
Local SIP Overload Control: Controller Design and
Optimization by Extremum Seeking

Luca De Cicco, Giuseppe Cofano, Saverio Mascolo

Abstract—The Session Initiation Protocol (SIP) is a signaling
protocol for managing various types of real time sessions between
parties over an Internet Protocol network. An open issue is the
control of overload situations that occur when the incoming flow
of requests to a SIP server overcomes the server processing
capacity. In particular, call establishment times increase due to
overload, which triggers retransmissions and causes a further in-
crease of the total incoming flow of requests. This paper proposes
an overload control system for regulating both the queue length
and the CPU load of the SIP server. The proposed control system
is made of two PI controllers tuned by minimizing a proper
cost function using the Extremum Seeking algorithm. A real
working implementation of the SIP overload controller has been
made in the open source SIP server Kamailio. A performance
evaluation and comparison of the proposed controller with the
main proposals existing in literature has been carried out. Results
show that the proposed control system counteracts overload
situations and provides a goodput close to the optimal while
maintaining low call establishment delays and retransmission
ratios.

I. INTRODUCTION

The Session Initiation Protocol (SIP) [1] is an application-
layer control (signaling) protocol for establishing, modifying
and terminating various types of real time sessions between
communication end-points over an Internet Protocol network.
In order to establish a real time session, two peers (or
user agents) exchange SIP messages which are forwarded by
intermediate SIP servers. It is worth noting that today SIP is
the major signaling protocol used by Voice over IP (VoIP),
instant messaging, and video conferencing applications.

A key open issue that requires to be addressed is the
proper handling of overload situations that in a SIP server
occurs when the incoming rate of SIP messages, originated
by user agents (UA), exceeds the processing capacity of the
SIP server. Overload may be caused by poor capacity planning,
component failures, avalanche restart, flash crowds and denial
of service attacks [2]. SIP sessions are usually transported
over the UDP protocol [3], which is a best effort transport
protocol without congestion control and retransmission of
packets. For this reason lost packets are recovered by the
SIP by means of a retransmissions mechanism. During an
overload episode, retransmissions occur and, as a consequence,
the total incoming load increases, potentially leading the entire
SIP network to collapse [2], [4]. To prevent the uncontrolled

The authors are with the Dipartimento di Ingegneria Elettrica e
dell’Informazione, Politecnico di Bari, Via Orabona 4, Bari, Italy. emails:
name.surname@poliba.it

This work has been partially supported by the project ”Platform for
Innovative services in the Future Internet” (PLATINO-PON01 01007) funded
by Italian Ministry of Education, Universities and Research (MIUR).

increase of message retransmissions, an overloaded SIP server
can reject a message by sending to the originating user agent
(UA) a response message with the 503 “Service Unavailable”
code. When an UA receives a 503 response message it should
not retransmit the rejected message [1]. Unfortunately, it is
well-known that this simple control mechanism is not able to
effectively avoid overload [2], [4].

To address this important issue, several overload control
algorithms have been proposed and the IETF has established
the working group SIP Overload Control. Overload control
algorithms can be clustered into three categories (see [4] for
a comparison): 1) local overload control: the algorithm is
executed locally on the SIP server and it is based only on local
measurements; 2) hop-by-hop: the algorithm receives feedback
information from the next-hop SIP server; 3) end-to-end: the
algorithm is executed at the UA and the control loop is closed
between the UA and the final SIP server, thus each server on
the routing path can reject a message before arriving to the
destination based on feedback information received from any
server on the routing path.

In the last two decades, a significant effort has been de-
ployed to set in a mathematical control framework the analysis
and design of control algorithms for computer networks in a
wide range of applicative domains such as congestion control
[5], [6], [7], [8], [9], active queue management [10], [11],
[12], load balancing [13], multimedia content delivery [14],
[15], admission control [16], [17].

In this paper we focus on the design of a feedback control
system for local SIP overload control. In particular, the main
contributions of the paper are:

1) a mathematical model for an ideal rate-based overload
control algorithm which gives an upper bound to the
goodput achievable by such algorithms;

2) a local SIP overload control system, based on two PI
control loops; the first PI controller drives the queue
length to a set-point to guarantee a target response time,
while the second one drives the CPU utilization to a
target;

3) a functional is proposed as a performance metric for
local overload control algorithms;

4) a real implementation of the proposed control system
has been made in the open source SIP server Kamailio
(OpenSER);

5) based on this implementation and on the proposed per-
formance metric, the controllers parameters have been
tuned using the Extremum Seeking algorithm [18];

6) finally, a performance evaluation and comparison with
two local overload controllers proposed in literature is

INVITE
INVITE

180 Ringing
180 Ringing

200 OK
200 OK

ACK ACK

BYE
BYE

200 OK200 OK

Session established

(caller)

100 Trying

UAC UAS
(callee)

503

(only if stateful)

(Possible)

SIP proxy server

Figure 1. Time sequence graph of a SIP call

carried out.
The rest of the paper is organized as follows: in Section II
a brief overview of the SIP protocol is given; Section III
provides the state of the art of the proposed overload con-
trol mechanisms; Section IV presents the proposed feedback
overload control algorithm; in Section V the implementations
details of the proposed controller are given; Section VI is
devoted to the tuning of the two PI controllers by using ES;
Section VII shows the results of the experimental evaluation
and, finally, Section VIII concludes the paper.

II. SIP OVERVIEW

SIP is a client-server message-based protocol for managing
real time sessions. Two logical entities participate in SIP
communications: SIP User Agents (UAs) and SIP servers. SIP
servers can be further classified as: proxy servers, for session
routing, and registrar servers, for UAs registration.

Fig. 1 shows the time sequence graph of the establishment
of a SIP call session. The caller, the originating UA Client,
sends an INVITE request to the callee, the terminating UA
Server, through one or more proxy servers. In the case the
proxy is stateful, the proxy server returns a provisional 100
Trying response for confirmation. The terminating UA returns
a 180 ringing response after confirming that the parameters
are appropriate. It also sends a 200 OK message to answer
the call. Then, after the 200 OK message has been received,
the originating UA sends an ACK response to the terminating
UA and the call is said to be established. Finally, one of the
two peers sends a BYE request to close the session.

In the case the SIP messages are sent over UDP, which today
is the most common choice, SIP employs a retransmission
mechanism to cope with packet losses. If an INVITE message
is sent, and a suitable1 reply message is not received before the

1In the case of a stateless SIP proxy the reception of a 1XX, 2XX, or 5XX
reply message prevents Timer A from firing.

