
1

SIMULATIONUnit Manual

1. Functional Description

SIMULATIONUnit is a simulation system for simulating field bus devices using Profibus DP protocol and/or Profinet protocol. This powerful tool supports
simple inputs/outputs from Profibus slaves/Profinet devices as well as dynamic simulation of user defined complex functions for end devices e.g. Motors,
Valves. The behavior of such devices can be manipulated using already integrated digital control logic modules. SIMULATIONUnit has been designed for
Windows. This simple and easy to use simulator provides all the tools for quick designing and testing of automation projects during factory acceptance
tests (FAT).

1.1. Simulation of PROFINET IO with SIMBA PNIO / SIMULATION UNIT PN

SIMULATIONUnit Manual

2

With the SIMULATION UNIT PN module you are able to simulate up to 256 Profinet I/O devices at one PROFINET IO network (e.g. ET200S PN, CP1616
as device… etc).

SIMULATIONUnit can simulate up to 32 Profinet channels in one project. It is also possible to simulate with SIMULATION UNIT PN and SIMULATION
UNIT PB modules in the same project at the same time.

The simulation of PROFINET IO can be carried out using any PROFINET IO MASTER system. For example:

• PROFINET CPU from the SIMATIC S7-300, S7-400, S7-1200 or S7-1500 product family

• External Ethernet communication processors e g. CP443-1 Advanced

• CP1616 as Master

• Further PROFINET IO norm master

See also Getting started

1.2. Simulation of PROFIBUS-DP with the SIMBAProfibus Box / SIMULATION UNIT PB

With the SIMULATION UNIT PB box you are able to simulate up to 2 profibus lines with 125 DP slaves at one PROFIBUS DP bus (e.g. ET200M,
SIMOCODE… etc) with user selectable transmission rate. SIMULATION UNIT PB can simulate up to 250 profibus slaves.

SIMULATIONUnit Manual

3

SIMULATIONUnit can simulate up to 32 Profibus channels in one project. It is also possible to simulate with SIMULATION UNIT PN and SIMULATION
UNIT PB modules in the same project at the same time.

The simulation of Profibus can be carried out using any Profibus DP MASTER system. For example:

• DP CPU from the SIMATIC S7-300 and S7-400 product family

• DP-CPU or DP-CP from the S7-1200 and S7-1500 product family

• External DP communication processors e g. CP443-5, IM467

• CP581 with PROFIBUS DP communication interface

• Further PROFIBUS DP norm master

See also getting started

1.3. Naming convention

SIMULATIONUnit Simulation Software

SIMULATION UNIT PB Simulation Hardware for Profibus

SIMULATION UNIT PN Simulation Hardware for Profinet IO

Simba old, deprecated name of Simulation Unit

SU Abbreviation for SIMULATIONUnit or
SIMULATION UNIT

SIMULATIONUnit Manual

4

2. Getting Started

This page contains a short description for installing and setting up a simulation project. Click at the links to get more detailed decriptions.

2.1. Installation of SIMULATIONUnit software

Install SIMULATIONUnit Software: execute SIMULATIONUnit_Vx.x.x_Setup.exe on a Windows 7 PC or newer Windows version.

2.2. Connect the simulation box

Connect to a 24V power supply.

SIMULATION UNIT PN Connect the simulation PC to the jack labeled with CTRL.
Connect the ProfinetIO controller to the jack labeled with P1.

SimbaPNIO Connect the simulation PC to the jack labeled with Control Port 1.
Connect the ProfinetIO controller to the jack labeled with Realtime
Ethernet 1.

SIMULATION UNIT PB Connect the simulation PC to the jack labeled with CTRL.
Use one or two Profibus cables to connect the Profibus controller to the
Profibus ports of the SIMULATION UNIT

SimbaProfibus Connect the simulation PC to the jack labeled with Control Port 1.
Use up to 8 Profibus cables to connect the Profibus controller to the
Profibus ports of the SimbaProfibus. The two channels of a redundant H
machine must be connected to opposite ports (e.g. 0 and 1, or 2 and 3).

Profibus-Migration gateway Connect the simulation PC to the jack labeled with Control Port 1.
Connect a real system with Profibus controller an devices to Profibus-
Port 0 and 1. Connect Port 2 and 3 to a master to simulate the slaves.
The Migration gateway listens to the I/Os at Port 0 and 1 and copies
them to Port 2 and 3.

2.3. Export a Step 7 hardware configuration

If SIMULATIONUnit and STEP7 are running on different machines, copy the file SDBView.reg from the SIMULATIONUnit directory to the STEP7 PC.
Double click at SDBview.reg. The data files to be imported to SIMULATIONUnit will be created in the directory <STEP7>/S7tmp/SDBData/program/
DOWN/rXXsXX if you click "Save and Compile" in a STEP7 hardware project.

Export the Hardware configuration to a .cfg file. Menu Station → Export…

2.4. Export a TIA Portal hardware configuration

SIMULATIONUnit must be installed on a PC with TIA Portal.
Select a PLC in TIA Portal and compile the hardware configuration. The folder C:\TIAExports then contains sdb**.dat or .oms files to be imported to
SIMULATIONUnit.

2.5. Creation of a Simulation Project

• create a new simulation project: click the button in portal view.

• define a project name. After "OK", SIMULATIONUnit creates a project folder (*.spf) and the necessary files for an empty project and changes into
project view for further working steps.

• Select and configure a SIMULATIONUnit box: menu "Configuration" → "Import hardware". In the following view Import hardware you can add

import files as f. i. system datablocks (.dat), OMS files (.oms) or XML files with hardware informations. At last you can press the button and the
hardware import for all detected bus systems will be started.

• After hardware import is successfull the programm switches to the hardware editor. Here you can change or complete the imported configuration.

SIMULATIONUnit Manual

5

• Here you can assign the imported hardware to a SIMULATION UNIT box found in the network. Enter the IP address by hand or scan the network and
drag/drop a found SIMULATION UNIT Box in the list to the imported Simba.

Remarks:

the selected IP address has to be in the same subnet as the simulation
 computer!
When simulating PNIO systems the IP address of the SIMULATION UNIT Box has to
 be in another subnet as the simulated devices!

Example:

IP address of the simulation computer: 140.80.123.1 Subnet Mask: 255.255.0.0

IP address of the SIMULATION UNIT box: 140.80.123.110 Subnet Mask: 255.255.0.0

IP addresses of the simulated devices: 140.90.x.y Subnet Mask: 255.255.0.0

• Pressing the button saves the configuration.

• Download project into the SIMULATION UNIT box: first press . After the SIMULATION UNIT boxes are connected, button becomes active for
downloading the configuration into the boxes.

See also: simulation of Profinet components or: simulation of Profibus components

3. SIMULATIONUnit Features

SIMULATIONUnit uses two different views (Portal view and Project view) for arranging control functions into logical groups.

3.1. The portal view

The portal view contains all necessary control elements for the administration of simulation projects, for global system adjustments and the help system.

3.1.1. Projects

Open, create or delete simulation projects.

SIMULATIONUnit Manual

6

Create project: Select a folder and a project name.
SU creates a folder with the ending .spf (SIMULATIONUnit project folder). The project must not be created inside a folder with the ending .spf.

Open project: double click onto a project in the list of last opened projects or
click onto "Open project…" and select a Project.xml file inside a .spf folder.

Remove project: If you answer the question "Delete project from disc ?" with Yes, the project will be deleted from the list and from the disc.

3.1.2. System

In the view "System" you can find the controls for different system adjustments.

3.1.2.1. Device GSD import

You can import device descriptions for new devices from GSD files (for Profibus) or GSDML file (for Profinet) into the SIMULATIONUnit hardware
database. The new devices are disposable if you create a new project or import new hardware data after that.

Select one ore more files to import. SIMULATIONUnit will check if the device is already in the library and if the selected file is newer. If you click onto
"Import", all files with the checkbox selected in the column Import will be imported.

Note:
The imported files are stored in the user directory (C:\Users\User\AppData\Roaming\SIMULATIONUnit\hwlib) After a software update they
are still available.

SIMULATIONUnit Manual

7

3.1.2.2. Scan network

In this view you can find or configure SIMULATION UNIT boxes available in the network.

Column Meaning changeable

Type Type of the simulation hardware. Simba will be
displayed instead of SIMULATION UNIT.

Name arbitrary name of the SIMULATION UNIT

IP Address, Netmask, Gateway IPv4 settings

MAC Address unique device address

DHCP Automatically optain an IP address from a
DHCP server in the network.

Click into a field to change the value. Press the "Save changes" Button to apply the changes.

Firmware Update
Select a SIMULATION UNIT in the list and click onto "Firmware update"
The current firmware version will be shown. Select a .upd file and follow the instructions on the screen.

SIMULATIONUnit Manual

8

3.1.2.3. Language settings

In that view you can configure the system language of the SIMULATIONUnit software. Implemented are "German" and "English" this time. Changing the
language will restart SIMULATIONUnit.

3.2. The Project view

The Project view is the "working view" of SIMULATIONUnit. The user can create, configure or run simulation projects here.

3.2.1. Navigation within the project

At the left side of the project view you can find a navigation tree that shows all elements of the opened simulation project. The view to control one element
can be opened by double click on the element.

SIMULATIONUnit Manual

9

3.2.1.1. Elements

Type Comment

Hardware Hardware tree of the configured SIMULATION UNIT boxes or networks.

IOs IO addresses of the imported or configured devices.

Flag A list of all variables used in the function instances.

Function blocks User defined function blocks and configured block instances.

Worksheet for a better overview while simulation you can drag and drop single IO
values or function blocks on a work sheet.

Remark:

The observation or control of the IO values is possible in all views at the same time.

3.2.2. The menu bar

The menu bar contains text menus and also buttons for quick access.

The function of the buttons (left to right):

Menu File

 "Create project…" - create a new, empty .spf project folder

 "Open project…"

 "Close project"

 "Save project as…"

 "Export I/O mapping" - save all I/O values to a .csv file

 "Import I/O mapping" - load all I/O values from a .csv file

 "Exit" - Close project and exit SIMULATIONUnit

Menu Configuration

 Edit hardware

 "Import hardware" Profibus Profinet

 Device GSD Import

Menu Simulation

 "Connect all"

 "Disconnect all"

 "Download all"

 "Delete all"

 Start run time system

 Stop run time system

 new function block

 copy function

Menu Settings

 Options

Menu Help

 "Info" - Version information and copyright

 "Online manual" - this manual

At the right side in the toolbar there is an icon which displays the usage of the selected cycle time (see Options)

SIMULATIONUnit Manual

10

3.2.3. The hardware view

The hardware view shows the SIMULATION UNIT boxes and their configuration in a tree structure. Depending on the node type is a direct control of the
IO’s or different actions with the nodes via context menus possible. (f. i. device fault, alarms, module fault …).

On the right side you can find a small search field for searching any node in the tree.

3.2.3.1. Meaning of the symbols in the hardware view

 SIMULATION UNIT PN

 SIMULATION UNIT PB

 Profibus slave

 redundant Profibus slave

 Profinet Device

 Profinet Device, active at Port P2

 redundant Profinet device, active at Port P1

 redundant Profinet device, active at Port P2

 Module or Submodule

 I/O

 I/O Bit with value 0 (false)

 I/O Bit with value 1 (true)

The background color indicates the state

 no color - not connected or not present

 green - Simulation running, I/O data exchange present

 light blue - loaded, but no connection to a controller

 red - failure

 gray - listening mode: I/Os are controlled by another program

 yellow - passive redundant Profibus Slave

 yellow-green - active failsafe module

3.2.3.2. Listening mode

If more than one instance of a simulation program is connected to the same channel of one SIMULATION UNIT, all instances except one switch to
listening mode.

In listening mode all inputs and outputs of the SIMULATION UNIT are displayed, but none of them can be operated. Downloading is blocked. The
background colour of all modules and channels is grey. In the hardware view you will see the text "Controlled by SimWhatever.exe"

• If SIMULATIONUnit and another simulation program (e.g. Simit) are accessing the same channel, then SIMULATIONUnit changes to listening mode.

• If two or more instances of the same simulation program are accessing the same channel, then the first started instance is active and all others switch
to listening mode.

• Connections from different PCs to the same SIMULATION UNIT channel are blocked.

SIMULATIONUnit Manual

11

3.2.3.3. Save an autostart project in the SIMULATION UNIT Box

Via a context menu in hardware view it is possible to save a project into online connected boxes. That opens a possibility to configure ready to use
simulation boxes. The box loads that autostart project after power on. In hardware view this is signed by a comment "AutoStartProject".

The autostart project is stored in flash memory of the box. If a USB stick is plugged into a SIMULATION UNIT PN Box, the project will be
stored on the USB stick.
If a micro SD card is plugged into the backside of a SIMULATION UNIT PN Box, the project will be stored on the SD card.

3.2.4. The IO view

In the IO view are shown all IO values configured in the project in a List. Additional here are shown logical addresses and possibly imported signal names
or comments. Control or observation of the IO’s is also possible here. The IO view can be limited by using a filter.

SIMULATIONUnit Manual

12

3.2.5. The hardware editor

The menu Configuration → "Edit hardware" opens the hardware editor. Here you can see in the left part the hardware tree of the project (analog to the
hardware view).
In the right part are shown the properties of a left selected hardware node. Most of these properties are editable here.

Example

If a SIMULATIONUnit box is selected left, the IP address is shown at the right and editable . This can be edited or found by network scan.
After a network scan in the bottom part of the window the SIMULATIONUnit boxes found in network are shown. Per drag and drop the IP
address will be assumed into the properties of the box.

When a SIMULATION UNIT PN is selected in hardware tree, it is also possible to edit topology settings. Set up the device number and port number of the
first device that is connected to the PNIO controller here.
If the project contains additional redundancy these values have to be edited also for the second controller. If no topology is set up in TIA or Step 7 you can
use the default properties.

Optionally you can also import an export file (.cfg) into your hardware. This imports all configured names of devices and modules from the STEP-7 project.
If you don’t import a cfg file, the original names from the SIMULATIONUnit hardware database will be shown.

You can also combine the imported hardware with a symbol file from PCS-7 to show logical IO symbols.

The second tab on the right side contains the hardware catalogue of SIMULATIONUnit. You can use it to configure hardware configurations by hand.
Drag and drop devices or modules into the hardware tree with the mouse.

A click with the right mouse button onto a device/module in the hardware tree opens a menu for editing:
- Remove removes the selected elements
- Copy copies the selectes elements into the clipboard
- Cut copies the selectes elements into the clipboard and deletes them
- Paste pastes the elements in clipboard into the hardware tree

Ctrl + mouse click selects an additional element in the tree Shift + mouse click selects all elements from the previous selected to the new element

With the button Save changes the edited properties will be saved and the additional files will be imported.

SIMULATIONUnit Manual

13

3.2.6. Function blocks

By double click on a saved function the view of the instances of this function will be opened for control or observation. More to function blocks please look
at runtime system.

3.2.7. Worksheets

Worksheets are free configurable windows containing IO’s or function instances. You can place them on the worksheet by "drag and drop". Worksheets
deliver the possibility to group IO’s and function instances by funtionality to get a better overview over the simulation project.

