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I. Introduction

There are two polar views about the functioning of a market economy. 
On the one hand, there is the view that such a system is inherently 
stable, with market forces tending to direct the economy toward a 
smooth growth path. According to this belief, most of the fluctuations 
in the macroeconomy result either from individually optimal adjust-
ments to changes in the environment or from improper government 
interventions, with market forces acting to prevent the economy from 
being unstable. On the other hand, there is the view that the market 
economy is inherently unstable, and that left to itself it will repeatedly 
go through periods of socially costly booms and busts. According to 
this view, macroeconomic policy is needed to help stabilize an unruly 
system.

Most modern macroeconomic models, such as those used by large 
central banks and governments, are somewhere in between these two 
extremes. However, they are by design generally much closer to the first 
view than the second. In fact, most commonly used macroeconomic 
models have the feature that, in the absence of outside disturbances, the 
economy is expected to converge to a stable path. In this sense, these 
models are based on the premise that a decentralized economy is both 
a globally and locally stable system, and that market forces, in and of 
themselves, do not tend to produce booms and busts. The only rea-
son why we see economic cycles in most mainstream macroeconomic 
models is due to outside forces that perturb an otherwise stable system. 
While such a framework is very tractable and flexible, the ubiquitous 
and recurrent feature of cycles in most market economies requires one 
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to question whether the market economy may, by its very nature, be 
inherently unstable and feature recurrent booms and busts, with a bust 
sowing the seeds of the next boom.1

There are at least two reasons why much of the macroeconomic pro-
fession adheres to the idea that the market economy is best described as 
a system with a unique stable steady state, where fluctuations are gen-
erated only by exogenous shocks. First, the majority of modern macro-
economic models based on optimizing behavior support the view of 
such a stable economic system. Second, when looking at the time series 
behavior of many labor market variables (such as the employment rate, 
the unemployment rate, or the job- finding rate), the estimated impulse 
response functions indicate that these variables respond to shocks in 
a manner suggestive of a stable system. For example, if one estimates 
a simple AR model for labor market variables, the roots of the system 
are generally well below one, which is consistent with the view that the 
system is stable.2

In this paper, we question this consensus. We begin by arguing that 
the local stability of the macroeconomic system should not be evaluated 
using linear time series methods, even if nonlinearities are thought to 
be very minor and only relevant rather far away from the steady state. 
Instead, we show why it is essential to allow for the possibility of non-
linearities (even if these may be very small) when exploring whether 
a dynamic system is locally stable. We then derive a simple class of 
time series models that we use to explore the stability properties of a 
number of macroeconomic aggregates. Using the results, we discuss 
why local instability should be treated as a relevant theoretical possibil-
ity when thinking about macroeconomic dynamics.3 The main body of 
the text focuses on estimating the inherent dynamics of labor market 
variables and other macroeconomic aggregates. As we show, when we 
allow for simple nonlinearities in estimation, we generally find that this 
significantly changes the local properties of the system; in particular, it 
often switches from being locally stable when the nonlinear terms are 
excluded to being locally unstable when they are included.

After establishing that the macroeconomic system may be locally un-
stable, we then turn to examining the nature of the implied dynamics. 
This can be done by looking at how the system, with its stochastic ele-
ments turned off, evolves when it starts away from the steady state. 
If the steady state is unique and locally unstable, the system will not 
converge to a point.4 Instead, in such a case there are three possible 
outcomes. One is that the system is globally unstable; that is, that the 
system will explode outward until it hits the economy’s underlying ca-
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pacity or nonnegativity constraints. This is very unlikely to be the case 
for labor market variables, since it would imply, for example, that we 
should see the unemployment rate approaching either 100% or 0%. This 
leaves two remaining possibilities, both involving endogenous fluctua-
tions. The first of these is that the system may converge to a limit cycle; 
that is, the system settles into a recurrent pattern of booms and busts. 
The second possibility is that the system exhibits chaotic dynamics; that 
is, the system exhibits seemingly random nonrecurrent fluctuations (de-
spite being fully deterministic) and is sensitive to initial conditions.5 
As we shall show, when we find that the system exhibits local instabil-
ity, we generally find that there is a unique steady state and that the 
(nonstochastic) dynamics converge to a limit cycle. In this sense, our 
results suggest that a significant part of macroeconomic fluctuations 
may reflect forces that create endogenous boom- and- bust phenomena. 
Further, we find no evidence of chaotic behavior; that is, we do not find 
evidence that the deterministic part of the system exhibits sensitivity to 
initial conditions, a property that would render forecasting particularly 
difficult.

