leaf block. By Lemma 1 or 2, it
is deadlock-free.

Inductive step: Consider a concurrent block with calls to
deadlock-free concurrent blocks. A context in this concurrent
block will eventually produce all the inputs for any transfer
point it contains. Because these callees are known to be
deadlock-free, they will eventually produce return values. Once
all return values have been received, Assumption 1 ensures
that the context will finish and free its tag.

Thus every concurrent block in the call graph is deadlock-
free, including the root, as is the entire program.

TYR’s local tag spaces are necessary for deadlock freedom.
Note that both lemmas rely on TYR having local tag spaces
for each concurrent block. Without local tag spaces, it is not
possible to guarantee that a tag eventually becomes available for
a ready context, as contention for tags across blocks can always
starve a transfer point. Prior unordered dataflow architectures
cannot even ensure that leaf blocks are deadlock-free.

TYR builds on prior deadlock-avoidance work. It is well known
in networking that cycles present deadlock hazards, and the
same is true in dataflow machines. TYR takes special care to
handle loops by reserving one free tag to only be used by
tokens already in the loop. Tokens waiting to be injected into
the loop must wait for multiple available tags. This is similar
to how bubble flow control prevents deadlock, where routing
nodes refuse to accept packets from outside of a cycle in order
to ensure the existence of a “bubble” in the cycle [10, 63].

B. Proof of bounded state

Prior unordered dataflow architectures have been unable to
bound state because they are unable to bound the number of
live tags. TYR can choose any number of tags greater than
one and successfully execute all programs, which allows it to
bound the total number of live tokens.

Theorem 2. TYR bounds the number of live tokens.

Proof: Consider a program with N static instructions and
no more than M inputs per instruction. In all unordered (tagged)
dataflow architectures, the number of tokens in flight with a
single tag is bounded by the number of inputs to all instructions
— there cannot be more than one token on an input with the
same tag. Thus, any limit on the number of live tags T ensures
that there are never more than T ·N ·M live tokens.

9

Sequential von Neumann Sequential Dataflow Ordered Dataflow Unordered Dataflow Tyr

dmv
0

2

4

6

8

E
xe

cu
ti

on
T

im
e

(c
yc

le
s)

×107
21

.8

dmm
0.0

2.5

5.0

7.5

×107

25
.3

dconv
0.0

0.5

1.0

1.5

×108

4.
76

smv
0.0

2.5

5.0

7.5

×106

27
.5

spmspv
0

1

2

×108

5.
48

spmspm
0.0

0.5

1.0

×107

3.
35

tc
0.0

0.5

1.0

×107

2.
26

Figure 12: Execution time across all apps and systems. TYR vastly outperforms von Neumann, sequential dataflow, and ordered dataflow,
and is nearly identical to unordered dataflow.

Note this bound applies to all tagged dataflow architectures.
But, unlike TYR, prior unordered dataflow is unable to bound
the number of tags T for fear of deadlock. Thus, there is no
bound on the total number of live tokens in these architectures.

VI. EXPERIMENTAL METHODOLOGY

Applications. We evaluate TYR on seven common, highly
parallel benchmarks (Table II). These benchmarks were chosen
to cover a variety of code patterns. The dense applications
feature regular computation and simple control flow, while
the sparse applications contain more complex, data-dependent
control flow. They were compiled from unmodified C to DFGs
for all dataflow architectures (including TYR’s ISA) using
UDIR (Sec. IV-C). Input sizes were chosen such that all systems
executed between 50M and 1B dynamic instructions. TYR’s
advantage grows with increasing input size.

Dense applications were run on random inputs, as their
execution is not data-dependent. smv and spmspv were run
on real-world data from SuiteSparse [41]: smv on DNVS/trd-
heim [20,21] and spmspv on a subset of DIMACS10/M6 [5,21].
tc was run on a navigable small world graph [83].

Table II: Applications and their input sizes.

Application Parameters

Dense matrix-vector (dmv) Size: 4,096×4,096
Dense matrix-matrix (dmm) Size: 256×256
Dense convolution (dconv) Image: 512×512, filter: 11×11
Sparse matrix-vector (smv) Size: 22,098×22,098,

Non-zeros: 1,935,324
Sparse matrix-sparse vector (spmspv) Size: 32,276×32,276,

Matrix non-zeros: 74,482,
Vector non-zeros: 1,638

Sparse matrix-sparse matrix (spmspm) Size: 256×256, density: 5%
Triangle counting (tc) Nodes: 16,384, edges: 206,107

Systems. We compare TYR against: (i) sequential von Neumann,
(ii) sequential dataflow, (iii) ordered dataflow, and (iv) un-
ordered dataflow (Sec. II-C). The size of the tag space(s) differs
across architectures. TYR’s local tag spaces each contain 64
tags. To ensure completion, unordered and sequential dataflow
runs with unlimited tags. Ordered dataflow’s FIFOs contain
up to 4 tokens, which empirically minimizes peak state with
minimal loss in performance [29].