3.2.8. The log window

At the bottom of the project view window you can find the view of the log file. In the log file there will be written important events, warnings an errors during
the simulation. The log file can be saved into a text file for further diagnostics.

SIMULATIONUnit Manual

14

3.2.9. System settings (options)

The menu *"Settings" → "Options" opens a view for adjusting global program options.

In the upper part of that view you can select, if SIMULATIONUnit saves the input IO image. That is useful to get the same scenario when opening the
project again.

It is also possible to adjust the internal program cycle.

The program cycle should be adjusted so that a safe transmission of all telegrams within one cycle is guaranteed!

In the bottom part the band of used MAC addresses for the import of PNIO devices can be edited.

3.2.10. Window arrangement

The windows in the right part of the program can be grouped as you want by holding their headline with the mouse and dropping them into the marks
afterwards to see.

SIMULATIONUnit Manual

15

SIMULATIONUnit Manual

16

4. Simulation of PROFIBUS Components

The Simulation of Profibus systems is possible with SIMBAProfibus box / SIMULATION UNIT PB box connected to a real Profibus DP master. Data
exchange between SIMBAProfibus box / SIMULATION UNIT PB box and the simulation computer occurs over ethernet network at control port 1 of the
box. Maximal bus requirements at the Profibus lines are:

• maximum number of devices per line: 125

• maximum baud rate (DP): 12 MBaud

4.1. Remarks for creating a simulation

The SIMBAProfibus box / SIMULATION UNIT PB box must not be configured in the SIMATIC S7 hardware configuration. The box is not a Profibus
device. The SIMBAProfibus box / SIMULATION UNIT PB box acts in the SIMATIC-System system-neutral. You can configure up to 32 Profibus lines in
one simulation projekt.

4.2. SIMULATION UNIT PB

4.2.1. Cables

4.2.1.1. Power connection

L+ Connect to a power supply with a voltage of 24 V, min 1 A here.

M Ground.

4.2.1.2. Connection to Simulation computer

Connect a Simulation PC via an ethernet network to the port CTRL of the SIMULATION UNIT PB box. This port is used to control the box. Polarity and
speed of the connection will be detected automatically.

4.2.1.3. Connection of the Profibuses

Connect up to 2 profibus cables to the SUB-D jacks at the top of the box. The profibus connected to the upper jack is called SIMBAProfibus_x[0] in the
simulation project, the lower one is SIMBAProfibus_x[1].

4.2.2. Installation and heat

The SIMBAProfibus box / SIMULATION UNIT PB box can be placed on a table or snapped to a cap rail with the clamp on the back side. The housing
is also used for chipset cooling. Please make sure that the heat can be emitted to the surrounding air. The environment temperature should not exceed
70°C.

4.2.3. Description of the LEDs

LEDs on top

PB1, PB2 green light when activity at the Profibus ports

SIMULATIONUnit Manual

17

LEDs on top

CTRL green light, when connected to a network, blinks orange at data
exchange

PWR green light, if the power supply is on.

RDY green blinking while booting after switching on or reset, green light, when
system is operational. orange light, if a project is loaded to the box.

4.3. SimbaProfibus

4.3.1. Cables

4.3.1.1. Power connection

The box can be connected to power over PS1 or PS2.

PS1 Connect to a power supply with a voltage beween 9 and 36 V, 2 A here.

PS2 The connection has to be made with 2 wires linked to a power supply with
a voltage beween 9 and 36 V, 2 A (for example 24V supply PS307 from
Siemens).

4.3.1.2. Connection to Simulation computer

Connect a Simulation PC via an ethernet network to Control Port 1 of the SIMBAProfibus box. This port is used to control the box. Polarity and speed of
the connection will be detected automatically.

4.3.1.3. Connection of the Profibuses

Connect up to 8 profibus cables to the SUB-D jacks at the sides of the box. The profibus connected to CH0 is called SIMBAProfibus_x[0] in the simulation
project, CH1 is SIMBAProfibus_x[1], etc.

If you want to simulate a redundant system, you have to connect the redundant Profibus lines to 2 ports which at the opposite side of the box. You can
simulate H systems at channels 0 and 1, or at channels 2 and 3, at channels 4 and 5, or at channels 6 and 7.

SIMULATIONUnit Manual

18

4.3.2. Installation and heat

The SIMBAProfibus box can be placed on a table or snapped to a cap rail with the clamp on the back side. The housing is also used for chipset cooling.
During normal operation, the module can warm up to more than 40°C. This has no negative effect on functionality. Please make sure that the heat can be
emitted to the surrounding air. The environment temperature should not exceed 40°C.

4.3.3. Description of the LEDs

LEDs on top

Power orange light, if the power supply is on.

Ready System green blinking while booting after switching on or reset, green light, when
system is operational.

Ready DP green light, if the Profibus DP Simulation module is activated.

Config available green light, if a project is loaded to the SIMBAProfibus.

Activity LAN green light, when connected to a network.

Activity DP green light at activity at one of the Profibus ports.

4.4. Addressing the box

IP addresses for the SIMBAProfibus box / SIMULATION UNIT PB box can be configured in SIMULATIONUnit in the Hardware-Editor or at Portal →
System → scan network. Scan the connected network and configure an IP address in in your IP band.

SIMULATIONUnit Manual

19

Enter the IP address by hand or scan the network and drag/drop a found SU in the list to the imported Simba.

4.5. Creating a new project

Process the following steps to create a simulation projekt:

Select menu "File" → "Create project" or press Button in portal view.

In the following file box select a folder and edit a name for your project. SIMULATIONUnit creates a new folder for the simulation project (extension ".spf")
and copies the necessary files into it.

Remark:

Don’t create a (*.spf) project folder inside of a *.spf folder!

4.5.1. Hardware configuration

The hardware configuration can be done manually with the integrated configuration tool "Configure Hardware" or automatically with the import function.

4.5.1.1. Manual configuration

Menu "Configuration" → "Edit hardware"

When configuring SIMULATIONUnit with Edit hardware please insert the hardware components from the hardware library into the hardware tree.
SIMULATIONUnit only checks the logical consistency of the configuration (for example: slave number).

Remark:

SIMULATIONUnit does not check the consistency of the logical addresses like STEP7 Hardware-Config! That can cause unwanted changes
of signals during the simulation!

4.5.1.2. Import hardware

Menu "Configuration" → "Import hardware".

SIMULATIONUnit Manual

20

In the program view you can add import files as system datablocks (.dat), OMS files (.oms) or XML files to the import filebox and then import these files
into the SIMULATIONUnit project.

4.6. Step 7 Hardware config export

4.6.1. SDB file export

In Simatic-Manager, open the hardware configuration and click "Save and compile". This action will create system data blocks (sdb????.dat files) which
can be imported into SIMULATIONUnit.

SIMULATIONUnit Manual

21

For the hardware import function, one system file (SDB1xxx or SDB2xxx.dat) will be needed for each channel. The file SDBxxxx.DAT is located on the
SIMATIC PC under:

~ /Siemens/Step7/S7tmp/SDBData/program/DOWN/rXXsXX (or ~/Siemens/Step7/S7tmp/SDBData/s7hwcnfx/DOWN/rXXsXX).

If the sdb files cannot be found in the folder above, HW-Config deleted them after compiling or downloading them into the plc. To prompt
S7/PCS7 to keep the files after compile or download it is necessary to execute the registry file "SDBView.reg" (for 32 bit systems) or
"SDBView_Win64.reg" (for 64 bit systems) delivered by SIMULATIONUnit installation on the S7/PCS7 computer. This will be done
automatically if you install SIMULATIONUnit on the same computer as S7/PCS7.

After a restart of S7/PCS7 and after compilation or download of the hardware into the plc you will find the SDB files in the folder above.

If you copy the files to another destination, please make sure that all files sdb*.dat will be copied because SIMULATIONUnit needs all cross references
between the SDB-files. Each file SDBxxxx.DAT contains the hardware information for one Profibus network. There exists no rule between number of
SDB-files and PROFIBUS-lines. Begin the import with the biggest file.

For import of the SDB’s of a technology-plc (f. i. 315T-2DB) please use in the following file box the numerical range of SDB2xxx for the plc part and the
range SDB1xxx for the technology part.

4.6.2. cfg file export

Optional an export file in S7/PCS7 project (*.cfg) can be imported. In this case all station names from the S7-Project will be imported to the
SIMULATIONUnit-Project. Also Failsafe or Redundant slaves will be recognized from *.cfg file.

Remark:

If you use digital IO modules with packed IO’s in your hardware configuration, it is necessary to import SDB’s and *cfg file! Otherwise you will
not have access to all IO channels!

SIMULATIONUnit Manual

22

4.6.3. Symbols

Optionally a symbol table (.seq or .asc) can be imported. A later import of symbol table is also possible without using the SDBfile at the same time.

SIMULATIONUnit Manual

23

SIMULATIONUnit Manual

24

This step is only useful, if you have configured the symbols and you want to use them in SIMULATIONUnit. In SIMATIC Manager open the
symbol table of the STEP 7-Project and export it in *.seq-format The language set up in SIMULATIONUnit must be the same as the project
language of the STEP 7 Project.

4.6.4. Copy the export files over to the simulation computer

Copy the .cfg file (if desired), .seq file (if desired) and the complete folder ~/Siemens/Step7/S7tmp/SDBData/program/DOWN/rXXsXX (or
~/Siemens/Step7/S7tmp/SDBData/s7hwcnfx/DOWN/rXXsXX) over to the SIMULATIONUnit computer.

4.7. TIA-Portal hardware config export

Data export from TIA-Portal is possible only from TIA version V13.x and higher!

If you use SIMULATIONUnit and TIA-Portal on the same computer, just select "TIA portal import" at the SIMULATIONUnit installation. You will find then
the exported hardware data files ("OMS" files) after compile process by TIA-Portal in the folder "C:\TIAExports". Select button "OMS files" in the hardware
import box and navigate to the folder "C:\TIAExports".

If you use SIMULATIONUnit and TIA-Portal on different computers, please select "TIA portal import" at the SIMULATIONUnit installation also. Under
%SIMULATIONUnit install folder%\TIAImport you will find the setup programm "TIA2SUSetup.exe". Please install that on your TIA portal computer. After
that you can convert the exported "OMS" files with the program "TIA2SUConvert" into an XML file, which you can import into SIMULATIONUnit on your
simulation computer.

4.7.1. Symbols

You can export the symbols (PLC-Tags) from TIA Portal as an Excel file (.xlsx). This can be imported also by SIMULATIONUnit.

Go to PLC tags → Show all tags. Then press the Export button.

4.8. Hardware download, display and diagnostic

After importing the hardware data the SIMULATIONUnit program switches into the hardware edit. You have to complete the configuration f. i. with the IP
address of your SIMULATIONUnit box (look at Addressing the box).

After that you can connect the computer with the box and download the hardware configuration.

4.8.1. Hardware icons

• After connecting successfully to the box icon changes into green colour.

SIMULATIONUnit Manual

25

• If there is another project loaded to the SIMULATION UNIT, the SIMULATION UNIT will be marked orange.

• After downloading the hardware configuration the Profibus devices will be shown as "defect" (red colour).

• when the master has parametrized the devices, they will be shown in green colour.

• In the last case additional will be shown if devices are redundant (two busses) or single (one bus),and if in case of redundancy the device is the active
(green colour) or the reserved one (yellow colour).

Attention:

No check of the slave or module type is done here! Slaves, which are configured in the simulation module but not configured in the
automation system are not recognised. In case of doubt you should download the hardware configuration again!

SIMULATIONUnit Manual

26

4.9. Redundant systems

The simulation of ET200M-H or DP-Y-Link connected to a redundant system is possible. Connect two channels of one SIMBAProfibus box / SIMULATION
UNIT PB box to the two Profibus lines of one redundant master system.

Use the automatic import function to create a redundant simulation system. Refer to chapter Import hardware for the automatic import. It is important to
import both Profibus lines at the same time. The import function will detect any redundant slave. The special card typical for redundancy will be generated
automatically. They will be added to the sequence control with their necessary parameters by SIMULATIONUnit software.

Attention:

When configuring an H-system for 4- or 8- channel Profibus boxes it is necessary to configure the system always for an "even" channel
(0,2,4,6) and the next channel.

Simulation of two "half" H-machines on 2 consecutive channels is not possible!

4.9.1. Handling and data transfer of the H-system

INput and OUTput module exist twice in SIMULATIONUnit for a redundant system. Important for handling, monitoring, functionality of sequence control
or use of programming interface: only even channel of the SIMBAProfibus box / SIMULATION UNIT PB box is relevant for use! SIMULATIONUnit
software takes care to get always the process values from the active channel of the H-system. Inputs will be generated automatically for both channels.
The display of the active/standby channel is indicated by different colours for the slave icons in "Hardware view". (see also Hardware icons).

4.10. Failsafe

With the SIMBAProfibus box / SIMULATION UNIT PB box you can also simulate Failsafe functionality. It is possible to simulate Failsafe on a single
channel as in combination with redundancy ("FH" systems).

4.10.1. Configuration of Failsafe components

The import function will detect any Failsafe component. The special card typical for "FailSafeBlock" will be generated automatically. They will be added to
the sequence control with their necessary parameters by SIMULATIONUnit software.

SIMULATIONUnit Manual

27

In a digital failsafe module you can find additional to the data bits an enable bit for switching the channel on or off.

4.10.2. Load and start SIMBAProfibus box / SIMULATION UNIT PB box Failsafe functionality

After the download of the hardware configuration with Failsafe components it might be necessary to restart the Profibus master. Some masters only send
failsafe parametrizations during startup.

4.11. Foundation-Fieldbus systems

SIMBAProfibus boxes are able to simulate FF systems behind a DP-FF link. The hardware configuration will be imported as described under Redundant
systems / Failsafe components. After this step the data exchange of the complete FF system can be simulated.

4.11.1. Data import from PDM

For more diagnostics and functionality of the FF system it is necessary to import more informations from PDM.

At first you have to export the HW-Config configuration.

After that export the PDM configuration into the same folder. It’s usable to delete older PDM export files by hand because PDM doesn’t do that.

Please select at PDM export box on the lower left side "Object with all subordinate objects and networks".

SIMULATIONUnit Manual

28

And last but not least make an hardware import in SIMULATIONUnit together with the cfg-file(See also Import hardware).

4.11.2. Download into the SIMBAProfibus box / SIMULATION UNIT PB box and start of the FF-functions

After the download of the hardware configuration into the box please select the button image::index-Dateien\image015.jpg[align=center] "Start module
function" to activate the FF functions in the box.

Attention:

This time it’s not possible to simulate full functionality of FF systems in SIMBAProfibus! It’s possible that you get error messages when using
FF functions in your plc because SIMBAProfibus will generate negative FF system responses in case of missing data or functions.

4.12. Limitations in simulating Profibus components

The SIMBAProfibus boxes / SIMULATION UNIT PB boxes support connections for MSAC2 services only in a very basic way. That can
cause error messages from driver blocks that try to read diagnostic informations of underlaid devices or modules via MSAC2 services. The
simulation of the IO data of these devices or modules is full warranted.