Timer A expires, the INVITE message is retransmitted [1]. The
duration of Timer A gets doubled each time the same INVITE
is retransmitted, i.e. Timer A = T1 · 2i, where T1 is equal to
0.5s by default and i is the number of times the INVITE has
been retransmitted.

In [1] it is specified that retransmissions are stopped either
when a provisional response is received or when the timeout
value exceeds Timer B, that by default is equal to 32s. When an
overload situation is detected, SIP servers send a 503 “Service
Unavailable” to prevent retransmissions [2]. In this case the
incoming message is said to be rejected.

III. RELATED WORK

SIP overload control techniques are discussed in detail
in [19]. In particular, a taxonomy of the overload control
schemes is given according to: 1) how overload is detected;
2) the control actuation strategy and 3) the employed control
architecture. Overload can be detected either explicitly, when
servers signal an overload episode, or implicitly, when the
other servers of the network detect it by means of measure-
ments. The control actuation can be rate-based, loss-based,
signal-based or window-based. The control architecture can
be local, hop-by-hop or end-to-end. Moreover, the following
performance metrics are proposed to evaluate a SIP overload
control technique: 1) the goodput and the response time of the
SIP server and 2) the responsiveness and the stability of the
proposed algorithm.

Several local overload control algorithms have been pro-
posed in the literature. A literature review of the existing
SIP overload control solutions is provided in [20]. The first
local overload control mechanism specifically designed for SIP
has been proposed by Ohta in [21]: the algorithm decides to
either reject or accept a new SIP session based on the queue
length. Another well-known example of local control is Local
Occupancy (OCC) [22], [4]. The algorithm rejects a fraction
of INVITEs according to a simple control law to drive the CPU
load to a target utilization.

The first comprehensive study on SIP overload control was
the one by Hilt and Widjaja [4] in which local, hop-by-
hop, and end-to-end overload control algorithms are compared
through simulations.

Distributed overload control algorithms have attracted a
great deal of attention due to the promise of providing bet-
ter performance. In [22] authors have defined two overload
categories: (i) server to server overload and (ii) client to
server overload. In [22] only the first case has been considered
and three hop-by-hop window-based feedback algorithms have
been proposed. The upstream server employs a feedback
information sent by downstream servers to dynamically set
the transmission window size and counteract overload. Three
different window adjustment algorithms have been compared
to two rate-based algorithms. It has been shown that the
window-based algorithms achieve better results. However, the
algorithms proposed in [22] require an exchange of feedback
information between two adjacent servers.

A feedback-based algorithm has been proposed in [23] to
regulate retransmission ratios during overload. In the paper

retransmissions have been classified into two categories: re-
dundant, in the case they are caused by delay due to overload,
and non-redundant, if they are due to message loss recovery. A
PI controller has been designed to regulate the retransmissions
rate at the upstream server to track a set-point of redundant
messages rate, thus mitigating overload of the downstream
server without requiring an explicit feedback. In [24] an
overload mechanism combining local and remote control has
been proposed, the former using a priority FIFO queue at
the SIP proxy during overload episodes, the latter based on
a prediction technique placed at the remote control loop.

In [25] an end-to-end overload control has been designed
which does not require any modification of the SIP protocol. A
backpressure-based technique, originally conceived for multi-
hop radio networks, has been adapted to the SIP networks
context.

In [26] a distributed end-to-end adaptive window-based
overload control technique is proposed. Upstream servers use
call establishment delay to infer the load on their downstream
servers so that an explicit feedback from the downstream
servers is not needed. In particular, average call establishment
delay and its standard deviation are employed to implement
a threshold-based overload detection mechanism. This mecha-
nism triggers the transitions between the additive increase and
the multiplicative decrease phases (AIMD) of the transmission
window updating process.

In [27] a distributed end-to-end overload control mechanism
is presented. The key idea is to deploy the controllers at the
edge servers to implement a call admission control to the
SIP network. The controller computes the call admission rate
based on a finite state machine that employs the rate of 503
“Service Unavailable” responses, which are received from the
core servers, as an indication of overload. The call admission
rate is actuated using the call gapping technique.

A protocol for communicating overload information be-
tween SIP servers and clients has been proposed in [28].
Four Via header parameters have been introduced in the SIP
protocol to allow SIP servers and clients to communicate traf-
fic reduction requests, to support multiple classes (rate-based,
loss-based, etc) of hop-by-hop overload control algorithms and
to dynamically change the duration of the overload control
action. Thanks to the hop-by-hop approach it is not necessary
that each server on the end-to-end path supports the protocol,
therefore the backward compatibility is ensured.

Finally, it is worth noting that performance evaluation of
the proposed controllers in [4], [21], [22], [29], [24], [27]
has been carried out only by using discrete events simulators
whereas an experimental evaluation is not provided. The only
exception is [26], which evaluates the performance mostly
through simulations but also considers a brief experimental
evaluation.

IV. THE PROPOSED CONTROL SYSTEM

In this Section we propose a local overload control al-
gorithm. Such an approach does not require to modify the
SIP protocol and can be rapidly deployed in SIP proxies.
The proposed algorithm is intended to guarantee that the

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

normalized offered load

C
P

U
 l
o
a
d
 (

%
)

Accept
Reject

Figure 2. CPU load as a function of the normalized incoming INVITEs rate
in the cases of either forwarding or rejecting them

downstream servers of the controlled server do not receive
a calls rate higher than the capacity of the controlled server.
This makes it suitable for use in edge servers of a SIP network
in order to absorb excessive incoming load and protect the
core servers. Moreover, it can be employed in conjunction
with a distributed strategy to protect the server in the case the
distributed controllers do not work properly. The interaction
between the two strategies is, however, outside the scope of
this work.

A. The optimal goodput function

In this paper we focus only on INVITE transactions since
they are the most CPU-expensive messages to be handled by
a SIP server [30]. Moreover, we make the basic assumption
that the ratio β between the cost of forwarding and the cost
of rejecting an INVITE is constant and larger than 1 (β > 1).
This assumption has been experimentally validated by running
a series of load tests on a SIP proxy server2. We have measured
the average CPU load of the proxy server at different incoming
rates in the case of forwarding and rejecting INVITE messages.
Fig. 2 shows the CPU load as a function of the normalized
incoming INVITEs rate. Both curves can be approximated by
linear functions, whose ratio is the constant β.

