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A Derivative of the Difference Measure

The Difference Measure driving the registration is defined as
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Here, X; and x; are corresponding 3D and 2D points, and f : R?> — R? is a projection function defined by
FX) = (p{X/p; X, p3 X/p3 X) " . (2)

In the above equation, p] , p; and pj constitute the row vectors of the projection matrix P € R3*4 and X = [XT,1]T
is the homogeneous 4-vector of the 3D point X.
The derivative of D with respect to ¢y is derived in the following way. Where convenient, we will use Y; = X; 4+ ¢;.
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The derivative % from Equation (9) is

0f(Yi)

computed as follows.

of (X + i)
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Here, the symbol §; j is used for a matrix from R3*3, which is the identity for i = k and zero otherwise.

By substituting the Equation (15) into (9)
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since all summands for i # k evaluate to zero.
The only remaining unknown term is the d
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We use the definition of f as
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we get the following equation,
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which can be derived as follows.
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We will employ in the following the notation from either the left or the right hand side, depending which is more

convenient.
For the single elements of the derivative % (Equation (17)), by the application of the quotient rule, we finally
get
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In the summary, by using Y; = X; 4+ ¢;, w

e can write the gradient of D as
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62(3{(];)7 which is the Jacobian of f with respect to ¢, and is given by

where Jj, € R%2*3 denotes
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where p;; denote the entries of the projection matrix P.



B Derivative of the Length Preservation Term

The length preserving cost function is defined as
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The terms d; (¢) and d; (p) are defined by
d7 () = [IY;—=Y,_4]]" , and
df(p) = [Yi=Yil® .

We once again set Y; = X; + ; where convenient.

The derivative of S; with respect to ¢y can be derived in the following way.
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are only non-zero for i =k, i =k — 1, and i = k 4 1, so that we get



By defining
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we can further simplify the expression. We take advantage of dor = 0 and oo = 0. We also use the facts

that df_; = d, and d,; = d;, and thus w;, = w; and w} | = w; , and get

_% (wk_l . W I adé;:‘”) (48)
,% <w,;+1 : ‘W +wf,, - W) (49)
_ _% <wk . acgi(kw) wt acg(pk ) (52)
2 (o 500 S50
4o 2 ) -

In order to compute the derivatives of the single terms in Equation (54) , we give the detailed version of the terms,
that is
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For the single terms from Equation (54), we now get
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C Analytical Derivative of the TPS-parameterized Diffusion Energy

We employ the Thin-Plate Spline model ¢rpg to represent a continuous version of the displacement function, which
is explicitly represented at the graph nodes by the vectors ¢;
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+
with A®r) = [ag &) ag‘r’“) agf’“)} , where the scalar values a; and the vectors wy, constitute the parameters of the
TPS, which are computed to match the n given displacement values at the nodes of the graph, located at points Xj.

Next, we give an analytical expression for the derivative of the TPS. This is used for the computation of the

Diffusion Energy energy term, as well as for computing the derivative of this energy. Let V@TP% be the gradient of
the z; dimension of ¢Tps
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Here, in order to be able to perform the differentiation, an approximation to the second norm is employed || X||. =
VX TX + e with a small positive scalar e. The Kronecker Delta d;; equals 1 for ¢ = j and is 0 otherwise.
The analytical form of the Laplace operator for the TPS-parameterized function finally reads
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