During the download of a hardware configuration into a SIMBAProfibus box, networks in this box with a speed above 1,5 MBd will be
disconnected for a short time. This is necessary for configuration performance and will cause a short bus failure in that networks.

SIMULATIONUnit Manual

29

5. Simulation of Profinet

5.1. Introduction to the Simulation of PROFINET

Profinet components are simulated with SIMBA / SIMULATION UNIT PN modules connected to a real PROFINET IO controller. Data between a
SIMBApnio / SIMULATION UNIT PN module and a PC is transmitted via a TCP/IP connection. The hardware can be configured to simulate a limited
number of PROFINET IO devices (128 or 256 devices).

The simulation module SIMBApnio / SIMULATION UNIT PN is not available as a simulation block in the hardware configuration of the SIMATIC S7 project
and therefore not inserted in HWConfig.

SIMBApnio / SIMULATION UNIT PN is not inserted as a PROFINET participant. Instead, after the hardware engineering in S7/PCS7/TIA, the actual
Profinet structure of S7/PCS7/TIA project is imported into the SIMULATIONUnit software.

5.1.1. Features and restrictions

The following features are supported by SIMBApnio / SIMULATION UNIT PN:

Feature SIMBA PNIO standard SIMBA PNIO premium SIMULATION UNIT PN
128

SIMULATION UNIT PN
256

Order Nr. 9AE4120-1AA00 9AE4120-1AB00 9AE4120-2AA00 9AE4120-2AB00

Max number devices 128 256 128 256

Profinet interfaces 1 1 1 2 z)

I/O Data manipulation

Minimum cycletime 250 µs 250 µs 250 µs 250 µs

Records

Device and module failure

Bus failure

Channel diagnostic

IRT class 2

IRT class 3

Profisafe V1.0 (PN/PN
Coupler)

Profisafe V2.4

Profisafe V2.6

Fast Startup

Advanced startup (CPU
1200/1500)

Multidevices (IE/PB-Link) restricted 2) restricted 2) restricted 2) restricted 2)

I&M Data

SIMULATIONUnit Manual

30

Feature SIMBA PNIO standard SIMBA PNIO premium SIMULATION UNIT PN
128

SIMULATION UNIT PN
256

Shared device 1) 1) 1) *)

Redundancy MRP 3)

System redundancy S2

System redundancy R1 *)

System redundancy R2

Save project in flash

Save project to USB/SD

integrated switch

extended diagnostics via
SNMP

Dynamic Frame Packaging

Failsafe values at CPU
Stop

*) *)

High-precision time
stamping

*) Feature will be available in the future. The SIMULATION UNIT PN can be upgraded by firmware update.

1) Projects with shared devices can be loaded into the SimbaPNIO / SIMULATION UNIT PN, but only one PNIO controller can access the simulated
devices.

2) Some devices support the ISO protocol for exchange of configuration and diagnosis data (e.g. IE/PB Link). The ISO protocol is not supported by
SimbaPNIO / SIMULATION UNIT PN, but the PNIO part of the device will work. Simulation of IE/PB Link with S7-300 CPU doesn’t work.

3) MRP configurations are supported, but the ring cannot be closed with SIMULATION UNIT PN 128.

z) You can not simulate two separate PNIO networks. You can simulate one network with 2 interfaces to 2 PNIO controllers.

5.2. SIMULATION UNIT PN

5.2.1. Connectors

Power supply L+ : DC +24V, min 0,5A M : Ground

Ethernet ports network P1 and P2

For communication between the communication processor (CP module) of the PLC and the SIMULATION UNIT PN box (directly or via a switch).

The SIMULATION UNIT PN 128 can be connected with the upper port P1 only. The SIMULATION UNIT PN 256 can use both ports P1 and P2. P2 only
works if a cable is plugged to P1.

Control port

SIMULATIONUnit Manual

31

Ctrl: To load the project into the SIMULATION UNIT PN and to exchange simulation data with SIMULATIONUnit.

The TCP/IP port can be connected directly to your simulation computer or indirectly via one or more switches. The baud rate (100MBit/s or 1GBit/s) and
cable polarity will be set automatically, normal or cross over cables can be used.

 USB Host

The hardware contains one USB host port. Mass storage devices can be connected here.

The standards USB 1.1 und USB 2.0 are supported.

The USB interface provides a power supply for connected devices with max. 500mA.

 Micro SD card

At the back side of the housing there is a metal cover which can be removed. There is a micro SD card slot behind the cover.

The standards SD and SDHC are supported with a maximum capacity of 32 GB.

Digital I/O

The hardware has one connector which can be used as a digital input or a digital output.

DI/DO: digital input or output SGND: signal ground.

Input:

log. 0: no input signal or 0V
log. 1: 12 - 48V, 5 - 100mA

Output:

The output can drive 100mA maximum.

log. 0: internal 4k7 resistor to ground
log. 1: output pulled to ground by photo transistor

Button

There is a reset button below the USB port.

Function:

After a reset, the box is reset and switches to startup mode. While the startup LED is flashing, the box cannot be accessed. A reset is necessary in case
of new parametrization/firmware update of the module or in case of unexpected behaviour of the module. After a reset all debug and log informations are
lost. If possible and necessary, the user should back up those informations before resetting the module.

5.2.2. Installation and heat

The SIMULATION UNIT PN can be placed on a table or snapped to a cap rail with the clamp on the back side. The case is also used for chipset cooling.
Please make sure that the heat can be emitted to the surrounding air. The environment temperature should not exceed 70°C.

5.2.3. Description of the LEDs

Power (PWR) Lights up green when the power supply is connected.

Ready (RDY) Flashes green during startup, when the power is restored or after a reset,
and lights up green when the module is ready.

 orange blinking, if a simulation project is loaded in the module.

 Lights orange, if the cyclic communication between one simulated device
and the profinet I/O Controller is activated.

SIMULATIONUnit Manual

32

Control (CTRL) Lights up green if a link to the network has been established. Flashes
orange at data exchange.

LEDs for Ethernet ports P1, P2 Lights up green if a 100MBit/s link at the network has been detected.

 Flashes green if a 1GBit/s link has been detected. Flashes

 orange when data is received.

5.3. SIMBA PNIO

5.3.1. Connectors

For simulation, the following connectors have to be connected:

Control Port 1 to load the project into the SIMBApnio and to exchange simulation data with SIMULATIONUnit.

Realtime Ethernet 1 for the communication between the communication processor (CP-module) of the PNIO module (direct or indirect via a switch).

Power supply

The power can be supplied at PS1 or PS2.

PS1 Connector for a standard power supply (9 - 36V, min. 1,5A).

PS2 two wire connector, for instance for a 24 V power supply "PS307" from
Siemens.

Realtime ethernet line

The box comes with 4 Real Time Ethernet ports.

RT Ethernet 1 RT Ethernet 1: This port has to be connected. It simulates a complete
Profinet I/O bus or part of it. It can be directly connected to a Profinet I/O
controller (for example CP443-1) or indirectly over one or many switches
(for example Scalance X208). In case a switch is used, you have to pay
attention on the fact that the used port can work with 100 Mbit/s. The
polarity of the ethernet cable will be automatically recognised, i.e. normal
or cross cable can be used.

RT Ethernet 2 deactivated.

RT Ethernet 3 deactivated.

RT Ethernet 4 deactivated.

Control Port (TCP/IP)

The box comes with 2 Control Ports (TCP/IP).

Control Port 1 This port has to be connected. It is used to control the SIMBA-PNIO. A
PC with SIMULATIONUnit software is used for this.

SIMULATIONUnit Manual

33

Control Port 2 unused.

The port could be directly connected to the PC or indirectly over one or many switches. The polarity and the speed of the ethernet cable will be
automatically recognised, i.e. normal or cross cable can be used.

Digital I/O

The box has 8 digital inputs and 8 digital outputs. These are electrically isolated from the rest of the box using optocouplers.

Inputs

Input voltage < 2,7 V : logical "0"
Input voltage 3 - 48 V : logical "1"

Outputs

8 open-collector outputs are provided:

Max. operational voltage: 40 V, 1 A

logical "0": Voltage at pin 10 is present at the output pin via a 10k resistor.

logical "1": The output pin is switched through to ground (at pin 5).

Socket assignment on the left of the enclosure

Inactive connectors

This module was not only developed for Simba. It contains other connectors which are not used here:

Serial 1 This port is only used for the development and should not be used
otherwise.

SIMULATIONUnit Manual

34

Serial 2 deactivated.

USB The module comes with 2 USB host connectors. They are not active.

5.3.2. Installation and heat

The SimbaPNIO box can be placed on a table or snapped to a cap rail with the clamp on the back side. The housing is also used for chipset cooling.
During normal operation, the module can warm up to more than 40°C. This has no negative effect on functionality. Please make sure that the heat can be
emitted to the surrounding air. The environment temperature should not exceed 40°C.

5.3.3. LED description

LEDs on the top

Power orange light, if the power supply is on.

Ready green blinking while booting after power on or reset.

 green light, when system is operational.

Simulation Port 1 green blinking, if a simulation project is loaded in the module.

 lights green, if the cyclic communication between one simulated device
and the profinet I/O Controller is activated.

Simulation Port 2 always off.

Simulation Port 3 always off.

Simulation Port 4 always off.

LEDs near the Ethernet ports

Green LED lights, if a physical link is present.

Yellow LED blinks at data exchange.

5.3.4. Reset

The box comes with one Reset button. After Reset the box switches into startup mode. While StartUP LED is blinking, the module can’t be accessed by
the web overview and by SIMULATIONUnit. A reset is necessary in case of new parametrization/firmware update of the module or in case of unexpected
behaviour of the module. After a reset all debug and log informations are lost. If possible and necessary, the user should back up those informations
before resetting the module.

5.4. Configuration

5.4.1. Accessibility

To access the module via web interface, the Control port has to be linked with a PC (see: hardware connections SIMBApnio/hardware connections
SIMULATION UNIT PN and connection examples).

The startup phase has to be finished, i.e. Power and Ready LEDs are lighting. An access by the web interface is also possible during simulation.

First of all, an IP address has to be parametrized for the module. This address will be then used each time to access the module.

Attention!

The subnet of the IP address must be another one as the one of the IP addresses of the simulated devices!

Example:

IP address of the simulation PC 140.80.123.1 Subnet mask: 255.255.0.0

IP address of SIMBApnio/SIMULATION UNIT
PN

140.80.123.110 Subnet mask: 255.255.0.0

IP address of simulated Devices 140.90.x.y Subnet mask: 255.255.0.0

SIMULATIONUnit Manual

35

5.4.1.1. Setup the IP address with SIMULATIONUnit

Scan the network in portal view with Scan network or in Hardware edit in the project view.

If no box can be found please check if the firewall of the simulation PC is
 deactivated.

Select a box out of the list. The box can be identified by clicking the button "Blink". The LEDs on the box blink until you press button "Stop". Here you can
configure IP address, Subnet mask, if necessary Default gateway and the name of the box. With the button "Save changes" these informations will be
saved in the box.

5.4.2. Web interface

With the web interface, the operator can: - verify the hardware and firmware versions of the module - watch Log files

Start a webbrowser (for example Internet Explorer) and give the IP-Address of your SIMBApnio/SIMULATION UNIT PN module:

It opens the home window.

5.5. Network connection

The best solution is to separate the Profinet network from the control network.

SIMULATIONUnit and Engineering station can be on the same PC or on different PCs.

You can also connect all networks with a switch.
This solution works, but is not the best one. The external network may disturb the Profinet I/O communication and slow down the SIMULATION
UNIT Box - SIMULATIONUnit-PC communication.

The IP address of the SIMBApnio/SIMULATION UNIT and the IP addresses of the simulated devices must be in different subnets !

see also Simulation of the Topology

5.5.1. Network connection with redundant systems

If you have a redundant machine, connect one PLC to SIMULATION UNIT PN 256 Port P1 and the other PLC to port P2. The SIMULATION UNIT PN 128
has only one active simulation port. It cannot be used for redundancy simulation.

Connecting two ports of a single CPU to the ports P1 and P2 of a SIMULATION UNIT PN 256 creates a ring.

You have to set up a MRP configuration in Step 7 / TIA Portal to use this configuration.
ATTENTION: Do not connect both ports P1 and P2 of a SIMULATION UNIT to a single CPU without a MRP ring configuration going through the
SIMULATION UNIT. This will generate a loop and lead to very high network load.

see also Simulation of Redundancy

5.5.2. Network connection with multiple SIMULATION UNITs and real Profinet devices

Real Profinet devices can also be connected to the Profinet network. They must be deleted from the SIMULATIONUnit project.

• Multiple SIMULATION UNITs can be connected to one SIMULATION PC by using a network switch.

SIMULATIONUnit Manual

36

• The SIMULATION UNIT PN 256 has two ports (P1 and P2) which can be used to cascade SIMULATION UNITs or to connect real devices before or
behind the SU.

• The SIMULATION UNIT PN 128 has only one active simulation port (P1) and must be connected to the end of a line topology.

5.6. Creating a new project

Menu "File" → select "create project" or Button in the portal view.

First create an empty project. Choose a folder on your Windows system and a name for the new project. SIMULATIONUnit will create a new folder
with .spf ending for the simulation project.

5.6.1. Hardware configuration

The hardware configuration can be done manually with the integrated configuration tool "Configure Hardware" or automatically with the import function
(Import hardware).

5.6.1.1. Manual configuration

Menu "Configuration" → "Edit hardware"

When configuring SIMULATIONUnit via hardware edit the hardware components have to be inserted from a library by "drag and drop". SIMULATIONUnit
checks here only the logical consistency of the configuration (for example: device number and IP address).

Attention:

SIMULATIONUnit does not check the consistency of the logical addresses. That means that in case of using logic addresses in a double way
inconsistencies or unrecognized signal changes may occur during simulation!

To configure packed address (for ET200S):

configure first module as normal

select further modules with * attribute in HW lib.

PNIO Records

In "Hardware edit" it is also possible to define records for PNIO modules and fill them with default data.

To add a new record, click with the right mouse button on a PNIO module or a subslot and select Add dataset from the context menu:

When one record is added you have to select and configure it in the properties window.

5.6.1.2. Import hardware

You can import hardware configurations from Step 7, TIA Portal or other SIMULATIONUnit projects.

SIMULATIONUnit Manual

37

Menu "Configuration" → "Import hardware".

A hardware configuration can be imported from a Step 7 project, an OMS file from TIA-Portal, or a XML file exported from other SIMULATIONUnit
projects.

Getting the hardware data from S7 or TIA-Portal is the same as in Profibus projects. Please look at
STEP7 Hardware config export
TIA-Portal hardware config export

For getting hardware data from other SIMULATIONUnit Projects you need one or more Project.xml files out of the .spf project folders.

For a correct import of packed addresses (f. i. ET200S) it is necessary to import the .cfg file together with the .dat file!

For a correct import of shared devices into two SIMULATION UNIT boxes it is also necessary to import the .cfg file of both lines together
with the corresponding .dat files!