Simulation. We evaluate TYR using an in-house simulator,
which directly executes compiled DFGs. We model idealized
execution to explore the ISA tradeoffs of dataflow architectures.
Simulation assumes single-cycle execution for all instructions.
We deliberately refrain from detailed microarchitectural timings,
as doing so would risk clouding the ISA-level tradeoffs explored
in this paper behind inessential microarchitectural assumptions.
The systems can execute up to 128 instructions per cycle,
including multiple instances of the same static instruction. We
study sensitivity to these parameters below.

Metrics. We compare architectures on their parallelism and
locality. We use execution time and IPC as measures of
parallelism. Execution time is simply the number of cycles
it takes to run a benchmark from start to finish. IPC and the
number of live tokens are sampled each cycle during simulation.

VII. EVALUATION

We evaluate TYR to show that it is near-optimal in both
parallelism and locality. TYR achieves similar performance to
unordered dataflow with orders-of-magnitude less state.

A. TYR is fast

Fig. 12 shows the execution time for every app on each sys-
tem. By gmean, TYR is 68× faster vs. vN, 22.7× vs. sequential
dataflow, 21.7× vs. ordered, and 0.77× vs. unordered.

Fig. 13 explains the speedup by showing the distribution
of IPC, plotted as a cumulative distribution function (CDF).
The graph shows how frequently each system achieves a given
IPC, so an ideal system would be an “⌟” shape. Unordered
dataflow is nearly ideal, almost always saturating the machine’s
issue width, whereas sequential and ordered dataflow perform
poorly, rarely executing more than ten instructions per cycle.
vN is the worst, always executing one instruction per cycle.
TYR’s bounded tags slightly reduce IPC vs. unordered, but it
still vastly outperforms vN, sequential dataflow, and ordered
dataflow.

B. TYR reduces live state

Fig. 14 plots the number of live tokens during program
execution on each system. Each bar shows both the maximum
(unhatched) and mean (hatched) the y-axis in log scale. TYR
reduces peak state by 572.8× vs. unordered dataflow on
average, reducing peak tokens from over 15 M to just over

10

Sequential von Neumann Sequential Dataflow Ordered Dataflow Unordered Dataflow Tyr

0 32 64 96 128

IPC

0.00

0.25

0.50

0.75

1.00

T
im

e

dmv

0 32 64 96 128

IPC

0.00

0.25

0.50

0.75

1.00

T
im

e

dmm

0 32 64 96 128

IPC

0.00

0.25

0.50

0.75

1.00

T
im

e

dconv

0 32 64 96 128

IPC

0.00

0.25

0.50

0.75

1.00

T
im

e

smv

0 32 64 96 128

IPC

0.00

0.25

0.50

0.75

1.00

T
im

e

spmspv

0 32 64 96 128

IPC

0.00

0.25

0.50

0.75

1.00

T
im

e

spmspm

0 32 64 96 128

IPC

0.00

0.25

0.50

0.75

1.00

T
im

e

tc

Figure 13: Cumulative distribution function (CDF) of the measured IPC of each system across all apps. TYR achieves high IPC, sometimes
identical to unordered dataflow (e.g. spmspv and spmspm), but with much less state (Fig. 14). The other architectures run at much lower IPC.

dmv dmm dconv smv spmspv spmspm tc
100

102

104

106

108

P
ea

k
S

ta
te

an
d

M
ea

n
S

ta
te

(l
og

)

Figure 14: State during program execution, measured as number
of live tokens (log scale). Each bar height shows the peak and the
hatched region shows the average. TYR achieves peak state orders-
of-magnitude lower than unordered dataflow while maintaining high
performance (Fig. 12).

2 K on dconv. TYR increases state vs. vN, sequential dataflow,
and ordered dataflow (by 98.4×, 136× and 23×), but this
is tunable in TYR (see below) and all are well within the
constraints of a hardware implementation.

Comparing maximum and mean state, TYR is much closer
to its peak on average, indicating that TYR is more consistently
busy and achieves better resource utilization.

Fig. 2 (on page 1) shows a trace of state over time
while executing spmspm. Unordered dataflow increases state
exponentially as it greedily expands work and then slowly
drains it at as the machine instruction width permits. By
contrast, TYR’s state quickly reaches its peak as local tag
spaces are emptied and tag allocation is intentionally stalled,
and TYR finishes in nearly the same execution time. Sequential
and ordered dataflow also quickly reach their peak state, but
thereafter are bottlenecked by a lack of parallelism and so their
performance suffers.

C. TYR is scalable

Fig. 15 compares systems’ performance and live state on
spmspm while varying issue width. As expected, unordered
dataflow and TYR see reduced performance benefits on

16 32 64 128 256 512
0.0

0.5

1.0

E
xe

cu
ti

on
T

im
e

(c
yc

le
s)

×106

16 32 64 128 256 512
100

102

104

P
ea

k
S

ta
te

an
d

M
ea

n
S

ta
te

(l
og

)

Figure 15: Execution time (top) and state (bottom) for TYR running
dmv on a 512×512 inputs across issue widths from 16 to 512. TYR
reduces execution time as issue width increases while maintaining
consistent peak state.

narrow issue-width machines. Unordered dataflow achieves
15× speedup vs. sequential dataflow, and TYR achieves 10×.
Unordered dataflow and TYR’s performance improves steadily
as issue width increases, but sequential and ordered dataflow see
negligible gains due to their limited parallelism. The number
of live tokens is fairly insensitive to issue width.