For convenience of notation we normalize by the forwarding
cost of one INVITE message, obtaining unitary forwarding
cost and rejecting cost equal to 1/β < 1. Let ρ(t) denote
the incoming load of INVITE messages measured in calls per
second (cps) and C(t) ∈ [0, 1] the instantaneous CPU load. As
ρ(t) increases, C(t) will increase until the point it reaches its
maximum value 1 and overload occurs. We denote with ρM
the maximum offered load the SIP server can manage without
suffering overload, and we define the normalized incoming
INVITEs rate as r(t) = ρ(t)/ρM . Finally, the normalized
goodput g(t) is the rate of successfully established calls
divided by ρM . From now on, we will consider only the
normalized load r(t) and goodput g(t).

Let us now consider the overall system composed of a
generic rate-based local overload controller and the proposed
CPU model. The controller computes the fraction α(t) of

2We have employed the experimental testbed which is described in detail
in Section V.

incoming INVITE rate r(t) to be rejected. The CPU load can
be modelled as follows:

C(t) = (1− α(t))r(t) + 1

β
α(t)r(t) + d(t) (1)

where the first additive term is the CPU load due to the
accepted rate, the second one is due to the rejected rate, and
the third one models the CPU load due to other processes in
execution, which is considered as a disturbance3.

The following proposition gives an upper bound to the
goodput obtainable by any local SIP overload controller based
on the model (1):

Proposition 1: Let β denote the ratio between the cost of
accepting and the cost of rejecting an INVITE message, and
let CT be the target CPU load set for the SIP server. Then
the goodput g(r), function of the normalized incoming rate
r, obtainable by any local SIP overload controller is bounded
by:

gopt(r) =


r r < CT ,

− 1
β−1r +

CT β
β−1 CT ≤ r < βCT

0 otherwise.
, (2)

Proof: Since we are interested in characterizing the
optimal goodput, we consider d(t) = 0. When r < CT the
server does not need to drop any INVITE, thus the goodput
g is equal to the normalized incoming rate r. For input rates
greater than CT we can use (1) to evaluate gopt(r) and obtain:

α(r) =
β

β − 1

(
1− CT

r

)
. (3)

Then, the normalized optimal goodput in the overload zone can
be computed as (1−α(t)) · r, that is the fraction of messages
forwarded by the SIP server:

gopt(r) = −
1

β − 1
r +

CTβ

β − 1
. (4)

Eq. (3), and consequently (4), is valid until the point all
requests are rejected, i.e. α = 1. By imposing α = 1 in (3), we
obtain the maximum rate rmax that the SIP server can handle
while keeping the CPU utilization equal to CT :

rmax = CTβ. (5)

Thus, when the input rate r > CTβ the goodput is zero and
the server is not able to avoid overload.

Remark 1: Eq. (2) expresses the ideal limit of any local
overload control algorithm in which the control variable is the
reject rate: Eq. (5) shows that the normal behaviour of a SIP
server can be extended even when the normalized incoming
INVITEs rate is greater than 1, that is the limit at which an
uncontrolled SIP server gets overloaded.

B. The design of the proposed control system

The overall objective of the control system is to ensure
that the CPU does not get overloaded. Towards this end, it

3The computational cost of the control action has to be considered as a
component of the disturbance. Hence, the simplicity of the control system is
a key design requirement.

RTX

qT (t) −

r̃(t)

q(t)+
−
o(t)

rr(t)

r(t)
+

Gcq(s)

u(t)

α(t)
CPU

CT
Gcc(s)

H(s)

F (s)

−

−

R(t)

d(t)
C(t)

ρMT q
ρM
s

Figure 3. The proposed control system

is necessary to ensure that the CPU utilization does not get
above a fixed threshold. The fixed threshold should be chosen
to leave spare CPU cycles to other concurrent system processes
that are required to execute management tasks on the server.
We start by making the assumption that the SIP proxy server is
able to store incoming messages in a queue that will be drained
by an asynchronous worker thread. Fig. 3 shows the proposed
control system which is made of two feedback loops: the first
controller, depicted in the topmost box, steers the queue level
q(t), measured in number of INVITEs, to a target qT (t); the
other one steers the CPU load C(t) to a desired target CT < 1.

1) The queue controller: The goal of this control loop is
to compute the queue draining rate u(t), i.e. the normalized
rate of INVITEs to be processed by the CPU, so that the
queuing time of incoming INVITE messages is well below
the first retransmission timeout T1 = 0.5s. In such a way the
control system is able to prevent retransmissions. The queue is
assumed to be a FIFO drop-tail buffer, with a maximum length
qM of INVITE messages, whose length q(t) can be modelled
as follows:

q(t) = ρM

ˆ t

0

(r(σ)− u(σ)− o(σ))dσ

where o(t) is the queue overflow rate and r(t) is the total
incoming rate equal to the sum of R(t), which is the rate
of new INVITEs, and rr(t), which is the retransmission rate
generated due to the local server. The retransmission rate due
to other servers is included in R(t). The overflow rate o(t)
can be modelled as follows [6]:

o(t) =

{
r(t)− u(t) q(t) = qM , r(t) > u(t)

0 otherwise
(6)

which is the rate of dropped messages when the queue is full
and the input rate exceeds the output rate. The retransmission
rate, which in Fig. 3 is the output of the block “RTX”,
is caused by the expiration of a complex mechanism of
timeouts of variable duration which can be caused by either

large queuing time Tq(t) or queue overflow rate o(t) > 0.
Unfortunately, the fluid model of the retransmission rate rr(t),
which would be helpful in the design of the control system, is
complex and intractable, indeed it is still not available in the
literature.

To keep rr(t) close to zero, the controller computes the
draining rate u(t) so that the queuing time Tq(t) is steered to a
set-point T q much lower than the first retransmission timeout.
A simple way to do it is to exploit the approximation Tq(t) =
q(t)/(ρMu(t)), with u(t) 6= 0 [10]. Using this approximation,
Tq(t) can be indirectly controlled by controlling the queue
length q(t). In particular, in our proposed control loop q(t)
tracks the reference signal qT (t) = T qρM r̃(t), where r̃(t) is a
low-pass filtered version of the measured total incoming rate
r(t). We have set T q = 50ms, which is 10 times lower than
the first retransmission timer T1. A first order low-pass filter
(LPF) F (s) = 1/(1 + τs), with τ = 0.1s, cuts off the high
frequency components of r(t).

The controller is a PI with proportional gain Kpq (measured
in s−1) and integral gain Kiq (measured in s−2):

u(t) =
1

ρM
(Kpqeq(t) +Kiq

ˆ t

0

eq(τ)dτ) (7)

where eq(t) = qT (t) − q(t) is the error and ρM is a scaling
factor due to the assumption that u(t) is dimensionless.