It is also possible to import symbol files when the hardware was configured by manual configuration.

Avoiding MAC address conflicts

If you use more than one SIMULATION UNITs in the network and load them from different computers, it is important to avoid conflicts by
using unique MAC addresses. You can set up the band of MAC addresses used by your SIMULATION UNIT before you import the hardware
with the dialog "Settings → MAC Addresses for simulated PNIO devices".

5.6.2. Import new devices to the SIMULATIONUnit hardware library

You can import a device description file into SIMULATIONUnit. Under "Portal view" → "System" you can insert devices from GSDML***.xml files into your
installed device database. The new devices are available if you create a new project or (re)import SDBs.

5.7. Hardware download and diagnostics

After a successful import of a hardware configuration every PNIO line have to be connected to a physical SIMULATION UNIT box. Please select the
SIMULATION UNIT box in hardware edit. On the right side of the window you can edit the properties of the box as f. i. the IP address. You can also find
out the IP address by scanning the network (see also addressing the box). After that you can connect the box and download the configuration.

5.7.1. Icons

• After connect you will see the SIMULATION UNIT box switching to green in hardware tree.

SIMULATIONUnit Manual

38

• If there is another project loaded to the SIMULATION UNIT, the SIMULATION UNIT will be marked orange.

• After a successful download of the configuration the devices are shown as "loaded" (light blue).

SIMULATIONUnit Manual

39

• If the communication between master and devices is established, devices switch to green color.

• In the last case you will see additionally the failsafe state of modules (yellow)

Attention:

No check of the device or module type is done here! Devices, which are configured in the simulation module but not configured in the
automation system are not recognised.
Delete real devices from the project.

5.8. Simulation of the Topology

When simulating IRT the topology of the network is important.

SIMULATIONUnit-PNIO simulates the behaviour of a Profinet network at a single point in the network:

This is one port of the first simulated device.

When creating a simulation project, the number of the first device and its port number that is connected to the outer world must be provided. In the
example above device 1 / port 2 has to be configured.

The exact timing of all Profinet nodes is supplied by the PNIO controller during startup. SIMULATION UNIT PN set up the timing parameters for all
simulated devices according to the parametrisation that is sent to the first device.

SIMULATIONUnit Manual

40

That means:

• The topology of all devices behind the first device does not matter when you are creating a simulation project.

• SIMULATION UNIT PN can switch on the devices behind the first device only when the first device has got its parametrisation.

• If you simulate a device failure of the first device, the whole bus will fail.

5.9. Simulation of IRT Devices

The simulation of Profinet IRT (Isochronous Real Time) devices is possible.

You have to set up a correct topology to get IRT running.

5.10. Simulation of Failsafe Modules (Profisafe V2)

SIMULATION UNIT PN supports simulation of the Profisafe V2 protocol.

When a hardware configuration with failsafe modules has been imported, a function block "PROFIsafe" appears in the project overview tree.

This function block contains an instance of every F-module in the project. When Downloading the project the functions are loaded to the SIMULATION
UNIT PN and activated.

Digital Failsafe modules contain additional to the data bits an "Enable" bit for each channel. To prevent the Simulation from channel errors these bits have
to set to "1" by default.

In hardware view you can see also as the last channels of every module some state bits. They deliver the information to the state of the Failsafe
communication.

Meaning of the most important status bits:

activate_FV Activate Failsafe Values Request from PNIO controller. IOs are invalid.

Device_Fault Failure in the simulated device.

CE_CRC Error in F-checksum

WD_Timeout Watchdog Timeout: The PNIO Controller has not activated Profisafe.

FV_activated The F-Module deactivated the IOs. (WD_Timeout may be the cause).

When the failsafe mode is active, all bits are zero.

If an F module does not work, you may try to increase the parameter F_WD_Time in the STEP7 hardware configuration for the F module.

SIMULATIONUnit Manual

41

5.11. Simulation of Redundancy

There are different types of redundancy at Profinet:

5.11.1. MRP ring redundancy

A ring topology is set up. There is a MRP master who opens the ring if it is closed.

SIMULATION UNIT PN supports the simulation of MRP clients.
The ring cannot be closed with the one channel SIMULATION UNIT PN 128.
With a SIMULATION UNIT PN 256, a complete ring can be simulated by using both ports P1 and P2. The ring can not be opened by software.

5.11.2. System redundancy S2

Every redundant PNIO device can establish two connections, one to each PNIO controller of a H machine.

The SIMULATION UNIT PN 256 supports the simulation of system redundancy S2. One PNIO controller has to be connected to simulation port P1 and
the other one to port P2. A mix with non-redundant devices is possible.

In the hardware view you will see a redundant device symbol with an active and a passive side. At the left side there is the connection to port P1, right
side is P2. Green is active, black is passive.

You can simulate a redundancy switch by simulating a device failure at port P1 or P2. Click with the right mouse button onto a device in the hardware
view and select device failure at port P1/P2.

5.11.3. System redundancy R1 and R2

The PNIO devices have two heads which can establish connections to two PNIO controllers independently.

This kind of redundancy is currently not supported.

5.12. Fast startup

Some PNIO devices use the feature "Fast Startup", activated from the PNIO controller, for running a parametrized device faster after Power On. One
simulated device has to be parametrized from the PNIO controller on the normal way. After that you can simulate fast startup via "Device failure" and
"Device return" or "Line failure" and "Line return".

SIMULATIONUnit Manual

42

6. Manipulation of the simulated devices

6.1. I/O-Values

I/O-values in SIMULATIONUnit can be controlled and monitored at the hardware view, the I/O view, at the function block instance view in the runtime
system or at self configured worksheets.
The same IO value is consistent in all views at the same time. In the GUI, you will not see every change of the I/Os, depending on the selected cycle time.

6.1.1. I/O-names

The names of the I/O-values in SIMULATIONUnit contain the simulation hardware index and the address name as in a STEP 7-Project. They have
following format:

S<hardware index><I/O type><log. address>

For example:

S001QW512 - SIMULATION UNIT Hardware Nr. 001, Output from AS view, word, logical address 512
S000I17.2 - SIMULATION UNIT Hardware Nr. 000, Input from AS view, logical address 17, Bit Nr. 2

6.1.1.1. Symbolic addresses

Symbolic addresses can be also imported, edited and shown in SIMULATIONUnit (see IO view, second column).

6.1.2. Analog values

Analog values can be configured depending on the simulated hardware or as a technological value in SIMULATIONUnit. Physical units are predefined
in the system. The unit of the value is the same in the hardware view, the I/O view, the function block instance view of the runtime system or in the
worksheets.

To change the unit please select the channel and open a context menu by right mouse click.

The menu shown shows the unit definitions for the most used sensors and actors. Additional you can show the "raw value" as a decimal or hexadecimal
value.

If you have selected an analog value in the hardware tree, you will see also a menu item "Use unit as default for the module" to set all analog units of the
selected module to the same unit.

6.2. Alarm generation and triggering

6.2.1. For Profibus

In SIMULATIONUnit for every slave the different alarms can be edited in a type related XML file and then triggered by context menu or by runtime system.

SIMULATIONUnit Manual

43

6.2.1.1. Device fault

Open the hardware view. With a right click on an element of the hardware tree you will get a context menu of possible actions. F. I. you can simulate a line
fault on a SIMULATION UNIT box or a device fault on a device.

Additionally it is possible to simulate device faults by runtime system. For that you can use the basic function "SlaveAusfall".

The two inputs of this block are to configure with the slave/device number (Slv) and a control bit (Control). F. I. you can configure the slave number 5 as
following:

• Slv = 5 (Profibus address) + (nummer of the line in SIMULATIONUnit project x 65536)

• Control = 1 : slave will be simulated

• Control = 0 : slave fault

6.2.1.2. Profibus alarm description in the XML file

The alarm file for a slave type is located in the folder "<SIMULATIONUnit program folder>\ALM". The filename will be composed from the Profibus id of
the slave:

f. I.: ET200M type (hexadecimal): 0x801D -> filename: "Diag801D.xml".
In a SIMULATIONUnit project folder you can find the Profibus Id in the file
 project.xml under the XML key "TYPE" of every slave tag.

The alarm file has the following syntax:

 <Diagnose>

 <ALARM>

 <NAME>Modul Ausfall</NAME>

 <INDEX>0</INDEX>

 <LEVEL>1</LEVEL>

 <DATA>$DExt,43,$SlotBit,09,03,$Slot,10,$DS0 </DATA>

 <ACTIVE>2</ACTIVE>

 </ALARM>

 <ALARM>

 ...

 </ALARM>

 </Diagnose>

For every alarm a data block has to be created .

Meaning of the keys for a Profibus simulation:

NAME Alarm text in context menu.

SIMULATIONUnit Manual

44

INDEX Identifier of the alarm within the file. All identifiers in a file have to be
unique.

LEVEL Level in the hardware tree. If level is "0", the alarm is shown in the context
menu of the slaves that shall trigger the alarm. Level "1" identifies a
module dependent alarm.

DATA Diagnostic data beginning from byte 7 in slave diagnostics. The
standard diagnostic bytes of a slave cannot be changed. Data format is
hexadecimal format divided by comma. Inside of a data string you can
use some extra keys for dynamic data. These always start with a "$" sign.
This time there are supported the following extra keys: - $DExt: initiates
the setting of the "Ext_Diag-Bit" in standard diagnostics of the slave. This
bit advertises an extended diagnostic information for the master. If used
this key has to be the first entry in the data string. - $DS0: initiates the
module identification (like data block 0) for the module. It is active only on
levels > 0. - $Slot: slot index or module index - $SlotBit: reserves 2 bytes
in the slave diagnostic information. For the actual slot a bit will be set in
this bytes.

FUNCTION Please don’t change! Instead of the "DATA" key you can use the
"FUNCTION" key to generate the data by an integrated C function
dynamically. The C function name has to be implemented in
SIMULATIONUnit.

ACTIVE rules the shown state of the object after triggering the alarm. Valid values:
0 - inactive 1 - active 2 - fault

In the example above the Ext_Diag_Bit will be set. The identifier dependent diagnostics starts with a 0x43 and then a bit follows to identify the slot (f.i for
slot 4 the slot field is "08, 00"). "09" is the length of the alarm part, "03" the alarm type (this: pull/plug), followed by the number of the slot (f.i. "04"), "10" is
the number of the alarm sequence and $DS0 triggers 5 byte of record 0 for the actual slot (depends on the module).

6.2.1.3. Triggering the alarm by menu

In the same way as the device fault the alarm can be triggered by context menu of a module in the hardware tree of SIMULATIONUnit.

6.2.1.4. Triggering the alarm by runtime system

For an event triggered alarm you have to create a runtime function block and include the integrated basic function "SlaveAlarm".

The basic function "SlaveAlarm" triggers alarms. For that you need 4 parameters: an I/O address of the object, which should trigger the alarm, a control
bit, and two constants representing the alarms triggered at the changes of the control bit. These constants represent the value of the "INDEX" key for the
alarm in the XML file.

6.2.2. For ProfinetIO

In SIMULATIONUnit for every device the different alarms can be edited in a type related XML file and then triggered by context menu or by runtime
system.

6.2.2.1. Device fault

Open the hardware view. With a right click on an element of the hardware tree you get a context menu.

In that you will find different entries for simulation of device faults depending on the device type (f.i. for Profinet: device fault and device return).

Additional you can simulate a fault of the whole line. For that you make a right click on the SIMULATIONUnit module and click on "Line fault".

It is also possible to simulate device faults by runtime system. For that you have to use the basic function "SlaveAusfall".

Entries of the function are device number (Slv) and control bit (Control):

• Slv = Profinet address of the device + (number of the line the SIMULATIONUnit project x 65536)

• Control = 1 : device simulating

• Control = 0 : device fault

6.2.2.2. Description of a ProfinetIO alarm in the XML file

The alarm file for a Profinet device is located in folder "<SIMULATIONUnit-Program folder>\ALM\PNIODEV". The filename is built from the VendorID and
the DeviceID of the device:

SIMULATIONUnit Manual

45

f. i.: ET200S type (hexadecimal): VendorID=0x002a, DeviceID=0x0301 -> file name:
 "Diag002a0301.xml"

In a SIMULATIONUnit project the VendorID or DeviceID can be found in the
 "project.xml" under the XML key "TYPE".

The alarm file looks like this:

 <Diagnose>

 <MENU>

 <INDEX>0</INDEX>

 <NAME>short circuit</NAME>

 <SUBTYPE>CHANNEL</SUBTYPE>

 <FUNCTION>PNIOALARM </FUNCTION>

 <ACTIVE>2</ACTIVE>

 <ERRTYPE>1</ERRTYPE>

 </MENU>

 <MENU>

 ...

 </MENU>

 </Diagnose>

For every alarm there has to be a data record.

Meaning of the keys:

NAME Description of the alarm in the context menu.

INDEX Identifies the alarm in the file. All identifiers have to be unique in the .xml
file.

FUNCTION Please don’t change! Instead of the "DATA" key you can use the
"FUNCTION" key to generate the data by an integrated C function
dynamically. The C function name has to be implemented in
SIMULATIONUnit.

ACTIVE set the display state for the object after triggering the Alarm. Valid values
are: 0 - inactive 1 - active 2 - fault

ERRTYPE predefined ProfinetIO Errorcode

SIMULATIONUnit Manual

46

6.2.2.3. Triggering alarms by menu

The alarm can be triggered by context menu of device, slot or channel in hardware tree of SIMULATIONUnit.

6.2.2.4. Triggering alarms by runtime system

For triggering alarms by event you have to create a new function block in function edit. They use the integrated basic functions for Profinet:
"PNIO_Module_Alarm" and "PNIO_Channel_Diag".

The basic function "PNIO_Module_Alarm" triggers a module dependent alarm.

It has to be configured by 4 parameters:

• line number

• device number

• slot number

• control bit triggering the alarm (Control= 1 → all OK, Control = 0 → Module fault)

The basic function "PNIO_Channel_Diag" triggers a channel dependent alarm.

It has to be configured by 3 parameters:

• an I/O address of the object which should trigger the alarm

• the alarm index (see xml file)

• the control bit triggering the alarm.

6.3. Profisafe V1 (F_SND_DP, F_RECV_DP)

This chapter contains the description of the simulation of a fail safe master-master communication (Profisafe V1) with SIMULATIONUnit. For that in
SIMULATIONUnit will be simulated the opposite part of a real in plc integrated F_SENDDP/F_RCVDP- function block. The SIMULATION UNIT Profibus or
Profinet simulates the configured DP/DP-coupler or PN/PN-coupler with the universal modules, the F-communication will be simulated in the user data of
the modules.

6.3.1. Import of a configuration with Profisafe

The hardware import in SIMULATIONUnit is the same as in a standard project. In HW-Config of the S7-Project is to configure a correct length of the
universal modules for the F communication interface in the coupler.

+----------+ ----12 Bytes----> +----------+
| F_SENDDP | | F_RECVDP |
+----------+ <----6 Bytes----- +----------+

When a wrong length is configured (f.i. bigger amount of bytes), SIMULATIONUnit configures the module as a standard I/O module.