D. TYR’s parallelism can be tuned to match system resources

Fig. 16 plots a trace of live tokens over time on spmspm
in TYR as tag width varies from 2 to 512 tags per concurrent
block. (Other applications show similar results.) TYR completes
successfully, even with only two tags per concurrent block.
Increasing the number of tags allows TYR to expand parallelism

11

aggressively and therefore achieve better performance, reducing
the width of the trace. With issue width of 128, performance
peaks at around t = 64 tags per block. On the same program,
unordered dataflow would require multiple orders-of-magnitude
more tags to complete without deadlocking.

t = 512
t = 256
t = 128
t = 64
t = 32

t = 16
t = 8

t = 4 t = 2

Figure 16: State vs. execution time for TYR across tag widths (t)
from 2 to 512 on spmspm. TYR correctly executes even with 2 tags.
Execution time improves until t = 64, showing that TYR can achieve
high parallelism with few tags.

The number of tags required to extract maximum perfor-
mance varies with issue width. Fig. 17a shows spmspv on a
128×128 matrix, measuring IPC as both issue width and tags
per concurrent block are varied. Performance is bottlenecked
when either issue width or tag spaces are too small. Fig. 17b
shows the corresponding peak state, which increases as more
tags are added. For a given issue width, performance increases
with tags until the number of tags is half the issue width.
Fig. 17c plots IPC and peak state with tags fixed at half issue
width. At an issue width of 128, parallelism is saturated, and
both performance and peak state stop increasing. Interestingly,
once issue width is plentiful, peak state actually drops slightly
because tokens no longer stall.

E. TYR can tune parallelism across program regions

Thus far, we have assumed that all concurrent blocks should
have equal-size local tag spaces, but this is not a requirement
in TYR. Compilers or runtime systems could scale the tag
space in each block to trade off parallelism and state. In some
cases, reducing the number of tags can lower peak state without
adversely affecting performance.

Fig. 18 plots a trace of live tokens over time on dmm
for a baseline with 64 tags per concurrent block, and an
optimized version with only 8 tags in the outermost loop.
Because there is so much inner-loop parallelism available,
few outer-loop iterations are needed to saturate the machine.
Reducing the unnecessary outer-loop iterations reduces state by
28.5% without negatively affecting parallelism or performance.

VIII. DISCUSSION

A. Roads not traveled

Prior work has recognized the parallelism explosion problem
and proposed techniques to mitigate it. Generally, prior dataflow
architectures observe that parallelism explosion makes tagging
unscalable and expensive, and they try to mitigate this cost by

2 4 8 16 32 64 128256

Tag Count

1024

512

256

128

64

32

16

8

4

2

1

Is
su

e
W

id
th

10

20

30

40

50

60

P
er

fo
rm

an
ce

(I
P

C
)

(a) TYR requires both sufficient
issue width and tags to achieve
peak performance.

2 4 8 16 32 64 128256

Tag Count

1024

512

256

128

64

32

16

8

4

2

1

Is
su

e
W

id
th

200

400

600

800

P
ea

k
S

ta
te

(T
ok

en
s)

(b) TYR’s peak state increases with
more tags but not with issue width.

4 8 16 32 64 128 256 512

Issue Width; Tag Count = Issue Width
2

0

16

32

48

64

P
er

fo
rm

an
ce

(I
P

C
)

Performance

State

0

100

200

300

400

P
ea

k
S

ta
te

(T
ok

en
s)

(c) Performance vs. peak state
when scaling tag count with issue
width.

Figure 17: IPC and live state
in TYR on spmspv. High IPC
requires many tags, which in-
creases peak state. Sensible
systems will scale issue width
and tag count together, as
shown by the gray line in (a)
and (b). In that regime, perfor-
mance and peak state scale pro-
portionally until all available
parallelism is exploited.

Tyr + Outer Loop Tag Scaling

Stalled outer-loop tokens

Outer Loop

t = 8

Middle Loop

Inner
Loop

t = 64

t = 64

Figure 18: State vs. execution time for TYR with and without limiting
the number of tags for the outermost loop in dmm. TYR enables
the system to selectively scale parallelism across program regions.
Reducing tags in the outermost loop from 64 to 8 reduces peak state
by 28.5% with minimal performance impact.

reducing or simplifying tag management. Before arriving at
TYR, we first tried building on these existing techniques, but we
concluded that they left the root problem unresolved. Ultimately,
tagging is expensive because there are too many tags. We thus
realized that a true solution to parallelism explosion must cut
the problem off at the source, i.e., by preventing unbounded
parallelism from being generated in the first place.

The MIT Tagged Token Dataflow Architecture (TTDA). As
discussed in Sec. II, TTDA introduces a k-bounding technique
for affine loops that allocates a contiguous block of tags to the
loop, instead of a tag per loop iteration. Within the loop tags
are allocated simply by incrementing, and only k iterations
can be live at a time. Culler’s PhD dissertation [16] extended
this approach to nested loops, reserving k1 tags for innermost

12

loops, k2 tags for the next loop, etc., and analyzed the impact
on state for different {ki}s.

k-bounding both bounds parallelism and simplifies tagging,
and it is a highly effective solution to parallelism explosion —
but only for nested affine loops. Naïvely applying the technique
to other program constructs leads to deadlock.