2) The CPU controller: The CPU controller Gcc(s) com-
putes the fraction α(t) of messages to reject by using 503
messages. The CPU control goal is to steer the CPU load C(t)
to the desired value CT . It is worth noting that the output of the
first controller, which is the queue draining rate u(t), tracks
r(t) at steady state and can be considered as a disturbance
acting on the control loop.

The reject ratio α(t) is computed based on the error ec(t) =
C̃(t) − CT , where CT is the target load for the SIP server
and C̃(t) is the CPU load filtered by H(s) = 1/(1 + τcs)
with τc = 0.1 s. Again, we employ a proportional-integrative
controller, whose equation is given by

α(t) = Kpcec(t) +Kic

ˆ t

0

ec(τ)dτ. (8)

By taking the derivative of (8), and considering that ˙̃
C(t) =

C(t)/τc − C̃(t)/τc where C(t) is given by (1), the following
mathematical model can be easily derived:


α̇(t) =

Kpc

τc
[u(t) · (1− γα(t)) + d(t)− C̃(t)]+

+Kic(C̃(t)− CT)
˙̃
C(t) = 1

τc
u(t)(1− γα(t)) + 1

τc
d(t)− 1

τc
C̃(t)

(9)

where we have posed γ = (β−1)/β for brevity of notation.
Proposition 2: Considered the equilibrium inputs

(CT , u, d) in the positive orthant of R3, the system (9)
has a unique equilibrium point:

α =
β

β − 1
(1− CT

r
+
d

r
) (10)

C = CT

UAC

SIPp client

SIP proxy

kamailio

1Gbps 1Gbps

UAS

SIPp server

Figure 4. The testbed employed for the experimental evaluation

which is locally asymptotically stable provided Kic, Kpc, τc
are positive.

Proof: In order to find the equilibrium point, we impose
that the derivatives of (9) are equal to zero. Recalling that
u = r and solving the system we obtain the equilibrium (9).
The state matrix A is equal to:

A =

[
−Kpc

τc
γu Ki − Kpc

τc
− 1
τc
γu − 1

τc

]
whose characteristic equation is:

p(λ) = λ2 +
1

τc
(1 + γKpcu)λ+ γ

Kic

τc
u = 0

The proposition is proved by observing that the characteristic
equation has all its roots in the left half-plane provided that
Kic, Kpc, and τc are positive.
The equilibrium depends only on the inputs u, d, CT , and on
β which is a characteristic parameter of the considered SIP
server. It is worth to notice that the controller gains do not
affect the equilibrium.

V. REAL SYSTEM IMPLEMENTATION

The proposed overload control system described in Section
IV has been implemented in a module of the open source
Kamailio SIP proxy server4 to optimize the controller using the
Extremum Seeking algorithm and to compare its performance
to Ohta [21] and OCC [4] overload controllers.

Fig. 4 shows the testbed employed for the experimental eval-
uation. Two Linux PCs are connected through a 1000 BaseT
Ethernet LAN. We have adopted a point-to-point topology by
using SIPp5 to generate a configurable INVITE rate. SIPp has
been also used to emulate the upstream SIP server. The SIPp
client and server ran over the faster PC, a Intel Pentium 4
with 3.60 GHz clock speed and 2 GB of RAM. The modified
Kamailio SIP server, configured in the transaction-stateless
mode with no authentication, ran as proxy server over the
slower PC, a Intel Pentium III with CPU clock speed of 1 GHz
and 756 MB of RAM. The SIP server PC employs Ubuntu
Server 11.10.

Kamailio is an open source SIP proxy server that is widely
employed both for scientific and commercial purposes. Its
architecture is made of a core, providing basic SIP server
functionalities, and several pluggable modules which extend
the core. The Kamailio core processes the incoming messages
synchronously with their arrival and thus it does not implement
a queuing structure. Since both Ohta and the proposed control
system require the incoming messages to be enqueued before

4http://www.kamailio.org/
5http://sipp.sourceforge.net/

being processed, we have implemented a queue in the core
where the INVITE messages are stored before being processed.
The three overload controllers have been implemented in the
Kamailio module named ratelimit.

Both PI controllers of the proposed control system have
been discretized and provided with an anti-wind up scheme
to cope with saturation of the actuation variables. Two asyn-
chronous timer functions are responsible for, respectively, CPU
load sampling and controller actuation. Their sampling times
Tc and Tm have been set to 10ms. Finally, the maximum queue
length qM has been set equal to 800 INVITEs.

VI. CONTROLLER OPTIMIZATION

The proposed control system is made of two PI controllers,
resulting in four parameters to be tuned. Many methods and
PID tuning rules have been proposed in the literature so far.
However, optimal tuning of the considered system is made
complex due to the following reasons: 1) the parameters vector
θ = [Kpc,Kic,Kpq,Kiq] has four components; thus, using
standard performance mapping over the whole parameters
space would require a very large number of experiments; 2)
a complete model of the considered system is not available
due to the lack of a mathematically tractable model of the
retransmission rate rr(t).

In the following we use the iterative Extremum Seeking
algorithm (ES) [31], [18] to tune the controllers, which does
not require the knowledge of the mathematical model of
the system. ES has been applied successfully in different
applicative fields ranging from automotive applications to
sensor networks [32], [33], [34], [35]. In the following we
describe the ES version we have employed (Section VI-A),
the cost function which we shall minimize (Section VI-B), and
finally we show the experimental results of the optimization
(Section VI-C).

A. The Extremum Seeking algorithm

ES is an optimization algorithm which iteratively modi-
fies the controller parameters θ to minimize a cost function
J(θ). J(·) is a static map which establishes a steady-state
relationship between the parameters vector θ and the obtained
performance. ES does not use an explicit mathematical relation
of J(θ), which is considered unknown, but it makes the
assumption that, once θ is fixed, it is possible to experimen-
tally measure J(θ). Fig. 5 shows the iterative optimization
technique: 1) the controller is configured with the parameters
vector θ(k); 2) a series of step-response experiments is carried
out and J(θ(k)) is measured (see Section VI-B); 3) the ES
algorithm computes the new value of the parameters vector
θ(k + 1).