In SIMULATIONUnit a function PROFIsafe_V1 will be created automatically. Every F_SENDDP/F_RCVDP function block in the real CPU has in
SIMULATIONUnit an opposite part.

6.3.2. Necessary parameters in the SIMULATIONUnit function instances

Fo a correct connection you have to configure two parameters in the function block:

DP_DP_ID System unique connection ID. This parameter has to be identical to the same parameter of the partner block in the plc.

CRC_enable To enable the CRC creation in the SIMULATION Unit this parameter has to be configured with the value 80h.

SIMULATIONUnit Manual

47

6.3.3. Simulation F_RCVDP

For simulation of a F_RCVDP you have to configure the values DP_DP_ID and CRC_enable only.

6.3.4. Simulation F_SENDDP

When simulating the send block F_SENDDP you have to configure the values DP_DP_ID and CRC_enable. If the values are correct before plc starts the
connection will be established after starting the plc. If the plc is running before, the F_RCVDP block has to be reintegrated by his input ACK_REI.

Attention: In case of a broken connection (f.i. cable defect), the plc has to be restarted! In that case the internal telegram counter will not be reset.

6.3.5. Troubleshooting

The output byte "DIAG" of the F_SEND/F_RECV block in Step 7/TIA shows the error state:

DIAG (hex) Meaning

0 ok

10 Timeout - may be parameter TIMEOUT in HW-Config is too less.

40 CRC error - parameter error in SIMULATIONUnit

50 CRC error + Timeout

SIMULATIONUnit Manual

48

7. Runtime system

The integrated Run Time system manages all simulation tasks for all defined functions. The simulation typicals for these functions can be created by
using the basic function library. These typical can be easy duplicated by copy/ paste function. The typicals can be triggered either by I/O or timer status.
Each typical can be assigned to only one run time group.

If you are using the SIMBA PNIO or the SIMULATION UNIT PN hardware,
you can download functions to the hardware and execute them in a
Realtime Run Time System. The cycle time is the Profinet send clock.

How to connect I/Os:

• Create or load typical from the typical library

• Implementation of a new instance

• Start Run Time Sequence

7.1. Insert block type into the project

There are two ways to get a typical.

• By creating new functions using the Global modules, Basic functions and Module functions

• Copying existing functions from a library or another simulation project.

7.1.1. Copy from library or other simulation project

In order to use your newly created typical as a library function, you can put it in the library for using in your other projects.

Menu Simulation → Copy function
or Right click on "Function blocks" → "Copy function".

7.2. Creating a function typical

You can create a function from a set of basic functions.

To create a new function block, double click onto "Function blocks" in the navigation column or select menu Simulation → New function block
To change a present function, click with the right mouse button onto a function in the list of function blocks and select "Edit function"

SIMULATIONUnit Manual

49

Name: Name of your new function. If another function with the same name already exists, it will be overwritten at Save.

Type: The place of execution of the function instances.

Software function Simulation PC

SU PB function Simulation UNIT PB

SU PNIO function Simulation UNIT PN

Some of the basic functions can be executed at different places. See Implemented basic functions for more information.

Usage of basic functions

Select one or more basic functions from the list at the right side and move them into the main window. The selected functions will be executed from top to
bottom.
In this example there are two basic functions Switch and PT_1
Switch has 3 inputs and 1 output,
PT_1 has 2 inputs and 1 output

Global inputs
Global inputs are inputs to the function block. You can connect I/Os, flags and constants to the global inputs.

Create a global input by clicking with the right mouse button onto a line in the table an select "Add global input"
In the column Global input you will see IN0, IN1, IN…
You can select the same global input for more than one input of a basic function from the drop box.
Click into the column "Input" to change the name of the global input.

Global outputs
Global outputs are outputs to the function block. You can connect I/Os or flags to the global outputs.

Create a global output by clicking with the right mouse button onto a line in the table an select "Add global output"

SIMULATIONUnit Manual

50

Click into the column "Global Output" to change the name of the global output.

Constants
You can connect constants to all inputs of the basic functions.

Click with the right mouse button onto an input of a base function and select "Constant as input". In the column Input the value 0 shows up. Click onto
the value and change it to another numerical value.

Connections between base functions
In this example, the output of the basic function Switch is connected to the first input of PT_1.
Click onto the output and pull it with the mouse onto the input.
Note: The basic functions will be executed from top to bottom.

Click Save to finish the function block. It will be displayed in the navigation column.

7.2.1. Implementation of function instances

After double click at the respective typical, all instances of the same typical will be displayed. For each instance following informations are displayed:

creating a new instance:

- After selection of a typical (right mouse button) select the function "new instance".

• Define a new unique name.

• The new instance will be displayed in the tree.

• All I/Os of the typical must be defined with a flag(e.g. S000MW2000) or a logical address(e.g. S000I7.0). A constant can be assigned to an input.

You can enter an I/O address or constant manually or click onto an I/O from the hardware view or I/O view and pull it with the mouse onto a function
instance I/O.

The instance will be saved if all I/Os have a correct value assigned.

(de)activate an instance

 / activate / deactivate instance. Deactivatd instances will be ignored by the run time system.

check an instance

 / The user can set a checked mark to an instance. This does not affect the simulation.

rename an instance Click with the right mouse button onto an instanvce name and select "rename instance"
Enter an arbitrary instance name.

7.2.2. Import and export of Instances

Function instances can be exported to and imported from a .csv file, which is editable with Excel.

Click with the right mouse button into a function instance window and select from the menu: "Export instances" or "Import instances"

The .csv file has 5 columns:

1. function name

SIMULATIONUnit Manual

51

2. instance name

3. I/O address

4. parameter number

5. I/O type:

• 1 = input (from AS point of view)

• 2 = output

• 3 = flag at input

• 4 = flag at output

• 5 = constant

The csv file for the example above contains these entries:

function name; instance name; log. address; parameter number; I/O type;

Motor; Motor_0; S000A0.0; 0; 2;

Motor; Motor_0; S000AW256; 1; 2;

Motor; Motor_0; S000E0.0; 0; 1;

Motor; Motor_0; S000EW256; 1; 1;

Motor; Motor_1; S000A0.1; 0; 2;

Motor; Motor_1; 1000; 1; 5;

Motor; Motor_1; S000E0.1; 0; 1;

Motor; Motor_1; S000EW258; 1; 1;

7.3. Start / Stop of the runtime system

If the runtime system is started ("System = activated" is on) all instances of the typical will be activated.

If the option "System = deactivated" is on, the runtime system won’t execute the instance.

The runtime system requires a successful connection with the SIMULATION UNIT module.

 Menu "Simulation" "stop runtime system"

 Menu "Simulation" "start runtime system"

If the runtime system is stopped all instances of the typical will be deactivated.

7.4. Activating of a typical in a SIMULATION UNIT box

Instances of a typical which include a reference to the SIMULATION UNIT PB firmware (e.g. redundancy or failsafe) or the SIMULATION UNIT PN will be
executed directly in the simulation hardware. The instances are active after download. If an instance is deactivated, it will not be downloaded.

An icon next to the function name in the navigation column shows the place of execution.

Software function Simulation PC

SU PB function Simulation UNIT PB

SU PNIO function Simulation UNIT PN

The cycle time of the SU PNIO functions is the Profinet cycle.

Most of the runtime system functions that run on a simulation PC can be downloaded to a SIMULATION UNIT PN hardware. All instances of a function
will be downloaded to the SIMULATION UNIT PN if "SU PNIO function" is selected in the function editor.

Functions can be converted from PC software function to SIMULATION UNIT PN hardware function or in the other way if all basic functions exist in both
function types.

See List of supported Implemented basic functions.

SIMULATIONUnit Manual

52

Restrictions:

All inputs, outputs and flags that are connected to function inputs/outputs must belong to the same SIMULATION UNIT PN hardware.
Constants in function inputs are allowed. Flags can be used for controlling inputs, but if a flag is connected to a function output it will only be
used internally and will not be displayed in SIMULATIONUnit.

7.5. Implemented basic functions

Arithmetic:

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

Add Adder X, Y X+Y Add X+Y

Sub Subtractor X, Y X-Y Subtract X-Y

Mul Multiplier X, Y X*Y Multiplier X*Y

Div Divider X, Y X/Y Divider X/Y

Pow Power of X, Y X^Y X power of Y

Comparer:

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

Equal = X, Y X==Y if X == Y:
output = 1, if X !
= Y: output = 0

Gt greater then X, Y X>Y if X > Y: output
= 1, if X # Y:
output = 0

Limit limiter XO, X, XU Y if X > XO: Y =
XO, if X < XU:
Y = XU, else Y
= X

LevelTrigger level trigger
(greater then or
equal)

 IN, Level Trig if IN >= Level:
Trig = 1, else
Trig = 0

Copy/Convert function

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

Bits2Byte Copy 8 Bits to
Byte

 X0, X1, X2, X3,
X4, X5, X6, X7

Y Copy 8 bits to
one byte (X0 =
LSB)

Byte2Bits Copy Byte to 8
Bits

 X Y0, Y1, Y2, Y3,
Y4, Y5, Y6, Y7

Copy one byte
to 8 Bits (Y0 =
LSB)

Bytes2DW Copy 4 Bytes to
Doubleword

 X0, X1, X2, X3 Y copy 4 bytes to
a doubleword
X0 = LSB)

DW2Bytes Copy
Doubleword to
4 Bytes

 X Y0, Y1, Y2, Y3 copy a
doubleword to
4 bytes (Y0 =
LSB)

Connect Copy X Y Copy X to Y

SIMULATIONUnit Manual

53

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

Connect4Two Copy value to 2
outputs

 X Y0, Y1 Copy X to Y0
and Y1

SlaveMirror Slave Mirror Slv Copy all
OUTputs of a
slave with addr.
Slv to its INputs

Digital:

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

And log. AND X, Y X&Y AND bitwise

Neg Inverter X /X If X=0: Y=1,
else Y=0

Or log. OR X, Y XorY OR bitwise

XOR log. exclusive
OR

 X0, X1 Y exclusive OR
bitwise

Counter Counter / Ramp Step, Clk, Clr Y Counter preset
with value
"Period" "Clk"
is trigger for
count to zero
during counter
value is zero,
"Y" get high
pulse, "Period"
will be set to
preset value

Bin2Gray Binary to Gray-
Code converter

 BinCnt GrayCnt Binary counter
BinCnt will be
converted to
Gray Code
GrayCnt

Shift1 1-bit-shift
register

 X, CLK Y With the L-H
flank the actual
value on "Clk"
will be took
over; the stored
value will be
disposed at "Y",
X → Mem0 →
Y

Switch Multiplexer X1, X2, S X1/X2 S=1: X1/X2 =
X1, S=0: X1/X2
= X2

OneOf8 1 of 8
Multiplexer

 X Y1, Y2, Y3, Y4,
Y5, Y6, Y7, Y8

X=1: Y1=1,
others=0 , X=2:
Y2=1, others=0,
X=3: Y3=1,
others=0, …,
X>8 or X<0: all
outputs =0

FlipFlop RS-FlipFlop Set, Reset Q If R=1: Q=0 (S
will be ignored),

SIMULATIONUnit Manual

54

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

if S=1, R=0:
Q=1, if S=0,
R=0: Q keeps
last value

Time functions:

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

PT_1 PT 1 X, TA Y Start value Y =
0, Output get
delayed signal
from Input.
After time TA:
Y will be 63%
from endvalue.

Impuls Impuls Trigger,
Time[ms]

Imp When "Trigger"
= positive
edge(L →
H): "Imp" will
be high for
"Time"[ms]
afterwards
"Imp" = 0

DelaySwitch Delayed switch X, Time[ms] Y When "X" =
positive edge
(L → H): after
"Time[ms]" "Y"
will be set to H
if "X" = 0 : "Y"
= 0

SqareWave Square wave Period[ms] Y generates a
square wave
with period
Period[ms]

Integral Ramp function Step, Clk, Clr Y A L-H flank at
Clk increases Y
by Step, Clr=1:
Y=0

ZigZag Ramp function Clk, Reset,
StepUp,
StepDown, Min,
Max

Y Reset=1:
Y=Min, L→H
flank at Clk:
Add StepUp
to Y, Y>Max:
Y=Max, now
add StepDown
to Y at Clk flank
(StepDown
should be
negative), Y
< Min: Y=Min,
now add
StepUp to Y

ImpulseStep increase/
decrease

 Reset, ImpUp,
ImpDown,
StepUp,
StepDown

Y if Reset=1:
Y=0, if L→H
flank on ImpUp:
Y=Y+StepUp,

SIMULATIONUnit Manual

55

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

if L→H flank on
ImpDown: Y=Y-
StepDown.

SysClk System timer Enable Y When "Enable"
is set to High
system timer
will change
status of "Y"
according to
the adjusted
Cycle time of
SIMULATIONUnit.

ClkDiv Clock divider Clk, Period Y Counter preset
with value
"Period", "Clk"
is trigger for
count to zero
during counter
value is zero,
"Y" get high
pulse, "Period"
will be set to
preset value.

Slave functions:

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

SlaveAddress Profibus
address

 EA Slv returns the
Profibus
address of
the slave that
contains the I/
O EA

SlaveAlarm PROFIBUS
alarm

 EA Control "EA" = IO Start
Address of the
Alarm-Slave,
"Control" Bit
enables an
alarm, L → H
Idx : ALARM
coming, H →
L Idx : ALARM
going

SlaveAusfall Slave failure/
return

 Slv, Control Control = 1:
Slave will be
simulated,
Control = 0:
Slave is dead.

PNIO_Module_AlarmPull/plug PNIO
module

 HWIdx,
DEVIdx,
MODIdx, active

 active 0→1:
plug module,
active 1→0: pull
module.

PNIO_Channel_DiagPNIO channel
diagnostics

 IOAddr,
DiagIdx, active

 IOAddr:
channel
address
(S000I1.2),

SIMULATIONUnit Manual

56

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

DiagIdx: Index
from diagnosis
file, active 0→1:
enable channel
failure, active
1→0: disable
channel failure.