In a sense, TYR generalizes k-bounding. However, we
initially attempted this by generalizing k-bounding’s block-
allocation, not its parallelism bounds. Our “TTDA+” scheme
supports functions and arbitrary loops by, e.g., allowing callers
to donate a partially used block to a callee. Instructions only
need to allocate a new tag once the entire block is exhausted.
TTDA+ amortizes tag management and thereby improves
scalability, but we eventually realized it is a bandaid. It is
far more important to reduce the number of tags by bounding
parallelism.

Monsoon. Monsoon introduces the explicit token store, where
space is allocated in units of activation frames that store tokens
for entire function bodies. Tags identify the activation frame
and include a frame offset that is determined statically for each
instruction, similar to conventional registers. When a function
executes, most instructions can just use the frame offset and
require no associative tag match.

Like Monsoon, TYR breaks programs into logical regions
and manages tags per region. (TYR’s concurrent blocks are
analogous to Monsoon’s activation frames.) However, whereas
TYR leverages this structure to safely bound parallelism,
Monsoon uses it to amortize tag management. In that sense,
Monsoon is more similar to TTDA+ than Tyr.

Monsoon and TYR are complementary. We envision that an
efficient microarchitecture for TYR would implement an explicit
token store for concurrent blocks to amortize tag management,
like Monsoon (see below).

WaveScalar. WaveScalar simplifies all tag management to
increments (i.e., the WaveAdvance instruction) and, by lim-
iting execution to a hyperblock in the vN order, also limits
parallelism. WaveScalar thus seems like a promising solution
to parallelism explosion.

However, WaveScalar must keep tags up-to-date for all live
values, requiring an absurdly large number of WaveAdvances.7

Follow-on work proposed far-hoisting to “fast-forward” values
at the end of a loop [61]. But, like TTDA’s k-bounding, far-
hoisting is limited to simple loops.

We investigated a “WaveScalar+” architecture that general-
ized far-hoisting to nested loops and function calls. WaveScalar+
represents the wave number as an input to each code block and
provides simple, composable rules for how to update the wave
number across program constructs. We developed compilation
passes akin to constant-folding that could completely eliminate
WaveAdvances in many cases, e.g., on loops with known
trip counts. By removing the WaveAdvance dependencies,

7As originally proposed, WaveScalar cross-compiles from a vN ISA, where
register spilling limits the number of live values. As a general compilation
target, WaveAdvance overhead is prohibitive.

WaveScalar+ can also significantly improve parallelism, i.e.,
by executing multiple hyperblocks at once.

However, we ultimately moved away from sequential
dataflow architectures like WaveScalar. These architectures
neither strictly bound live state nor exploit all available
parallelism, as they are limited to the vN block-order. Moreover,
although WaveScalar+ reduced WaveAdvances substantially,
their overhead remained significant.

Functional languages ⇎ parallelism explosion. TTDA and
Monsoon were designed for functional dataflow languages like
Id [51]. The conventional wisdom was that functional languages
were uniquely prone to parallelism explosion and deadlock.
Unlike imperative languages, their declarative nature allowed
unintuitive iterative structures like:

def fib(N):
for i in 1 ... N:

if i > N-1:
x[i] = 1

else:
x[i] = x[i+1] + x[i+2]

where, in order to make forward progress, the last iteration of
the loop must execute first.8 Hence, by bounding parallelism
to k < N iterations, the program deadlocks [52].

This paper demonstrates that parallelism explosion and
deadlock are, in fact, independent of language choice. First,
we have shown that parallelism explosion can lead to deadlock
even in an imperative program (Fig. 11). TYR provably avoids
these deadlocks.

Second, we observe that these “backwards executions” are
not, in fact, unique to functional languages. They naturally
arise in imperative languages through recursion:

def fib(N):
if N <= 2:

return 1
else:

return fib(N-1) + fib(N-2)

Here, the stack depth corresponds to k, precluding correct
execution if k < N. One can code in a pure functional style
within an imperative language like C, even emulating “pure
dataflow” constructs like write-once memory (Id’s I-structures).
For such programs, the challenge is to support recursion with
high parallelism, but without exploding token storage.

B. The path ahead

Parallel general recursion in TYR. Theorem 1 begins by
transforming general recursion into tail recursion with an
explicitly managed stack. This transformation is necessary
because general recursion is inherently unbounded, requiring
memory somewhere (i.e., the stack) for parent contexts in any
implementation. With general recursion, our goal is not to
bound state to some finite value, but to limit its growth (e.g., to
call-tree depth, like vN), which a stack-based implementation
does. Unfortunately, a stack-based implementation precludes
parallelism between sibling calls because they share the
same stack frame. Ideally, an implementation would enable
parallelism across sibling calls while still bounding live state.

To improve parallelism, one could allocate a tree of activation
frames [52,58], but, done naïvely, this reintroduces parallelism

8In Id, the loads to x[i+1] and x[i+2] stall until a value is written.