In this paper, we employ the implementation of ES pre-
sented in [18], modified by adding an anti-windup scheme,
as suggested in [36], to cope with the choice of unfeasible
negative parameters. The resulting ES algorithm, whose block
diagram is shown in Fig. 5, is described by the following

OC

AW

ES

kaw

kaw

z−1
z+h

-

J(·)

Rl ∈ R

J(θ(k))

θ̂4(k)θ4(k)

θ1(k)

-

α4 cos(ω4k)

α1 cos(ω1k)

sat(θ1, 0)

γ4
z−1

sat(θ4, 0)

θ̂1(k) γ1
z−1

Figure 5. Block diagram of the discrete extremum seeking algorithm

equations:

ζ(k) = −hζ(k − 1) + J(θ(k − 1)) (11)

θ̂i(k + 1) = kaw(sat(θi(k), 0)− θi(k))) + θ̂i(k)+ (12)
− γi(αi cos(ωik)(J (θ(k))− (1 + h)ζ(k))

θi(k + 1) = θ̂i(k + 1) + αi cos (ωi · (k + 1)) (13)

where the saturation function sat(θi, 0) is given by:

sat(θi, 0) =

{
0 θi < 0

θi otherwise

Eq. (13) computes the new parameters vector based on the
output of the ES algorithm for i = 1, 2, 3, 4. In particular, ES
obtains an estimate of the gradient ∇J(θ(k)) by extracting
the portion of J(θ(k)) that is due to the perturbation of the
parameters estimate θ̂(k). Equation (13) shows that ES sinu-
soidally perturbs the input parameters θ̂(k+1) to give the new
parameters vector θ(k+1). At the end of the k-th experiment,
the measured value of J(θ(k)) is high-pass filtered in order
to remove its DC portion and demodulated by multiplication
with a discrete-time sinusoid with the same frequency of the
perturbation signal. Finally, the output, corresponding to the
gradient estimate, is low-pass filtered by the integrator with
a step size γ, giving the new parameters estimate θ̂(k + 1).
Finally, the term kaw ·(sat(θi(k), 0)−θi(k)), that is zero unless
θi(k) < 0, implements a static anti-windup back-calculation
scheme that is provided as an input to the integrator block.

B. The cost functions

We evaluate the cost function at the end of a series of step-
response experiments, each one 120s long, with input rates
R(t) = Rl ·1(t), where Rl ∈ R = {1.58, 2.10, 2.37, 2.63} and

1(t) is the step function. For each Rl ∈ R we have repeated
the experiment 6 times and considered the best m = 4 values
to rule out possible outliers due to experimental testbed issues.

The cost function has been carefully chosen. In principle,
it would appear natural to employ a goodput-based functional
to maximize the average goodput of the server. In particular,
a suitable candidate functional based on the goodput g(θ, r)
could be:

G(θ) = − 1

m

m∑
i=1

∑
Rl∈R

g(θ,Rl · 1(t)) ·Rl (14)

where the negative sign is due to the fact that ES finds minima
of the cost function. For each Rl ∈ R the goodput is weighted
by a factor Rl to ensure that experiments with different loads
have the same contribute to the cost G(θ).

However, we argue that G(θ) is not a good choice. In fact,
a simple yet wrong way to improve the goodput would be by
increasing the CPU load over the set-point CT , which must
be chosen to leave a safety margin on full CPU utilization. In
other words, a finite tracking error on the CPU set-point could
result in a goodput improvement. In Section VI-C we show
that in some cases this phenomenon occurs due to actuator
saturation. However, the maximization of the goodput at the
expense of meeting control specifications is undesirable, since
it reduces the safety margin and makes the system less robust
to CPU disturbances.

For this reason we have employed a functional J(θ) based
on the integral absolute errors on the retransmissions ratio
and the CPU load, which are direct indicators of overload.
In particular, J(θ) is the linear combination of the average
values of two integral absolute errors over the m experiments
as follows:

J(θ) =
1

m

m∑
i=1

∑
Rl∈R

(ηRIAEi(θ,Rl·1(t))+ξCIAEi(θ,Rl·1(t))).

(15)

RIAEi(θ,Rl · 1(t)) =
1

tf

tfˆ

0

|r̃(t, θ)−Rl|dt (16)

is the measured absolute integral of the retransmission ratio
for the i-th experiment, and

CIAEi(θ,Rl ·1(t)) =
1

(1− CT)tf

ˆ tf

0

|C̃(t, θ)−CT |dt (17)

is the measured CPU integral absolute error for the i-th
experiment. The error ec(t) is normalized by its maximum
value 1 − CT . η and ξ are weighting parameters that can be
freely adjusted to emphasize one term over the other. We have
found that η = 1 and ξ = 2 ensure a good shaping of the cost
function. It is worth noting that, with this cost function, the
goodput can be improved by simply employing a larger CT ,
since in any case the functional J(·) ensures that the selected
optimal parameters are such that the CPU integral absolute
error is minimized.

2
4

6
8

10
12

8
9

10
11

12

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

K
pc

θ(0)

K
ic

J

Figure 7. J(θ(k)) function of Kpc and Kic for θ(0) = θ1 =
[12, 12, 20, 130]

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Time (s)

r̃
r

θ = θ

5

θ = θ
1

Figure 8. Retransmission rate comparison for θ = θ1 and θ = θ5 in the
case of R = 2.75

C. Experimental results

In this section we show the experimental results of the
parameters tuning using the ES algorithm described in Section
VI-A. We have adopted a step size γ = [10, 10, 10, 10], a high-
pass filter parameter h = 0.5, a sinusoidal amplitude and pul-
sation equal to α = [1, 1, 1, 1] and ω = [2.82, 2.54, 2.28, 2.06]
respectively. The anti-windup gain kaw has been set to 0.003.

We have performed a series of ES runs employing different
initial conditions to investigate the presence of multiple local
minima. The results are reported in Table I. Two different
minima have been found: 1) Runs from 1 to 4 have converged
in the neighborhood of different points with the same value of
Kpc = 3.5 and the same optimal value J(θ) = 0.29; 2) Run 5
has converged to the neighborhood of θ5 = [17, 12, 16.5, 124],
where J(θ5) = 0.6. In the following we consider Run 1,
which is representative of the case J(θ) = 0.29, and Run 5 to
compare performance differences and to justify the preference
of the functional J(·) (see (15)) over the goodput-based
functional G(·) (see (14)).