GetSlaveState get slavestate Slv State Slv:
Slaveaddress,
in State these
bits can be
set: - 0 : is not
simulated -
1 : active - 2 :
failure - 4 : in
data exchange
with controller
- 8 : redundant
- 16 : active
redundant
partner

TM_COUNTER Teleperm
counter

 HWid, BG, Ch,
Cnt, Dist

Y

TM_SQRT Teleperm
square root

 X Y

Special functions:

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

GetTimerValue Global-Control-
Operate Time

 Slv, Ena/Res ActTime,
MinTime,
MaxTime,
DsTime

GetCycleInfo Cycle info of
the runtime
system

 Cycle, Time Configured
cycle time[ms],
measured used
cycle time[ms]

NullFunction Dummy, does
nothing

 Value

Firmware functions:

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

F_SLAVE Failsafe
function

 HW_ID, Slv,
Slot4..11

 will be
automatically
created during
hardware
import

H_DIAGNOSE Redundancy
function

 HW_ID, Slv will be
automatically
created during
hardware
import

SIMULATIONUnit Manual

57

Name Description PC function SIMULATION
UNIT PB
function

SIMULATION
UNIT PNIO
function

Inputs Outputs Function /
Comment

MC_FIRMWARE Motion control
function

 used internally
only

WATCHDOG Watchdog used internally
only

PROFIsafe Profisafe V2 A, A_Len,
E_Len,
Record1, E

 will be
automatically
created during
hardware
import

PROFIsafe_V1 Profisafe V1 A, A_Len,
E_Len,
Record1, E

 will be
automatically
created during
hardware
import

sinamicsSim Motor axis
according
to Profidrive
specification

 TelIn TelOut will be
automatically
created during
hardware
import

DigitalIn reads the digital
inputs of the
box

 InByte reads the digital
inputs of a
SimbaPNIO
box

DigitalOut switches the
digital outputs
of the box

 OutByte switches the
digital outputs
of a SU PNIO
box

7.6. Adjust runtime cycle

Setting of basic-time-cycle for the runtime system is available at menu Settings/Options.

7.7. Flags for applications

For use with runtime system SIMULATIONUnit provides 4096 bytes of flags for each installed SIMULATION UNIT module. These flags can be used for
read and write functions.

Attention:

The user is responsible for the data management of these flags.

The addressing of the flags is equal to the I/O addressing (e.g. "S000M0.1", "S000MB10", "S000MW256", "S003MD500" …).

Flag view

For monitoring and control of the flags a special menu is available: "flag view". In this window the flag addressing can be free defined by the user.
Independent of this window the flags are available for the runtime system.

SIMULATIONUnit Manual

58

8. Programming interface of SIMULATIONUnit

8.1. General

The comfortable and user friendly programming interface of SIMULATIONUnit supports you in creating almost any simulation configuration. The
simulation system handles the system hardware functionality.

8.2. Project Functions

The following commands can be used to access SIMULATIONUnit modules from applications other than SIMULATIONUnit. This is the API interface of
SIMBAkern.dll for 32 bit systems and SIMBAkern64.dll for 64 bit systems.

The commands may be executed even if SIMULATIONUnit.EXE has not been started before. If SIMULATIONUnit.exe is supposed to run in the
background while some other application takes over control, then SIMULATIONUnit switches to Listening mode

The operating System is WINDOWS 32- or WINDOWS 64-Bit. Exported functions have the call format PASCAL or cdecl, depending on the requirements
of the application program (example: EXCEL uses the format PASCAL, whereas LabView uses the format cdecl).

Elements in structures will have byte alignment (close-packed).

The terms Input and Output are defined according to CPU notation.

The return codes are hwindexical for all functions (Return codes).

The simbaken.dll exports more functions than those which are mentioned in this documentation. For different reasons, you can only use the functions
described below.

8.2.1. Set Simbakern.dll path

The simbakern.dll must know the path of the SIMULATIONUnit Installation.

int SIMBA2_SetSimbaproPath(char *path)

If path is empty, the current working directory is used.

8.2.2. Load SIMULATIONUnit project

int SIMBA2_OpenProjectFile(char *FileName)

As file name, the complete path of a SIMULATIONUnit project (folder with ending .spf) must be entered. SIMULATIONUnit opens projects in the
background. A project is opened when the project state equals 3. The project state can be checked using SIMBA2_CheckProjectState.

8.2.3. Check project state

int SIMBA2_CheckProjectState(int *state)

state Denomination Meaning

0 EMPTY no project present

1 CLOSED project closed

2 OPEN project opens

3 READY project is opened

6 FAIL project faulty

8.2.4. Close Project

int SIMBA2_CloseProjectFile()

SIMULATIONUnit Manual

59

closes the project. This function is executed when calling SIMBA2_OpenProjectFile(…)

8.3. Online Functions

8.3.1. Establish connection to simulation modules

int SIMBA2_ConnectAll(int hwindex)
int SIMBA2_ConnectAllEx(int hwindex, bool wait)

A connection to all simulation modules in the current project will be established.

hwindex [in] is the index of a SIMULATION UNIT channel. hwindex = "-1" connectes to all SIMULATION UNITs in the project.

SIMBA2_ConnectAll(…) and SIMBA2_ConnectAllEx(with wait = true) are blocking until the connection is established or a timeout occured.

8.3.2. Check connection status

int SIMBA2_IsConnected(int hwindex, int *active)

The connection status can be checked with SIMBA2_IsConnected. Over hwindex, the hardware index is given. active can return following values:

• active = 0: no connection

• active = 1: connected

• active = 2: module deactivated

8.3.3. Disconnect simulation modules

int SIMBA2_DisconnectAll(int hwindex)

All simulation modules in the project will be disconnected. The parameter hwindex must be set to -1.

8.3.4. Load hardware configuration into simulation modules

int SIMBA2_DownloadAll(int hwindex)

The hardware configuration in the current project will be loaded into the simulation module.

hwindex [in] is the index of a SIMULATION UNIT channel. hwindex = -1 downloads to all SIMULATION UNITs in the project.
The function returns immediately. Check the progess of the download action with SIMBA2_GetDownloadState.

8.3.4.1. Download progress

int SIMBA2_GetDownloadStatus(int hwindex, int *percent)

hwindex [in]: index of a SIMULATION UNIT channel. hwindex = -1: all channels
percent [out]: Download-progress as percent value 0-100
return value = -1: module is not connected, 0: percent value is valid

8.3.5. Read Data from I/O image

int SIMBA2_ReadIO(char *name, char *value)
int SIMBA2_ReadIO_Bin(char *name, long *value)
int SIMBA2_ReadIO_Double(char *name, double *value)

SIMULATIONUnit Manual

60

int SIMBA2_ReadIO_Unit(char *name, char *value)

The name consists of the index of the SIMULATIONUnit module and the I/O designation (e.g. S000IW512). The index of the module always starts with
S. The triple-digit number that follows is taken from the hardware view of SIMULATIONUnit. The following I/O names are valid: IDx, IWx, IBx, Ix.y, QDx,
QWx, QBx, Qx.y (according to SIMATIC notation), and IFx, QFx for float values.

SIMBA2_ReadIO_Double converts the value to type double.

SIMBA2_ReadIO_Unit converts the values to the selected unit and adds a unit symbol.

Attention:

When using SIMBA2_ReadIO or SIMBA2_ReadIO_Unit, sufficient buffer space for the resulting string value must be assigned in the
application program! SIMBA2_ReadIO_Bin transfers the required information in un-scaled format to the defined double word.

8.3.6. Write Data into image

int SIMBA2_WriteIO(char *name, char *value)
int SIMBA2_WriteIO_Bin(char *name, long value)
int SIMBA2_WriteIO_Double(char *name, double value)
int SIMBA2_WriteIO_Unit(char *name, char *value)
int SIMBA2_WriteIO_BinMask(char *name, long value, long mask)

For parameter description refer to SIMBA2_ReadIO. Within the function SIMBA2_WriteIO_BinMask, the additional parameter "mask" will be used to select
the several bits (Bit n in mask=1 → Bit n will be processed).

8.3.7. Enable/Disable simulation of a single slave

int SIMBA2_Activate(int hwindex, int slave, int active)

hwindex [in]: index of a SIMULATION UNIT channel
slave [in]: slave or device index
For active use these values:

• 1 - Active

• 2 - Slave is not simulated

8.3.8. Enable/Disable simulation of a module

SIMBA2_ActivateModule(int hwindex, int slave, int module, int active)

The hardware index must be entered for hwindex, slave must be set to the slave number, module to the slot number of the module.

For active use these values:

• 1 - Active

• 2 - Module is not simulated

Attention:

SIMBA2_ActivateModule is not available for Profibus boxes!

SIMULATIONUnit Manual

61

8.3.9. Check hardware state

int SIMBA2_IsActive2(char* indexstring, int *active)

indexstring [in]: Comma separated indexes of the hardware tree
examples for indexstring:
- "1" addresses Simulation hardware Nr 1. - "0,4,3" addresses the 3. module of the 4. slave in SIMBAProfibus 000.

active [out]: 0: not simulated, others: possible combinations below.

The following bits can be read together:

• 1 = activated

• 2 = failure

The following bits can be set in slaves/devices in the first layer:

• 4 = dataexchange present

• 8 = redundant

• 16 = active redundant partner

• 128 = listening mode

8.3.10. Start firmware functions

int SIMBA2_StartCardFunction(void)

int SIMBA2_StartCardFunction2(int hwindex)

hwindex [in]: Index of the simulation hardware, or -1 for all

SIMULATIONUnit recognizes automatically by import if H- or F- devices are present and creates the respective information files. These informations are
transferred to the module during download.

To process these functions in Profibus boxes, the functions have to be activated explicitly after each download.

When using PNIO boxes the function blocks (f.i. Profisafe) will be also loaded to the box during download and started automaticaly.

int SIMBA2_CheckFunctionDownload(int hwindex, int *present, int *active)

hwindex [in]: Index of the simulation hardware, or -1 for all present [out]: number of functions in simulation project active [out]: number of functions
loaded into the box

After start of SIMBA2_StartCardFunction you can check, if all functions are loaded and activated (present = active).

8.3.11. Reading or writing of complete I/O images of slaves

int SIMBA2_ReadSlaveOutputImage(int hardware_hwindex, int slave, BYTE *buffer)
int SIMBA2_ReadSlaveInputImage(int hardware_hwindex, int slave, BYTE *buffer)
int SIMBA2_WriteSlaveInputImage(int hardware_hwindex, int slave, BYTE *buffer)

SIMULATIONUnit Manual

62

These functions write or read the complete I/O images of DP slaves or PNIO devices direct from/to the hardware. The buffer management of the box will
be considered (f.i. for F functions). These functions are relevant only for Profibus- or PNIO boxes and deliver when called for other hardware definitions a
negative errorcode.

8.3.12. Records

The following functions can be used for handling of acyclic data.

8.3.12.1. Define record in project

int SIMBA2_DefRecordDataExt(int hwindex, int dev, int slot, int sub, int index, int
 length, int offset)

8.3.12.2. Delete record from the project

int SIMBA2_DeleteRecordDataExt(int hwindex, int dev, int slot, int sub, int index)

8.3.12.3. Write default data into a record

int SIMBA2_WriteDefaultRecordDataExt(int hwindex, int dev, int slot, int sub, int
 dsnum, char* data)

Parameter data is a string with hex values divided with comma ("0x01,0x22,0xab,0xcd").

8.3.12.4. Read/write records

int SIMBA2_WriteRecordDataExt(int hwindex, int dev, int slot, int sub, int index,
 char* data, int maxlen)

int SIMBA2_ReadRecordDataExt(int hwindex, int dev, int slot, int sub, int index,
 char* data, int *maxlen)

hwindex [in]: hardware index
dev [in]: device number
slot [in]: slot number of the module
sub [in]: subslot nr. (ignored at Profibus, when PNIO module without subslot set sub = 1)
index [in]: record number
data [in at write, out at read] data bytes, byte array
maxlen [inout]: number of bytes in data

8.3.12.5. Read/delete record event queue

int SIMBA2_ReadDataBlockQueueExt(int hwindex, int* slave, int* slot, int *subslot,
 int* dsnum, BYTE* buffer, int* len)
int SIMBA2_ResetDataBlockQueue(int hwindex)

When the box receives a new record from PNIO-/Profibus-controller this will be added to a queue. The application can read the queue for getting these
records.

Returnvalue: 0 = OK, -1 = data set queue is empty

hwindex [in]: hardware index
dev [in]: device number
slot [in]: slot number of the module

SIMULATIONUnit Manual

63

sub [in]: subslot nr. (ignored at Profibus, when PNIO module without subslot set sub = 1)
dsnum [in]: record number
buffer [in at write, out at read] data bytes, byte array
len [inout]: number of bytes in data

8.3.12.6. Register WINDOWS system event for record queue

int SIMBA2_RegisterDataBlockQueueEvent(int hwindex, HANDLE eventhandle)
int SIMBA2_UnRegisterDataBlockQueueEvent(int hwindex)

Parameters:

hwindex: hardware index
eventhandle: WINDOWS system event handle.

The application can register/unregister a WINDOWS system event channelwise for the record queue. Whenever records will be added to the queue the
registered event will be raised. The application is full responsible for the validness of the event handle.

8.3.13. Reading or writing a unique project ID

The SIMULATION UNIT PN and SIMULATION UNIT PB boxes support the load of a unique generated project ID to check the load state of a box.
In SIMULATION UNIT PB boxes this will be done per line. In addition to that you have the possibility to store the download sequence of the project
permanently in the box and start this sequence after power on. This offers the possibility of creating pre-configured simulation boxes.

int SIMBA2_GetProjectIDs(int hwindex, DWORD *phardwareProjectID, DWORD
 *pspfProjectID, char *AutoStartProjectName)

When the box is connected this function returns a unique ID of the loaded project (or one line of the project), the ID of the project/line opend in software
and the name of a permanently stored project.

8.3.14. Autostart project

int SIMBA2_SaveProjectFlash(int hwindex)
int SIMBA2_DeleteProjectFlash(int hwindex)

hwindex is the index of the channel in the SIMULATION UNIT project.

Attention:

hwindex == -1 (for all channels) is not possible here!

These functions handle the store and delete of the actual project permanently in flash. For store a project it is necessary to call
SIMBA2_SaveProjectFlash with the hardware index first and then call SIMBA2_DownloadAll with the same hardware index. That stores the loaded
configuration into the flash memory of the box. You can watch the progress of the download with SIMBA2_GetDownloadStatus.

8.3.15. Export / import the I/O image

int SIMBA2_SaveProcessIOFile(char *PathName)

This function saves all I/O data of the opened project into a .csv file.

int SIMBA2_LoadProcessIOFile(char *PathName)

reads I/O values from a .csv file.

SIMULATIONUnit Manual

64

8.3.16. Reading configuration

int SIMBA2_ReadStringConfiguration(char *configurationstring, int maxlen, int first)

This function delivers offline the IO configuration of the project. There is no check of the online project included.

Parameters:

configurationstring [out]: string that represents an I/O- or datarecord-channel as an hierarchical path description.

example: "HARDWARE0\PNIODEV1\PNIOSLOT2\E20.0"

maxlen [in]: size of the buffer for the path in bytes.
first [in]: parameter has to be set by the user program to 1 at the first call and to 0 at any next call.

The user program has to allocate the buffers to fill in the string by the function. The user program calls the function until a negative return code occurs.

int SIMBA2_Get_Channels(char *IOName, int *direction, int *datatype, char
 *SymbolName, char *Comment, int first)

direction [out]: 0 = readable signal, 1 = writable signal
datatype [out]: 0 = binary, 1 = integer 8-32 Bit, 2 = float
IOName [out]: signal name (f.i. S000IW512)
SymbolName [out]: optional symbolic name of the signal
Comment [out]: signal comment
first [in]: parameter has to be set by the user program to 1 at the first call and to 0 at any next call.

The user program calls the function until a negative return code occurs.