13

explosion. In future work, we will investigate a solution
inspired by work stealing [7,8,27,57] that expands parallelism
when resources are idle, but prioritizes ongoing work to
avoid parallelism explosion, limiting live state to O(T)× the
serialized execution peak state, where T is the number of tags.

Critically, by building on TYR, the amount of token state
required remains strictly bounded, whether using a stack or tree
of activation frames. The state in memory (i.e., for the stack or
activation frames) may grow without bound, if required by the
program, but the number of live tokens still follows Theorem 2.

An efficient microarchitecture for TYR. This paper has ex-
plored the architectural tradeoffs between parallelism and state,
but leaves a detailed implementation to future work. Fortunately,
TYR creates many opportunities to simplify tagged dataflow
and improve its scalability.

Most importantly, TYR strictly limits the number of tags per
concurrent block. TYR enables practical and efficient hardware
to perform tagged dataflow execution, similar to an issue
queue in an out-of-order superscalar. Moreover, execution
is distributed across many concurrent blocks, enabling a
clustered implementation with much smaller issue queues than
a monolithic superscalar.

TYR’s local tag spaces localize tag management to a small
number of instructions, enabling distributed, scalable tag
management in hardware. Given the large size of real programs,
techniques must be developed to spill local tag spaces to and
from memory, caching those used most frequently.

Finally, it is important to emphasize that TYR is an
architecture, not a microarchitecture. Like other architectures,
TYR’s semantics admit many possible implementations. For
example, we have described TYR as performing a tag match for
every instruction, but TYR’s concurrent blocks have no internal
tag changes. TYR thus admits a hierarchical implementation
where entire blocks are scheduled at once, like TRIPS [66], or
where tags are matched only at the concurrent-block boundary,
like Monsoon [58]. TYR also encodes all orderings as explicit
dependencies in the DFG, but an implementation is free to
speculate around dependencies (e.g., memory orderings or
steers) to increase parallelism [23, 73]. We intend to explore
this large design space in future work.

IX. CONCLUSION

We have presented TYR, a dataflow architecture that
is deadlock-free, general-purpose, highly parallel, and has
bounded state. TYR exploits program structure to distribute
tag allocation across local tag spaces, and introduces new
tag-management instructions that guarantee forward progress.
TYR compiles programs from unmodified C code, and our
evaluation shows it nearly matches the performance of the
best prior architecture with orders-of-magnitude less state. We
have proven that TYR is deadlock-free and has bounded state.
By defusing parallelism explosion, TYR unblocks the path for
dataflow architectures in high-performance applications.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Daniel Sanchez, Greg
Papadopoulos, and Tony Nowatzki for their feedback. This work
was supported by NSF grant CCF-1845986. Souradip Ghosh
was supported by the U.S. Department of Energy Computational
Science Graduate Fellowship (DESC0022158).

14

REFERENCES

[1] The Poetic Edda, Iceland, c. 1270.
[2] N. Agarwal, M. Fream, S. Ghosh, B. C.Schwedock, and N. Beckmann,

“UDIR: Towards a Unified Compiler Framework for Reconfigurable
Dataflow Architectures,” in IEEE Computer Architecture Letters, 2023.

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). USA: Addison-Wesley Longman
Publishing Co., Inc., 2006.

[4] Arvind and D. E. Culler, “Managing resources in a parallel machine,”
in Proc. of the IFIP TC 10 Working Conference on Fifth Generation
Computer Architectures. NLD: North-Holland Publishing Co., 1986, p.
103–121.

[5] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Eds., Graph
Partitioning and Graph Clustering, 10th DIMACS Implementation
Challenge Workshop, Georgia Institute of Technology, Atlanta, GA, USA,
February 13-14, 2012. Proceedings, ser. Contemporary Mathematics,
vol. 588. American Mathematical Society, 2013. [Online]. Available:
http://dblp.uni-trier.de/db/conf/dimacs/dimacs2012.html

[6] T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh, “Revamp: A
systematic framework for heterogeneous cgra realization,” in Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
918–932. [Online]. Available: https://doi.org/10.1145/3503222.3507772

[7] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
ACM SigPlan Notices, vol. 30, no. 8, pp. 207–216, 1995.

[8] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” J. ACM, vol. 46, no. 5, p. 720–748, sep
1999. [Online]. Available: https://doi.org/10.1145/324133.324234

[9] E. Brunvand, D. Kline, and A. K. Jones, “Dark silicon considered harmful:
A case for truly green computing,” in 2018 Ninth International Green
and Sustainable Computing Conference (IGSC), 2018, pp. 1–8.

[10] C. Carrion, C. Izu, J. Gregorio, F. Vallejo, and R. Beivide, “Ghost packets:
a deadlock-free solution for k-ary n-cube networks,” in Proceedings of
the Sixth Euromicro Workshop on Parallel and Distributed Processing -
PDP ’98 -, 1998, pp. 133–139.