Let us start by analyzing Run 1. Fig. 6 (a) shows the
evolution of both J(θ(k)) and the parameters vector θ(k) in

0 20 40 60

0.3

0.35

0.4

k

J

0 20 40 60
0

10

20

30

k

K
pq

0 20 40 60
120

130

140

k

K
iq

0 20 40 60
0

5

10

15

k

K
pc

0 20 40 60
0

5

10

15

k

K
ic

(a) θ(0) = θ1 = [12, 12, 20, 130]

0 5 10 15
0.5

0.6

0.7

0.8

0.9

1

1.1

k

J

0 5 10 15
0

10

20

30

k

K
pq

0 5 10 15
120

130

140

k

K
iq

0 5 10 15
0

10

20

k

K
pc

0 5 10 15
0

10

20

k

K
ic

(b) θ(0) = θ5 = [1, 1, 20, 130]

Figure 6. Evolution of J(θ(k)) and θ(k)

Table I
OPTIMAL PARAMETERS θi FOR DIFFERENT INITIAL CONDITIONS θi

Initial Conditions θi Optimal θi
R. Kpc Kic Kpq Kiq Kpc Kic Kpq Kiq J(θi)

1 12 12 20 130 3.5 10.5 19 130.5 0.29
2 2 2 20 130 3.5 9 20 131.5 0.29
3 -17 12 -16.5 120 3.5 13.5 17 127 0.29
4 0.5 0.5 4 4 3.5 7.5 20 130 0.29
5 1 1 20 130 17 12 16.5 124 0.6

the case θ(0) = θ1 = [12, 12, 20, 130]. J(θ(k)) converges in
a neighborhood of θ1 = [3.5, 10.5, 19, 130.5] corresponding
to J(θ1) = 0.29. It can be noticed that J(θ(k)) is not very
sensitive to variations of Kpq and Kiq . We argue that these
parameters negatively affect the performance of the system
only if the settling time of the first control loop is high6

and, as a consequence, retransmissions are triggered. To get a
further insight, let us consider Fig. 7, which shows J(θ(k))
as a function of Kpc and Kic. J(θ(k)) is very sensitive to the
proportional gain of the CPU loop. In particular, Kpc decreases
until the point J(θ(k)) eventually reaches a minimum that is
obtained for Kpc = 3.5 and Kic = 10.3. Runs 2,3 and 4 have
shown a similar behavior. We can conclude that the system
performances are highly sensitive to Kpc variations.

6With Kpq(0) = 20 and Kiq(0) = 130 the first loop has damping factor
of 0.7 and 2% settling time of 0.1s.

A different behaviour is obtained in Run 5 which converges
in a neighborhood of θ5 = [17, 12, 16.5, 124] corresponding to
J(θ5) = 0.6, that is much higher than J(θ1). We argue that
this local minimum of J(·) corresponds to the case of actuator
saturation. Fig. 9 compares the dynamics of the CPU load, the
accept ratio, the queue length, and the queuing time in the case
of R = 2.75 when either θ1 or θ5 is employed.

In the case of θ5, Fig. 9 (d) shows that the accept ratio
1−α(t) is close to 0 and, since the anti wind-up disconnects
the integral mode when the actuator is saturated, a finite track-
ing error on the CPU set-point is obtained. On the other hand,
in the case of θ1 the CPU set-point is tracked with zero steady-
state error, but with a slightly lower goodput. Fig. 8 compares
the retransmission rates measured in the case of R = 2.75
when either θ1 or θ5 is employed. The figure clearly shows
that retransmissions are negligible with θ1, whereas with θ5

0 20 40 60 80 100 120
0

0.04

0.08

0.12

0.16

Time (s)

T
q
(t

)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time (s)

q
(t

)/
q

M

(a) θ = θ1

0 20 40 60 80 100 120
0

0.04

0.08

0.12

0.16

Time (s)

T
q
(t

)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time (s)

q
(t

)/
q

M

(b) θ = θ5

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time (s)

1
-α

(t
)

0 20 40 60 80 100 120
0.6

0.7

0.8

0.9

1

Time (s)

C
(t

)

(c) θ = θ1

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time (s)
1

-α
(t

)

0 20 40 60 80 100 120
0.6

0.7

0.8

0.9

1

Time (s)

C
(t

)

(d) θ = θ5

Figure 9. CPU load, accept ratio, queuing time and queue length comparison for θ = θ1 and θ = θ5 in the case of R = 2.75

1.5 2 2.5 3
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Normalized offered load

N
o

rm
a

liz
e

d
 g

o
o

d
p

u
t

θ

1

θ
5

1.5 2 2.5 3
0

0.05

0.1

0.15

Normalized offered load

C
P

U
 l
o

a
d

 e
rr

o
r

θ

1

θ
5

1.5 2 2.5 3
0

0.05

0.1

Normalized offered load

R
e

tr
a

n
s
m

is
s
io

n
 r

a
ti
o

θ

1

θ
5

Figure 10. Comparison of goodput, average CPU load error and retransmis-
sion ratio for θ1 and θ5

a moderate retransmission rate is measured. Fig. 9 (b) shows
when higher retransmission rate are measured (θ = θ5), larger
oscillations of the queuing time Tq(t) and of the normalized
queue length q(t)/qM occur. To summarize, θ1 should be
preferred to θ5 since it ensures a perfect tracking of the CPU
target, while minimizing queuing times and retransmission
rates.

To conclude, we show that the proposed functional J(·) is
more suitable than the goodput-based functional G(·) (14) for
the considered system. To the purpose, Fig. 10 compares the
performance of the system as a function of the normalized
load R when either θ1 or θ5 is employed. In particular, with
θ5 a slightly higher goodput is achieved at the expense of
higher CPU load errors and retransmission rates. It is easy to
check that in the case G(·) had been employed, θ5 would have
been preferred to θ1 since G(θ5) = −6.01 < G(θ1) = −5.73.
On the other hand, since J(θ1) < J(θ5) (see Table I), the
proposed functional J chooses θ1.

VII. PERFORMANCE EVALUATION AND COMPARISON

In this section we compare the proposed control system,
named PI in the following, with the Ohta and the OCC
algorithms. The proposed control system has been tuned by
using the optimal parameters found in Section VI-C, i.e.
Kpc = 3.5, Kic = 10.3, Kpq = 19.2, and Kiq = 130.5.

Before showing the results of the experimental evaluation we
briefly describe the other two considered control systems, i.e.
Otha and OCC.

Ohta’s algorithm is a simple queue-based bang-bang con-
troller that differentiates between two different states of the
server: normal and congestion. During normal state the server
forwards all the received messages. When the queue length
exceeds a high watermark value (hi_wm) the server enters
into congestion state: in this state it rejects all the requests.
The normal state is entered again when the queue length
becomes less than the watermark value (lo_wm). Since it is
based on a queuing structure such as our algorithm, Ohta was
implemented in a similar way in the Kamailio’s ratelimit
module. Queue buffer size was set to 1000, lo_wm and
hi_wm to 400 and 800 respectively as suggested in [4].