8.3.17. Alarms and other device operations

It is possible to raise module- or channel alarms for some Profibus and PNIO devices. The alarm structure is defined in .xml files in the folder
<SIMULATIONUnit installation path>\Alm. The following API functions can be used to support various user defined device operations in future.

int SIMBA2_ReadMenuName(char* indexstring, char *name, int menuindex)

reads a possible alarm for the defined object in the hardware tree (module or channel)

indexstring [in]: path index of the object over all hierarchical levels, divided by comma. (f.i. has slave 3 in SIMULATIONUnit 0 the indexstring "0,3", the
module in slot 5, slave 31, SIMULATIONUnit 1 has the indexstring "1,31,5").

name [out]: Description of the alarm
menuindex [in]: ID number of an alarm
return value: 0 = OK, -1: no alarm configured

To read all alarms for an object of the hardware tree, the function has to be called until return value is not 0. The menuindex has to set to 0 at the first call
and incremented at every function call.

int SIMBA2_SetMenuCommand(char *indexstring, int menuindex)

raises an alarm. Parameters are the same as at SIMBA2_ReadMenuName().

The channel diagnostic alarms for PNIO devices are toggled alarms. The first call of SIMBA2_SetMenuCommand activates the alarm and the second call
deactivates it. If the alarm is activated, the character * is the first character in the parameter name at SIMBA2_ReadMenuName() .

8.3.18. Using Windows-Events

An effective application can use Windows events that are generated for special purposes.

SIMULATIONUnit Manual

65

Attention:

If you are running your application as a second instance together with SIMULATIONUnit.exe, you can only use SIMBA2_Register…
NamedEvent functions.

8.3.18.1. End of I/O data transfer event

An application that calls Synchronisation can receive an end of data transfer event:

int SIMBA2_RegisterCyclicIOReadyNamedEvent(int hwindex, HANDLE eventhandle)
int SIMBA2_RegisterCyclicIOReadyEvent(int hwindex, char *eventname)
int SIMBA2_UnRegisterCyclicIOReadyEvent(int hwindex)

Parameter:

hwindex [in] : Hardware index eventname [in]: global named event eventhandle [out]: WINDOWS system event handle

8.3.18.2. Download ended event

WAfter calling SIMBA2_DownloadAll the end of the download can be signalled:

int SIMBA2_RegisterDownloadReadyEvent(HANDLE eventhandle)
int SIMBA2_RegisterDownloadReadyNamedEvent(char *eventname)
int SIMBA2_UnRegisterDownloadReadyEvent()

Parameter:

eventname [in]: global named event eventhandle [out]: WINDOWS system event handle

8.3.18.3. New record event

An application can register a WINDOWS system event for the Datensatzqueue per channel. This event is fired, when a newe record has been added to
the record queue.

int SIMBA2_RegisterDataBlockQueueEvent(int hwindex, HANDLE eventhandle)
int SIMBA2_RegisterDataBlockQueueNamedEvent(int hwindex, char *eventname)
int SIMBA2_UnRegisterDataBlockQueueEvent(int hwindex)

Parameter:

hwindex [in] : Hardware index eventname [in]: global named event eventhandle [out]: WINDOWS system event handle

8.4. Functions for using the DLL with your own GUI

The following functions are only callable from the "first instance program" that has loaded the "SIMBAkern(64).dll". These are functions for creating a
project, hardware import and visualisation of the I/O’s.

8.4.1. Create an empty project

int SIMBA2_CreateProjectFile(char *PathName)

The function creates a new project folder and the minimal necessary files in it. The folder has the extension "*.spf".

8.4.2. Save a project under a different name

int SIMBA2_SaveAsProjectFile(char *OldPathName, char *NewPathName)

SIMULATIONUnit Manual

66

The project OldPathName will be copied into NewPathName. NewPathName will be opened.

8.4.3. "Save" project

int SIMBA2_SaveProjectFile()

By definition is the "Project.xml" always consistent. The call of that function only sets the project state to "SAVED" in order to make a new compilation
when the project will be opened next time (new creation of the necessary binary files).

8.4.4. Import hardware

int SIMBA2_SDBImport(char *simbaname, char *sdbpath, char *cfgpath, int clear, int
 start_idx, ind end_idx, char* parameter)
int SIMBA2_SDBImportWait(int hwindex, char *sdbpath, char *cfgpath, int clear, int
 start_idx, int end_idx)

If a SIMULATION UNIT called simbaname is present is the preject, it will be overwritten, if clear = 1. If *clear = 0, a new SIMULATION UNIT channel will
be created.

sdbpath - path of a sdb30??.dat for Profinet or sdb20??.dat for Profibus
cfgpath - optional, path of a HWConfig export file (*.cfg)

Parameters start_idx, end_idx and parameter will be ignored when importing Profibus slaves from a sdb20xx file.
For the SIMULATION UNIT PN the parameters start_idx and end_idx select which devices shall be imported. The device indexes have to be the indexes
from Step7 or -1 for import of all devices.

The parameter parameter can be the IP address for the communication with the simulation PC. The IP address is to configure in ASCII format (f.i.
strcpy(parameter, "192.168.0.1")); If a blank string is be passed here, the IP address can be added later with SIMBA2_SetHWParameter(…)

Attention:

For SIMULATION UNIT PN the IP address is to configure in a different IP band as the simulated devices!

A system data block (.dat) is necessary, configuration file (.cfg) is optional.

8.5. Change parameter in project

SIMBA2_SetHWParameter(char* IndexString, char* key, char* value)

IndexString [in]: Hardware Index
key [in]: Parameter name, see below
value [in]: value, see below

Eingestellte Werte auslesen:

SIMBA2_GetHWParameter(char* IndexString, char* key, char* value, int index)

IndexString [in]: Hardware Index
key [in]: Parameter name, see below
value [out]: value, see below
index [in]: 0 = first parameter. If index >= max. number of parameters, the return value is -1, otherwise 0 = ok.

Possible parameters:

Key value

IPADDR IP Address (e.g.„192.168.0.1“)

SIMULATIONUnit Manual

67

Key value

CHANNELNR channelnumber of a SU Box

FIRSTDEVICE Devicenr. of first devices behind the PNIO Controller at SU port P1

FIRSTPORT Portnr. of first devices behind the PNIO Controller at SU port P1

SECONDDEVICE Devicenr. of first devices behind a second PNIO Controller at SU port P1
(SU with 2 channels only)

SECONDPORT Portnr. of first devices behind a second PNIO Controller at SU port P1
(SU with 2 channels only)

8.5.1. Import of TIA portal projects

The tool TIA2XMLConverter can convert .oms files from TIA Portal to .xml files. You can import the .xml files.

int SIMBA2_ImportXMLProject(char *XMLpath, char *simbaname, char* parameter)

XMLpath [in]: path of the XML file. The file type will be read from the file itself.
simbaname [in]: f.i. SimbaPNIO_0[0]
parameter [in]: IP address of the SIMULATIONUnit in ASCII format

8.5.2. Import symbols

int SIMBA2_SymbolImport(char *simbaname, char *symbolpath)

A symbol file exported from PCS7 (ASCII format) will be imported into the project.

8.5.3. Last used projects / SDB’s / CFG / symbol lists

int SIMBA2_GetRecentProjectPath(int index, char *path)
int SIMBA2_GetRecentSDBPath(int index, char *path)
int SIMBA2_GetRecentCfgPath(int index, char *path)
int SIMBA2_GetRecentSymbolPath(int index, char *path)

Delivers up to 16 used project names (also SDB / CFG / SYM, selected by index), but only if the project is found.

8.5.4. Language selection

int SIMBA2_GetLanguage()
int SIMBA2_SetLanguage(int language)

In SIMULATIONUnit there is a global language selection used for the GUI, messages but also for generating correct I/O names. Language codes are 0
for "German", 1 for "English".

After changing the language code the project has to be closed and the SIMBAkern.dll has to be unloaded and reloaded!

8.5.5. Messages

int SIMBA2_GetErrorString(char *error, int *typeicon)

SIMBAkern.dll created messages (especially in case of errors). These messages can be read and shown using the API. After reading a message it will be
deleted from the archive. The actual archive of messages just exists in memory and will be lost when the application ends.

SIMULATIONUnit Manual

68

Parameter typeicon contains a classification of the message (0 = error, 1 = warning, 2 = notice).

8.5.6. Adjust baudrate on Profibus

int SIMBA2_SetBaudRate(int hwindex, int BaudIdx)

Adjusting the baudrate of the Profibus. The following baudrates are defined for Profibus:

BaudIdx Baudrate

0 9600 Bd

1 19200 Bd

2 93,75 kBd

3 187,5 kBd

4 500 kBd

5 750 kBd

6 1,5 MBd

7 3 MBd

8 6 MBd

9 12 MBd

8.5.7. Adjust MAC adress band

8.5.7.1. Read or write MAC addresses range for simulated PNIO devices

int SIMBA2_MACListRead(char* firstmac, int* number)
int SIMBA2_MACListWrite(char* firstmac, int number)

firstmac: first MAC address in format String with column (default ="08:00:06:9d:34:3f") number: max. number MAC addresses

8.5.7.2. Get MAC addresses from current project

int SIMBA2_GetProjectMACs(char* firstmac, int* number)

firstmac: first MAC address in format String with column (default ="08:00:06:9d:34:3f") number: number MAC addresses used in the opened project

8.5.7.3. Regenerate MAC Addresses in projekt

int SIMBA2_GenerateMACs()

Call this function to apply the settings made by SIMBA2_MACListWrite(…) to the opened project.

8.5.8. Import of GSD(ML) files into SIMULATIONUnit hardware library

8.5.8.1. Import of Profibus GSD files

int SIMBA2_GSD_Import(char* gsdfilepath, char* SlvName, char* SlvTyp, char* SlvRev)

reads a GSD file into memory.

gsdfilepath [in]: path of the GSD file SlvName [out]: slave name SlvTyp [out]: slave ID SlvRev [out]: slave revision

SIMULATIONUnit Manual

69

int SIMBA2_GSD_SaveXML(char* xmlfilepath)

saves the data imported with SIMBA2_GSD_Import.

xmlfilepath [in]: file name of the XML file in the SIMULATIONUnit hardware library.

format: <SIMULATIONUnit folder>\hwlib\SLAVE\slv<SlvTyp>.xml

<SlvTyp> has to be a four digit hexadecimal number

8.5.8.2. Import of Profinet GSDML files

int SIMBA2_PNIOXML_Import(char* xmlfilepath, char* SlvName, char* SlvTyp, char*
 SlvRev, char* existingFile)

reads a GSDML file into memory.

xmlfilepath [in]: path of the GSDML file SlvName [out]: slave name SlvTyp [out]: slave ID SlvRev [out]: slave revision existingFile [out]: if the file has
been imported yet, the filename of the imported GSDML file will be delivered.

int WINAPI SIMBA2_PNIOXML_SaveXML(char* xmlfilepath, char* gsdmlname)

saves the data imported with SIMBA2_PNIOXML_Import

xmlfilepath [in]: file name of the XML file in the SIMULATIONUnit hardware library.

Format: <SIMULATIONUnit folder>\hwlib\PNIO\slv<SlvTyp>.xml,

<SlvTyp> has to be an eight digit hexadecimal number.

• gsdmlname: name of the GSDML file without path.

8.5.9. Synchronizing I/O daten with the simulation hardware

int WINAPI SIMBA2_SetThreadCycle(int milliseconds)

In SIMULATIONUnit there runs a thread cyclic synchronizing the I/O image with the hardware. The cycle time can be adjusted by
SIMBA2_SetThreadCycle.

Parameter:

milliseconds [in]: valid values are 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 5000, 10000 and -1

SIMBA2_SetThreadCycle(-1) switches off the cyclic synchronization. In that case the user application has to call SIMBA2_Synchronize() to synchronize
the I/O’s.

int WINAPI SIMBA2_Synchronize(int hwindex)

Writes input data to the hardware and requests output data. The output data are valid for the user after the next call of SIMBA2_Synchronize.

Parameter:

hwindex [in]: index of the simulation hardware or -1 for all.

int SIMBA2_GetCommunicationDiagnostics(int hwindex, DWORD *syncintervall, DWORD
 *synctime, int *telegramsleft)

Reading the performance info of the synchronisation.

SIMULATIONUnit Manual

70

Parameter:

hwindex [in]: index of the simulation hardware. syncintervall [out]: adjusted synchronizations intervall (see SIMBA2_SetThreadCycle) synctime [out]:
measured time needed for synchronizing I/O’s. telegramsleft [out]: number of synchronization blocks not synchronized yet in current cycle.

8.5.10. Reading versions

int WINAPI SIMBA2_GetVersion(char *version, int para)

With para = 0 the version of the SIMBAkern.dll will be delivered, with para = 1 the version of the hardware library. SIMULATIONUnit boxes send their
versions after SIMBA2_ConnectAll was called. After connection is established versions can be read by SIMBA2_GetErrorString.

8.6. Load sequence (example)

Please call the following functions step by step to open a simulation project, load it into the hardware and start the simulation:

1. int SIMBA2_OpenProjectFile(char *FileName)

2. int SIMBA2_CheckProjectState(int *state) ... wait until state == 3

3. int SIMBA2_ConnectAll(-1)

4. int SIMBA2_DownloadAll(-1)

5. int SIMBA2_GetDownloadStatus(-1, int* percent) ... return value has to be 0,
 percent has to be 100

Only for Profibus projects:

6. int SIMBA2_StartCardFunction()

7. int SIMBA2_CheckFunctionDownload(-1, int *present, int *active) ... wait until
 present == active

8.7. Return codes

Denomination Value Meaning

SIMBA_QUIT_POS 0 O.K.

SIMBA_QUIT_NEG -1 Internal failure, unexpected program error

SIMBA_PARAMETER_INVALID -2 Wrong parameter in call (syntax or value not
available)

SIMBA_NOT_SUPPORTED -3 not used

SIMBA_WRONG_SIMBATYPE -4 function not supported by this SIMULATION
UNIT

SIMBA_SYS_DRIVER_CLOSED -5 hardware driver already closed

SIMBA_THREAD_NOT_STARTED -6 task-thread not launchable (WINDOWS-
problem)

SIMBA_CHANNEL_LOCKED -7 channel locked by another application, no read-
access possible.

SIMBA_MULTI_ACCESS_ERROR -8 multi access from other applications causes
WINDOWS-failure

SIMULATIONUnit Manual

71

Denomination Value Meaning

SIMBA_MAINPROG_NOT_RUNNING -9 main procedure of driver was stopped

SIMBA_BUSY -10 timeout / delay caused by
SIMULATIONUnit.exe

SIMBA_HARDWARE_NO_ACCESS -11 No access to hardware, hardware index is not
present in project

SIMBA_TIMEOUT -12 Time out

SIMBA_QUIT_NOT_CONNECTED -20 Module not connected

SIMBA_WRONG_FIRMWARE -23 wrong firmware version used

SIMBA_QUIT_FULL_BUFF -29 request buffer is full

SIMBA_REQUEST_TIME_OUT -30 SIMULATIONUnit.exe causes time out of call.