[11] G. Chakrabarti, V. Grover, B. Aarts, X. Kong, M. Kudlur, Y. Lin,
J. Marathe, M. Murphy, and J.-Z. Wang, “Cuda: Compiling
and optimizing for a gpu platform,” Procedia Computer Science,
vol. 9, pp. 1910–1919, 2012, proceedings of the International
Conference on Computational Science, ICCS 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050912003304

[12] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: a small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proc. of the 19th intl. conf. on Architectural Support
for Programming Languages and Operating Systems, 2014.

[13] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc. of
the 43rd annual Intl. Symp. on Computer Architecture (Proc. ISCA-43),
2016.

[14] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi,
and J. Anderson, “Cgra-me: A unified framework for cgra modelling and
exploration,” in 2017 IEEE 28th international conference on application-
specific systems, architectures and processors (ASAP). IEEE, 2017, pp.
184–189.

[15] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined and
dynamically composable architecture of cgra,” in 2014 IEEE 22nd Annual
International Symposium on Field-Programmable Custom Computing
Machines, 2014, pp. 9–16.

[16] D. E. Culler, “Managing parallelism and resources in scientific
dataflow programs,” Ph.D. dissertation, Massachusetts Institute of
Technology, Cambridge, MA, USA, 1989. [Online]. Available:
https://hdl.handle.net/1721.1/14511

[17] D. E. Culler et al., “Resource requirements of dataflow programs,” in
ACM SIGARCH Computer Architecture News, vol. 16, no. 2, 1988.

[18] V. Dadu and T. Nowatzki, TaskStream: Accelerating Task-Parallel
Workloads by Recovering Program Structure. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1–13. [Online].
Available: https://doi.org/10.1145/3503222.3507706

[19] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, “Towards general purpose
acceleration by exploiting common data-dependence forms,” in Pro-

ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 924–939.

[20] C. Damhaug, “Dnvs/trdheim,” 2004.
[21] T. A. Davis and Y. Hu, “The university of florida sparse

matrix collection,” vol. 38, no. 1. New York, NY, USA:
Association for Computing Machinery, dec 2011. [Online]. Available:
https://doi.org/10.1145/2049662.2049663

[22] J. B. Dennis and D. P. Misunas, “A preliminary architecture for a basic
data-flow processor,” in ISCA, 1975.

[23] R. Desikan, S. Sethumadhavan, D. Burger, and S. W. Keckler,
“Scalable selective re-execution for edge architectures,” SIGPLAN
Not., vol. 39, no. 11, p. 120–132, oct 2004. [Online]. Available:
https://doi.org/10.1145/1037187.1024408

[24] E. W. Dijkstra, “Letters to the editor: Go to statement considered
harmful,” Commun. ACM, vol. 11, no. 3, pp. 147–148, mar 1968.
[Online]. Available: https://doi.org/10.1145/362929.362947

[25] M. Duric, O. Palomar, A. Smith, O. Unsal, A. Cristal, M. Valero, and
D. Burger, “Evx: Vector execution on low power edge cores,” in DATE,
2014.

[26] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proceedings
of the 38th International Symposium on Computer Architecture (ISCA).
ACM, 2011.

[27] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the
cilk-5 multithreaded language,” SIGPLAN Not., vol. 33, no. 5, p. 212–223,
may 1998. [Online]. Available: https://doi.org/10.1145/277652.277725

[28] G. Gobieski, A. O. Atli, K. Mai, B. Lucia, and N. Beckmann, “Snafu:
an ultra-low-power, energy-minimal cgra-generation framework and
architecture,” in ISCA, 2021.

[29] G. Gobieski, S. Ghosh, M. Heule, T. Mowry, T. Nowatzki, N. Beckmann,
and B. Lucia, “Riptide: A programmable, energy-minimal dataflow
compiler and architecture,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2022, pp. 546–564.

[30] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. R. Taylor, “Piperench: A reconfigurable architecture and compiler,”
Computer, vol. 33, no. 4, 2000.

[31] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” IEEE Micro,
vol. 32, no. 5, 2012.

[32] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first
scheduling policies for async-finish task parallelism,” in 2009 IEEE
International Symposium on Parallel & Distributed Processing, 2009,
pp. 1–12.

[33] U. Gupta, Y. G. Kim, S. Lee, J. Tse, H.-H. S. Lee, G.-Y. Wei, D. Brooks,
and C.-J. Wu, “Chasing carbon: The elusive environmental footprint of
computing,” in 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2021, pp. 854–867.

[34] J. Gurd, “The manchester dataflow machine,” Computer Physics
Communications, vol. 37, no. 1, pp. 49–62, 1985. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0010465585901353

[35] M. Hill and V. J. Reddi, “Gables: A roofline model for mobile socs,” in
2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2019, pp. 317–330.

[36] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in ISSCC, 2014.

[37] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” arXiv preprint
arXiv:1704.04760, 2017.

[38] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “Hycube: A
cgra with reconfigurable single-cycle multi-hop interconnect,” in DAC,
2017.

[39] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“Gpus and the future of parallel computing,” IEEE Micro, vol. 31, no. 5,
2011.