OCC dynamically adjusts the probability f of accepting an
incoming INVITE request based on measurements of the CPU
load C to drive it to a target utilization CT . The control law is
a discrete time nonlinear controller described by the following
equation:

fk+1 =


fmin φkfk < fmin

1 φkfk > 1

φkfk otherwise

where fk is the acceptance ratio, φk = min (CT /Ck, φmax).
fmin avoids to have zero minimal acceptance ratio, whereas
φmax > 1 is the maximum multiplicative increase factor.
OCC was implemented in the ratelimit module without
using a queuing structure, since messages are forwarded syn-
chronously with their arrival. We employed a control interval
Tc = 1sec, a measurement interval Tm = 0.1sec, fmin = 0.02,
and φmax = 5 as suggested in [4].

Fig. 11 shows the normalized goodput as a function of the
normalized offered load. In particular, the proposed control
system achieves a normalized goodput equal to 0.5 when the
normalized offered load is equal to 2, whereas both OCC and
Ohta are overloaded. When OCC is used with a target CPU
load equal to 0.9 the goodput degrades significantly for input
rates greater than 1.3, due to its low responsiveness. OCC 80%
better handles overload wrt OCC 90%, and it is able to support
input rates up to 1.7. For what concerns the Ohta algorithm,
Fig. 11 shows that as soon as the input rate gets greater than 1,
the goodput suffers a significant step-like drop, indicating that
the algorithm is not able to properly handle overload episodes.

Fig. 12 (a) shows that the proposed control system maintains
the retransmissions ratio below 0.1 up to a normalized offered
load equal to 3. On the other hand, OCC and Ohta are not
able to handle overload since retransmissions start to increase
for an offered load equal to 1. Fig. 12 (b) shows the call
establishment time versus the normalized offered load. The
proposed algorithm maintains a call establishment time which
tracks the target value Tq = 0.05s for up to an offered
load equal to 3, which confirms that the first control loop
successfully tracks the reference signal qT (t). On the other
hand, OCC and Ohta exhibit a quickly increasing average call
establishment time as soon as the offered load approaches the
value of 1.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normalized offered load

N
o
rm

a
liz

e
d
 g

o
o
d
p
u
t

PI 80%

OCC 80%

OCC 90%

Ohta

Figure 11. Goodput comparison

0.5 1 1.5 2 2.5 3
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Normalized offered load

L
o

g
(r

e
tr

a
n

s
m

is
s
io

n
 r

a
ti
o

)

PI 80%

OCC 80%

Ohta

(a) Retransmissions ratio

0.5 1 1.5 2 2.5 3
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Normalized offered load

L
o

g
(E

[W
])

PI 80%

OCC 80%

Ohta

(b) Call establishment time

Figure 12. Retransmission ratio and call establishment time

VIII. CONCLUSIONS

We have proposed a SIP overload control system that con-
trols both the queue length and the CPU load of a SIP server.
We have implemented the proposed overload control system
in Kamailio, an open source SIP proxy, and carried out a
performance optimization by means of the Extremum Seeking
algorithm. A comparison with the well known Occupancy
(OCC) and Ohta algorithms has been carried out. Results
have shown that the proposed control system significantly
outperforms the OCC and Ohta algorithms, providing higher
goodput along with lower retransmissions ratio and call estab-
lishment time. The proposed control system handles overload
up to a maximum normalized input load equal to 3, whereas
OCC supports input rates up to 1.7 and Ohta fails to handle
overload condition already when the normalized offered load
approaches to 1.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterston, R.
Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation Protocol,”
RFC 3261, Internet Engineering Task Force, June 2002.

[2] J. Rosenberg, “Requirements for Management of Overload in the Session
Initiation Protocol,” RFC 5390, Dec. 2008.

[3] C. Shen and H. Schulzrinne, “On tcp-based sip server overload control,”
in Principles, Systems and Applications of IP Telecommunications,
pp. 71–83, ACM, 2010.

[4] V. Hilt and I. Widjaja, “Controlling Overload in Networks of SIP
Servers,” in Proc. of IEEE ICNP, pp. 83–93, Oct. 2008.

[5] S. H. Low and D. E. Lapsley, “Optimization flow control - i: basic
algorithm and convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–874, 1999.

[6] S. Mascolo, “Congestion control in high-speed communication networks
using the Smith principle,” Automatica, vol. 35, no. 12, pp. 1921–1935,
1999.

[7] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”
IEEE Control Systems, vol. 22, no. 1, pp. 28–43, 2002.

[8] R. Srikant, The mathematics of Internet congestion control. Springer,
2004.

[9] F. Paganini, Z. Wang, J. C. Doyle, and S. H. Low, “Congestion control
for high performance, stability, and fairness in general networks,”
IEEE/ACM Transactions on Networking, vol. 13, no. 1, pp. 43–56, 2005.

[10] C. V. Hollot, V. Misra, D. Towsley, W. Gong, “Analysis and design of
controllers for AQM routers supporting TCP flows,” IEEE Transactions
on Automatic Control, vol. 47, no. 6, pp. 945–959, 2002.

[11] S. Liu, T. Basar, and R. Srikant, “Exponential-red: a stabilizing aqm
scheme for low-and high-speed tcp protocols,” IEEE/ACM Transactions
on Networking, vol. 13, no. 5, pp. 1068–1081, 2005.

[12] W. Michiels, D. Melchor-Aguilar, and S.-I. Niculescu, “Stability analysis
of some classes of tcp/aqm networks,” International Journal of Control,
vol. 79, no. 9, pp. 1136–1144, 2006.

[13] S. Manfredi, F. Oliviero, and S. P. Romano, “A distributed control law for
load balancing in content delivery networks,” IEEE/ACM Transactions
on Networking, vol. 21, no. 1, pp. 55–68, 2013.

[14] L. De Cicco and S. Mascolo, “A mathematical model of the skype voip
congestion control algorithm,” IEEE Transactions on Automatic Control,
vol. 55, no. 3, pp. 790–795, 2010.

[15] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “Elastic: a
client-side controller for dynamic adaptive streaming over http (dash),”
in Proc. of Packet Video Workshop, pp. 1–8, 2013.