SIMBA_DRIVER_ERROR -40 SIMULATIONUnit driver not available or not
working

SIMBA_MEM_ERROR -41 Driver cannot allocate memory for I/O-image

SIMBA_PROJECT_FAIL -48 SIMULATIONUnit cannot open project or
project not available

SIMBA_PROJECT_CLOSED -49 no project opened

SIMBA_FILEIO_ERROR -50 file access error

SIMULATIONUnit Manual

72

9. OPC server

9.1. Purpose

The OPC server for SIMULATIONUnit enables an OPC client to read and write simulated process values of a currently open project.

SIMULATIONUnit OPC server supports communication links according OPC data access (OPC DA) specification V2.0.

9.2. Installation

With the installation of SIMULATIONUnit the OPC server get registered to the host PC (the PC running SIMULATIONUnit). All OPC clients running on the
same computer are now able to access the SIMULATIONUnit OPC interfaces.

For clients running on other external systems it may be necessary to register the server there.

For this purpose the file SimbaOpcServerProgId.reg is provided. This file is located in the SIMULATIONUnit program folder in the subfolder OPC.
(Usually C:\Program Files\SIMULATIONUnit v8.xx.xx\OPC\).

To register the server at the client please copy the file SimbaOpcServerProgId.reg to the client and double click it to merge it with the local registry.

This gives the OPC client all necessary information to connect with the server.

For remote OPC communication it is usually required to adjust the DCOM security settings on the client and on the server computer. OPC settings are
adjusted with the standard Microsoft program dcomcnfg.exe. Please refer to the documentation provided by Microsoft for more information about DCOM
settings.

9.3. OPC server start / stop

To start the OPC server it is necessary to start SIMULATIONUnit and to load a project file first.

Menuitem "Simulation → Start OPC server".

The OPC server starts with the opened project and takes the control over the IO’s. It connects to the SIMULATIONUnit boxes automatically and transfers
the data.

Attention:

OPC server cannot modify or download any configuration, this has to be done in SIMULATIONUnit before OPC server starts!

SIMULATIONUnit Manual

73

The server terminates automatically when the last client disconnects.

To successfully start the OPC server it is necessary to start SIMULATIONUnit and to load a project file first. If a client connects to the server while
SIMULATIONUnit is not running or no project was yet loaded the server will refuse the connection.

9.4. User interface

The OPC Server provides a simple user interface to display the following statistic values:

Number of OPC items This is the number of process values available in the SIMULATIONUnit
project.

Number of active items Displays the number of process values that one or more OPC clients are
currently connected to.

Number of OPC clients The number of active client connections.

Scan cycle[ms] Scan cycle in milliseconds. The OPC server is scanning the process
values for changes within this cycle.

9.5. Cycle Time

The cycle time for scanning changes of the I/O values can be changed in SIMULATIONUnit in menu "Settings → Options".

Restart the OPC Server to activate the changes.

In case the SIMULATIONUnit cycle time is less than 100 ms the OPC server will use 100 ms as a minimum.

10. FAQs (Frequently Asked Questions)

10.1. In Simba Project more devices are present after a DP/PA-Link as in the Step7 project. Why is the
simulation not working for the PA- Slaves which are present in both projects?

The PA- Slaves are processed as an image in the IM157. SIMULATIONUnit simulates this image and not the structure of the PA bus. This is why the
image is changing by inserting or deleting a PA-device. Moreover the length of the IO-data of the IM157 changes, so that the bus master exchanges
no cyclic data anymore. This is why a complete PA-link can not be simulated anymore. Help : Use here an original IM157 with a PA-SIMBA directly
connected (or use a consistent project).

10.2. A module has 3 bytes (EB0 - EB2), the following device has 2 Bytes (EB3 - EB4). What happens if we
write ED0 ?

It will write over the 3 first bytes of the first device and over the first byte of the second device. S7 works with big-endian format: i.e. the MSB will be written
and a multiple of 256 will then be displayed for the second device.

10.3. Can I simulate with a SIMBAProfibus box each active Bus of 2 H-systems ?

No! A H-System uses 2 CPU’s, which are communicating with each other informations over the periphery status and parametrization. For this reason, it
exists also such a relationship between the channels of a redundant slave in the SIMBAProfibus box. This relationship will be processed by activating a
firmware block. In the case mentioned above, one of both H-system would always have a bus failure, thus SIMBAProfibus firmware always activate only
one channel. The other one is then passive. Moreover the SIMBAkern.dll alone recognizes a H-system in the configuration and then always reads the
CPU-outputs from active channel. It also always writes CPU-inputs from channel 0 to both profibus channels.

10.4. How do I parametrize failsafe modules in SIMULATIONUnit ?

Failsafe modules will be imported automatically.

For Profibus failsafe see Configuration of Failsafe components
For Profinet failsafe see Simulation of Failsafe Modules (Profisafe V2)

10.5. How can I simulate a device that SIMULATIONUnit does not know ?

You can import Profibus and Profinet device description file into SIMULATIONUnit.
see Device GSD import
The new devices are available if you create a new project or (re)import a hardware configuration.

SIMULATIONUnit Manual

74

10.6. How can I get rid of a topology error ?

The topology cannot be imported from Step 7 or TIA. You have to set the device and port number of the first simulated device that is connected to the
outter world.
see Simulation of the Topology

10.7. Is it possible to simulate multiple Profinet networks with one SIMULATION UNIT ?

You can copy the devices of several Profinet lines within one Step 7 / TIA project into one SIMULATION UNIT project if
- all device numbers, devices names and IP addresses are unique
- no topology is projected

Copying devices from different Step 7 / TIA projects into one SIMULATIONUnit project does not work. This will generate I/O address conflicts.

10.8. My project is correct, but the simulation does not work. What can I do ?

Contact the technical support at https://support.industry.siemens.com/My/ww/en/requests#createRequest Give a detailed description of your problem and
attach your Step 7 project if possible. An engineer will contact you for support.

https://support.industry.siemens.com/My/ww/en/requests#createRequest

	SIMULATIONUnit Manual
	1. Functional Description
	1.1. Simulation of PROFINET IO with SIMBA PNIO / SIMULATION UNIT PN
	1.2. Simulation of PROFIBUS-DP with the SIMBAProfibus Box / SIMULATION UNIT PB
	1.3. Naming convention

	2. Getting Started
	2.1. Installation of SIMULATIONUnit software
	2.2. Connect the simulation box
	2.3. Export a Step 7 hardware configuration
	2.4. Export a TIA Portal hardware configuration
	2.5. Creation of a Simulation Project

	3. SIMULATIONUnit Features
	3.1. The portal view
	3.1.1. Projects
	3.1.2. System
	3.1.2.1. Device GSD import
	3.1.2.2. Scan network
	3.1.2.3. Language settings

	3.2. The Project view
	3.2.1. Navigation within the project
	3.2.1.1. Elements

	3.2.2. The menu bar
	3.2.3. The hardware view
	3.2.3.1. Meaning of the symbols in the hardware view
	3.2.3.2. Listening mode
	3.2.3.3. Save an autostart project in the SIMULATION UNIT Box

	3.2.4. The IO view
	3.2.5. The hardware editor
	3.2.6. Function blocks
	3.2.7. Worksheets
	3.2.8. The log window
	3.2.9. System settings (options)
	3.2.10. Window arrangement

	4. Simulation of PROFIBUS Components
	4.1. Remarks for creating a simulation
	4.2. SIMULATION UNIT PB
	4.2.1. Cables
	4.2.1.1. Power connection
	4.2.1.2. Connection to Simulation computer
	4.2.1.3. Connection of the Profibuses

	4.2.2. Installation and heat
	4.2.3. Description of the LEDs

	4.3. SimbaProfibus
	4.3.1. Cables
	4.3.1.1. Power connection
	4.3.1.2. Connection to Simulation computer
	4.3.1.3. Connection of the Profibuses

	4.3.2. Installation and heat
	4.3.3. Description of the LEDs

	4.4. Addressing the box
	4.5. Creating a new project
	4.5.1. Hardware configuration
	4.5.1.1. Manual configuration
	4.5.1.2. Import hardware

	4.6. Step 7 Hardware config export
	4.6.1. SDB file export
	4.6.2. cfg file export
	4.6.3. Symbols
	4.6.4. Copy the export files over to the simulation computer

	4.7. TIA-Portal hardware config export
	4.7.1. Symbols

	4.8. Hardware download, display and diagnostic
	4.8.1. Hardware icons

	4.9. Redundant systems
	4.9.1. Handling and data transfer of the H-system

	4.10. Failsafe
	4.10.1. Configuration of Failsafe components
	4.10.2. Load and start SIMBAProfibus box / SIMULATION UNIT PB box Failsafe functionality

	4.11. Foundation-Fieldbus systems
	4.11.1. Data import from PDM
	4.11.2. Download into the SIMBAProfibus box / SIMULATION UNIT PB box and start of the FF-functions

	4.12. Limitations in simulating Profibus components

	5. Simulation of Profinet
	5.1. Introduction to the Simulation of PROFINET
	5.1.1. Features and restrictions

	5.2. SIMULATION UNIT PN
	5.2.1. Connectors
	5.2.2. Installation and heat
	5.2.3. Description of the LEDs

	5.3. SIMBA PNIO
	5.3.1. Connectors
	5.3.2. Installation and heat
	5.3.3. LED description
	5.3.4. Reset

	5.4. Configuration
	5.4.1. Accessibility
	5.4.1.1. Setup the IP address with SIMULATIONUnit

	5.4.2. Web interface

	5.5. Network connection
	5.5.1. Network connection with redundant systems
	5.5.2. Network connection with multiple SIMULATION UNITs and real Profinet devices

	5.6. Creating a new project
	5.6.1. Hardware configuration
	5.6.1.1. Manual configuration
	5.6.1.2. Import hardware

	5.6.2. Import new devices to the SIMULATIONUnit hardware library

	5.7. Hardware download and diagnostics
	5.7.1. Icons

	5.8. Simulation of the Topology
	5.9. Simulation of IRT Devices
	5.10. Simulation of Failsafe Modules (Profisafe V2)
	5.11. Simulation of Redundancy
	5.11.1. MRP ring redundancy
	5.11.2. System redundancy S2
	5.11.3. System redundancy R1 and R2

	5.12. Fast startup

	6. Manipulation of the simulated devices
	6.1. I/O-Values
	6.1.1. I/O-names
	6.1.1.1. Symbolic addresses

	6.1.2. Analog values

	6.2. Alarm generation and triggering
	6.2.1. For Profibus
	6.2.1.1. Device fault
	6.2.1.2. Profibus alarm description in the XML file
	6.2.1.3. Triggering the alarm by menu
	6.2.1.4. Triggering the alarm by runtime system

	6.2.2. For ProfinetIO
	6.2.2.1. Device fault
	6.2.2.2. Description of a ProfinetIO alarm in the XML file
	6.2.2.3. Triggering alarms by menu
	6.2.2.4. Triggering alarms by runtime system

	6.3. Profisafe V1 (F_SND_DP, F_RECV_DP)
	6.3.1. Import of a configuration with Profisafe
	6.3.2. Necessary parameters in the SIMULATIONUnit function instances
	6.3.3. Simulation F_RCVDP
	6.3.4. Simulation F_SENDDP
	6.3.5. Troubleshooting

	7. Runtime system
	7.1. Insert block type into the project
	7.1.1. Copy from library or other simulation project

	7.2. Creating a function typical
	7.2.1. Implementation of function instances
	7.2.2. Import and export of Instances

	7.3. Start / Stop of the runtime system
	7.4. Activating of a typical in a SIMULATION UNIT box
	7.5. Implemented basic functions
	7.6. Adjust runtime cycle
	7.7. Flags for applications

	8. Programming interface of SIMULATIONUnit
	8.1. General
	8.2. Project Functions
	8.2.1. Set Simbakern.dll path
	8.2.2. Load SIMULATIONUnit project
	8.2.3. Check project state
	8.2.4. Close Project

	8.3. Online Functions
	8.3.1. Establish connection to simulation modules
	8.3.2. Check connection status
	8.3.3. Disconnect simulation modules
	8.3.4. Load hardware configuration into simulation modules
	8.3.4.1. Download progress

	8.3.5. Read Data from I/O image
	8.3.6. Write Data into image
	8.3.7. Enable/Disable simulation of a single slave
	8.3.8. Enable/Disable simulation of a module
	8.3.9. Check hardware state
	8.3.10. Start firmware functions
	8.3.11. Reading or writing of complete I/O images of slaves
	8.3.12. Records
	8.3.12.1. Define record in project
	8.3.12.2. Delete record from the project
	8.3.12.3. Write default data into a record
	8.3.12.4. Read/write records
	8.3.12.5. Read/delete record event queue
	8.3.12.6. Register WINDOWS system event for record queue

	8.3.13. Reading or writing a unique project ID
	8.3.14. Autostart project
	8.3.15. Export / import the I/O image
	8.3.16. Reading configuration
	8.3.17. Alarms and other device operations
	8.3.18. Using Windows-Events
	8.3.18.1. End of I/O data transfer event
	8.3.18.2. Download ended event
	8.3.18.3. New record event

	8.4. Functions for using the DLL with your own GUI
	8.4.1. Create an empty project
	8.4.2. Save a project under a different name
	8.4.3. "Save" project
	8.4.4. Import hardware

	8.5. Change parameter in project
	8.5.1. Import of TIA portal projects
	8.5.2. Import symbols
	8.5.3. Last used projects / SDB’s / CFG / symbol lists
	8.5.4. Language selection
	8.5.5. Messages
	8.5.6. Adjust baudrate on Profibus
	8.5.7. Adjust MAC adress band
	8.5.7.1. Read or write MAC addresses range for simulated PNIO devices
	8.5.7.2. Get MAC addresses from current project
	8.5.7.3. Regenerate MAC Addresses in projekt

	8.5.8. Import of GSD(ML) files into SIMULATIONUnit hardware library
	8.5.8.1. Import of Profibus GSD files
	8.5.8.2. Import of Profinet GSDML files

	8.5.9. Synchronizing I/O daten with the simulation hardware
	8.5.10. Reading versions

	8.6. Load sequence (example)
	8.7. Return codes

	9. OPC server
	9.1. Purpose
	9.2. Installation
	9.3. OPC server start / stop
	9.4. User interface
	9.5. Cycle Time

	10. FAQs (Frequently Asked Questions)
	10.1. In Simba Project more devices are present after a DP/PA-Link as in the Step7 project. Why is the simulation not working for the PA- Slaves which are present in both projects?
	10.2. A module has 3 bytes (EB0 - EB2), the following device has 2 Bytes (EB3 - EB4). What happens if we write ED0 ?
	10.3. Can I simulate with a SIMBAProfibus box each active Bus of 2 H-systems ?
	10.4. How do I parametrize failsafe modules in SIMULATIONUnit ?
	10.5. How can I simulate a device that SIMULATIONUnit does not know ?
	10.6. How can I get rid of a topology error ?
	10.7. Is it possible to simulate multiple Profinet networks with one SIMULATION UNIT ?
	10.8. My project is correct, but the simulation does not work. What can I do ?