[40] M. Khazraee, L. Zhang, L. Vega, and M. B. Taylor, “Moonwalk: Nre
optimization in asic clouds,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 511–526.
[Online]. Available: https://doi.org/10.1145/3037697.3037749

[41] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A.
Davis, M. Henderson, Y. Hu, and R. Sandstrom, “The suitesparse

15

http://dblp.uni-trier.de/db/conf/dimacs/dimacs2012.html
https://doi.org/10.1145/3503222.3507772
https://doi.org/10.1145/324133.324234
https://www.sciencedirect.com/science/article/pii/S1877050912003304
https://hdl.handle.net/1721.1/14511
https://doi.org/10.1145/3503222.3507706
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/1037187.1024408
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/277652.277725
https://www.sciencedirect.com/science/article/pii/0010465585901353
https://doi.org/10.1145/3037697.3037749

matrix collection website interface,” Journal of Open Source
Software, vol. 4, no. 35, p. 1244, 2019. [Online]. Available:
https://doi.org/10.21105/joss.01244

[42] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO, Mar. 2004.

[43] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta,
D. Sanchez, and N. Beckmann, “Livia: Data-centric computing throughout
the memory hierarchy,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 417–433.

[44] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Adres: An architecture with tightly coupled vliw processor and coarse-
grained reconfigurable matrix,” in International Conference on Field
Programmable Logic and Applications. Springer, 2003, pp. 61–70.

[45] E. Mirsky, A. DeHon et al., “Matrix: a reconfigurable computing
architecture with configurable instruction distribution and deployable
resources.” in FCCM, vol. 96, 1996, pp. 17–19.

[46] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Goldstein,
and M. Budiu, “Tartan: evaluating spatial computation for whole program
execution,” ACM SIGARCH Computer Architecture News, vol. 34, no. 5,
2006.

[47] T. Miyamori and K. Olukotun, “Remarc: Reconfigurable multimedia
array coprocessor,” IEICE Transactions on information and systems,
vol. 82, no. 2, pp. 389–397, 1999.

[48] Q. M. Nguyen and D. Sanchez, “Fifer: Practical acceleration of irregular
applications on reconfigurable architectures,” in MICRO, 2021.

[49] C. Nicol, “A coarse grain reconfigurable array (CGRA) for statically
scheduled data flow computing,” WaveComputing WhitePaper, 2017.

[50] R. S. Nikhil, “Can dataflow subsume von neumann computing?” in
Proceedings of the 16th Annual International Symposium on Computer
Architecture, ser. ISCA ’89. New York, NY, USA: Association
for Computing Machinery, 1989, p. 262–272. [Online]. Available:
https://doi.org/10.1145/74925.74955

[51] R. S. Nikhil, “Id reference manual, version 90.1,” MIT Lab. for Comput.
Sci., 545 Technology Square, Cambridge, MA 02139, CSG-Memo 284-2,
July 1991.

[52] R. S. Nikhil et al., “Executing a program on the mit tagged-token dataflow
architecture,” IEEE Transactions on computers, 1990.

[53] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng, “Hybrid op-
timization/heuristic instruction scheduling for programmable accelerator
codesign,” in PACT 27, 2018.

[54] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-
dataflow acceleration,” in ISCA 44, 2017.

[55] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring the
potential of heterogeneous von neumann/dataflow execution models,” in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, 2015, pp. 298–310.

[56] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring the
potential of heterogeneous von neumann/dataflow execution models,”
in ACM SIGARCH Computer Architecture News, vol. 43, no. 3, 2015.

[57] M. S. Orr, B. M. Beckmann, S. K. Reinhardt, and D. A. Wood, “Fine-
grain task aggregation and coordination on gpus,” in 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), 2014,
pp. 181–192.

[58] G. M. Papadopoulos and D. E. Culler, “Monsoon: An explicit token-store
architecture,” SIGARCH Comput. Archit. News, vol. 18, no. 2SI, p. 82–91,
may 1990. [Online]. Available: https://doi.org/10.1145/325096.325117

[59] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel et al., “Triggered instruc-
tions: a control paradigm for spatially-programmed architectures,” ACM
SIGARCH Computer Architecture News, vol. 41, no. 3, 2013.

[60] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: A
flexible multicore accelerator with virtualized execution for mobile
multimedia applications,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 42. New
York, NY, USA: Association for Computing Machinery, 2009, p.
370–380. [Online]. Available: https://doi.org/10.1145/1669112.1669160

[61] A. Petersen, M. Mercaldi, S. Swanson, A. Putnam, A. Schwerin, M. Oskin,
and S. Eggers, “Reducing control overhead in dataflow architectures,” in
2006 International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2006, pp. 182–191.

[62] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel patterns,” in ISCA 44, 2017.

[63] V. Puente, C. Izu, R. Beivide, J. Gregorio, F. Vallejo, and J. Prellezo,
“The adaptive bubble router,” Journal of Parallel and Distributed
Computing, vol. 61, no. 9, pp. 1180–1208, 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731501917460

[64] Riscv, “riscv-v-spec,” Apr 2019. [Online]. Available: https://github.com/
riscv/riscv-v-spec

[65] A. Rucker, M. Vilim, T. Zhao, Y. Zhang, R. Prabhakar, and K. Olukotun,
“Capstan: A vector rda for sparsity,” 2021.