[16] M. Kihl, A. Robertsson, M. Andersson, and B. Wittenmark, “Control-
theoretic analysis of admission control mechanisms for web server
systems,” The World Wide Web Journal, Springer, vol. 11, pp. 93–116,
Aug. 2007.

[17] A. Pietrabissa, “An alternative lp formulation of the admission control
problem in multiclass networks,” IEEE Transactions on Automatic
Control, vol. 53, no. 3, pp. 839–845, 2008.

[18] N. J. Killingsworth and M. Krstic, “PID tuning using extremum seeking:
online, model-free performance optimization,” IEEE Control Systems
Magazine, vol. 26, pp. 70–79, Feb. 2006.

[19] V. Hilt, E. Noel, C. Shen, and A. Abdelal, “Design Considerations for
Session Initiation Protocol (SIP) Overload Control,” RFC 6357, Internet
Engineering Task Force, Aug. 2011.

[20] Y. Hong, C. Huang, and J. Yan, “A comparative study of sip overload
control algorithms,” Network and Traffic Engineering in Emerging
Distributed Computing Applications, 2012.

[21] M. Ohta, “Overload control in a sip signaling network,” Proc. of World
Academy of Science, Engineering and Technology, pp. 205–210, 2006.

[22] C. Shen, H. Schulzrinne, and E. Nahum, “Session initiation protocol
(sip) server overload control: Design and evaluation,” in Proc. of
IPTCOMM, pp. 149–173, 2008.

[23] Y. Hong, C. Huang, and J. Yan, “Applying control theoretic approach
to mitigate sip overload,” Telecommunication Systems, vol. 54, no. 4,
pp. 387–404, 2013.

[24] R. Garroppo, S. Giordano, S. Niccolini, and S. Spagna, “A prediction-
based overload control algorithm for sip servers,” IEEE Transactions on
Network and Service Management, vol. 8, no. 1, pp. 39–51, 2011.

[25] Y. Wang, “Sip overload control: a backpressure-based approach,” in
Proc. of ACM SIGCOMM 2010, poster session, pp. 399–400, 2010.

[26] S. V. Azhari, M. Homayouni, H. Nemati, J. Enayatizadeh, and A. Akbari,
“Overload control in sip networks using no explicit feedback: A window
based approach,” Computer Communications, vol. 35, no. 12, pp. 1472
– 1483, 2012.

[27] J. Liao, J. Wang, T. Li, J. Wang, J. Wang, and X. Zhu, “A distributed
end-to-end overload control mechanism for networks of sip servers,”
Computer Networks, vol. 56, no. 12, pp. 2847 – 2868, 2012.

[28] V. Gurbani, V. Hilt, and V. Schulzrinne, “ Session Initiation Protocol
(SIP) Overload Control,” IETF, Internet-Draft, Work in Progress, 2013.

[29] Y. Hong, C. Huang, and J. Yan, “Mitigating sip overload using a control-
theoretic approach,” in Proc. of IEEE GLOBECOM 2010, pp. 1–5, 2010.

[30] H. Jiang, A. Iyengar, E. Nahum, W. Segmuller, A. N. Tantawi, and C. P.
Wright, “Design, implementation, and performance of a load balancer
for sip server clusters,” IEEE/ACM Transactions on Networking, vol. 20,
no. 4, pp. 1190–1202, 2012.

[31] M. Krstic and H. Wang, “Stability of extremum seeking feedback for
general nonlinear dynamic systems,” Automatica, vol. 36, no. 4, pp. 595
– 601, 2000.

[32] D. Popovic, M. Jankovic, S. Magner, and A. R. Teel,, “Extremum
seeking methods for optimization of variable cam timing engine opera-
tion,” IEEE Transaction on Control Systems Technology, vol. 14, no. 3,
pp. 398–407, 2006.

[33] D. Carnevale, A. Astolfi, C. Centioli, S. Podda, V. Vitale, and L.
Zaccarian, “A new extremum seeking technique and its application to
maximize rf heating on ftu,” Fusion engineering and design, vol. 84,
no. 2, pp. 554–558, 2009.

[34] K. H. Stankovic, M. Johansson and D. M. Stipanovic, “Distributed
seeking of nash equilibria in mobile sensor networks,” in Proc. of IEEE
Conference on Decision and Control, pp. 5598–5603, 2010.

[35] P. Dower, P. Farrell and D. Nesic, “Extremum seeking control of cas-
caded raman optical amplifiers,” IEEE Transaction on Control Systems
Technology, vol. 16, no. 3, pp. 396–407, 2008.

[36] Y. Tan, Y. Li, and I. Mareels, “Extremum Seeking for Constrained
Inputs,” IEEE Transactions on Automatic Control, vol. 58, no. 9,
pp. 2405–2410, 2013.

Luca De Cicco received a computer science en-
gineering degree cum laude in 2003 and a Ph.D.
in July 2008, both from the Technical University
of Bari, Italy. He is currently a researcher at Po-
litecnico di Bari. He has held visiting positions at
the University of New Mexico (Albuquerque, USA),
Ecole Superieure d’Electricité (Paris, France), the
Laboratory of Information, Networking and Com-
munication Sciences - LINCS (Paris, France) in
2007, 2012 and 2013. He is co-author of more
than 30 papers published in international journals,

books or conferences. His main interests focus on the modelling and design
of congestion control algorithms for multimedia transport, adaptive video
streaming, SIP overload control.

Giuseppe Cofano received the Telecommunications
Engineering degree (cum laude) from Politecnico
di Bari, Bari, Italy, in 2012. Since 2013 he is
a Ph.D. student at Politecnico di Bari. His main
interests focus on the modeling and design of control
algorithms for multimedia transport and adaptive
video streaming.

Saverio Mascolo received the Laurea degree, cum
laude, in electronics engineering in 1991 and the
Ph.D in 1994, both from the Technical University
of Bari, Italy. Since 2001, he has been associate
professor in Automatic Control at Politecnico di Bari
where is now full professor since 2012. He has been
post-doc in 1995 and visiting researcher in 1999
at the University of California Los Angeles, and
visiting consultant at University of Uppsala, Sweden
from 2002 to 2006. He has authored or co-authored
more than 100 papers in international journals, books

or conferences. He is author and assignee of 4 US patents and 3 Italian
patents. His current research interests focus on the Future Internet, in particular
in the topic of real-time communication over the Web. He has worked on
congestion control in data networks (TCP and ATM), end-to-end bandwidth
estimate, modelling and control. He is senior member of IEEE and ACM. He
is Associate Editor of the IEEE Transactions on Automatic Control journal
and of Computer Networks Journal, Elsevier.