[66] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ilp, tlp, and dlp with the
polymorphous trips architecture,” in ISCA 30, 2003.

[67] K. Sankaralingam, T. Nowatzki, G. Wright, P. Palamuttam, J. Khare,
V. Gangadhar, and P. Shah, “Mozart: Designing for software
maturity and the next paradigm for chip architectures,” in IEEE
Hot Chips 33 Symposium, HCS 2021, Palo Alto, CA, USA,
August 22-24, 2021. IEEE, 2021, pp. 1–20. [Online]. Available:
https://doi.org/10.1109/HCS52781.2021.9567306

[68] B. C. Schwedock, P. Yoovidhya, J. Seibert, and N. Beckmann, “täkō:
A polymorphic cache hierarchy for general-purpose optimization of
data movement,” in Proc. of the 49th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-49), 2022.

[69] N. Serafin, S. Ghosh, H. Desai, N. Beckmann, and B. Lucia, “Pipestitch:
An energy-minimal dataflow architecture with lightweight threads,” in
Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 1409–1422. [Online]. Available:
https://doi.org/10.1145/3613424.3614283

[70] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and
E. Chaves Filho, “Morphosys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Transactions
on Computers, vol. 49, no. 5, pp. 465–481, 2000.

[71] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Prémillieu, A. Reid, A. Rico,
and P. Walker, “The ARM scalable vector extension,” CoRR, vol.
abs/1803.06185, 2018. [Online]. Available: http://arxiv.org/abs/1803.
06185

[72] S. Sturluson, The Prose Edda, Iceland, c. 1220.
[73] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,”

in MICRO 36, 2003.
[74] C. Tan, M. Karunaratne, T. Mitra, and L.-S. Peh, “Stitch: Fusible

heterogeneous accelerators enmeshed with many-core architecture for
wearables,” in ISCA 45, 2018.

[75] C. Tan, C. Xie, A. Li, K. J. Barker, and A. Tumeo, “Opencgra: An
open-source unified framework for modeling, testing, and evaluating
cgras,” in 2020 IEEE 38th International Conference on Computer Design
(ICCD). IEEE, 2020, pp. 381–388.

[76] M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of
the coming dark silicon apocalypse,” in DAC, 2012.

[77] C. Torng, P. Pan, Y. Ou, C. Tan, and C. Batten, “Ultra-elastic cgras for
irregular loop specialization,” in 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 2021, pp.
412–425.

[78] M. Vilim, A. Rucker, and K. Olukotun, “Aurochs: An architecture
for dataflow threads,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 2021, pp. 402–415.

[79] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy
efficient design alternative for gpgpus,” ACM SIGARCH computer
architecture news, vol. 42, no. 3, 2014.

[80] D. Voitsechov and Y. Etsion, “Control flow coalescing on a hybrid
dataflow/von neumann gpgpu,” in MICRO 48, 2015.

[81] D. Voitsechov, O. Port, and Y. Etsion, “Inter-thread communication in
multithreaded, reconfigurable coarse-grain arrays,” in MICRO 51, 2018.

[82] B. Wang, M. Karunarathne, A. Kulkarni, T. Mitra, and L.-S. Peh, “Hycube:
A 0.9 v 26.4 mops/mw, 290 pj/op, power efficient accelerator for iot
applications,” in 2019 IEEE Asian Solid-State Circuits Conference (A-
SSCC). IEEE, 2019, pp. 133–136.

[83] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.
[Online]. Available: https://doi.org/10.1038/30918

[84] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki, “Dsagen:
synthesizing programmable spatial accelerators,” in ISCA 47, 2020.

[85] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki, “A hybrid systolic-
dataflow architecture for inductive matrix algorithms,” in HPCA, 2020.

16

https://doi.org/10.21105/joss.01244
https://doi.org/10.1145/74925.74955
https://doi.org/10.1145/325096.325117
https://doi.org/10.1145/1669112.1669160
https://www.sciencedirect.com/science/article/pii/S0743731501917460
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://doi.org/10.1109/HCS52781.2021.9567306
https://doi.org/10.1145/3613424.3614283
http://arxiv.org/abs/1803.06185
http://arxiv.org/abs/1803.06185
https://doi.org/10.1038/30918

[86] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross,
“Q100: The architecture and design of a database processing unit,”
in Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 255–268.
[Online]. Available: http://doi.acm.org/10.1145/2541940.2541961

17

http://doi.acm.org/10.1145/2541940.2541961

	Introduction
	Background and Motivation
	Resurgence of dataflow for programmable acceleration
	Dataflow basics
	Surveying the parallelism vs. state tradeoff

	Local Tag Spaces
	Tyr Architecture
	Tyr instruction set
	Putting it all together: Concurrent block linkage in Tyr
	Compiling to Tyr
	Trading off parallelism and live state

	Deadlock Freedom and Bounded State
	Proof of deadlock freedom
	Proof of bounded state

	Experimental Methodology
	Evaluation
	Tyr is fast
	Tyr reduces live state
	Tyr is scalable
	Tyr's parallelism can be tuned to match system resources
	Tyr can tune parallelism across program regions

	Discussion
	Roads not traveled
	The path ahead

	Conclusion
	References