In the last section of the paper we discuss why our findings may be 
relevant for policy. In particular, we explore how the effects of stabili-
zation policy may change in the presence of local instability and limit 
cycles. For example, we show that reducing the impact of shocks on the 
economy may not always help stabilize the system in such cases, and 
in particular, it may only change the frequency of fluctuations without 
necessarily decreasing their overall amplitude.

II.  A Framework for Exploring Local Stability and  
Endogenous Cycles

In order to discuss the issue of local stability, it is helpful to focus on a 
variable that reflects cyclical fluctuations, but does not exhibit secular 
growth. Simple examples in macroeconomics are some labor market 
variables, such as the unemployment rate. Let us denote such a vari-
able, in deviation from its mean, by xt. One generally views xt as being 
locally stable if there are endogenous forces present that tend to push 
it back toward its steady state when slightly perturbed. Suppose we 
believe that the process for xt is approximately linear near its steady 
state. Then one may explore the local stability properties for x by first 
estimating an ARMA model for x, as given by

 xt = !A(L)xt−1 + B(L)́ t, (1)
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where !A(L) and B(L) are polynomials in the lag operator and where εt is 
an i.i.d. process.6 Let us denote by A the companion matrix associated 
with !A(L).7 If we find that the largest eigenvalue of A is less than 1,8 then 
the steady state is stable. However, even if we believe that this system 
may be close to linear near the steady state, and that the variance of ε 
may be small, such an approach can provide a misleading answer re-
garding whether the steady state is locally stable or unstable. This can 
be shown with the following example:

Suppose the data- generating process (DGP) is actually

 xt = !A(L)xt−1 + F(xt−1) + ´t, (2)

where F(⋅) is a nonlinear function with F(0) = ′F (0) = 0, which would be 
the case, for example, if F(⋅) is a polynomial function with no constant or 
linear terms. In this case, whether the system is locally stable at the zero 
steady state depends only on the eigenvalues of the companion matrix 
A, and not on the function F(⋅). However, this does not necessarily mean 
that one can disregard F(xt–1) in the estimation of equation (2). If the ei-
genvalues of A are all less than 1, and if the variance of ε is small, then 
omitting F(xt–1) in the estimation of equation (2) is unlikely to alter any 
conclusions drawn about the local stability of the system. However, if 
the largest eigenvalue of A is greater than 1, then omitting F(xt–1) can 
easily lead one to conclude that the system is locally stable when it is in 
fact locally unstable.9 To see this most clearly, consider the situation 
where !A(L) = −a and F(xt−1) = bxt−1

3 , with α,β > 0. Since the covariance 
between xt–1 and xt−1

3  is positive but these terms enter equation (2) with 
opposite signs, omitting xt−1

3  from the econometric specification will 
tend to bias the estimate of α toward zero. If the system is locally un-
stable (α > 1), but β is large enough relative to α – 1,10 then one would 
nonetheless incorrectly infer that the system was locally stable. Note 
also in this case that the closer α is to 1, the more likely it is that even a 
small value of β will be enough to arrive at the wrong conclusion about 
the stability of the system.

We have explored the behavior of such biases in various model speci-
fications using Monte Carlo methods. A typical example is the follow-
ing: We simulated 5,000 1,000- period samples of the DGP

 xt = axt−1 − 0.6xt−2 − 0.3xt−3 − 0.01xt−1
3 + .25´t, (3)

where εt is i.i.d. 1(0, 1), and where α takes values in [0.5,1.5]. For this 
DGP, local stability depends on whether | l |max is greater or smaller 
than 1, where | l |max is the maximum modulus of the eigenvalues of 
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the companion matrix to !A(L) = a − 0.6L − 0.3L2. When a ∈ [0.5, 1.5], 
this process implies that | l |max ∈ [0.94, 1.4]. When | l |max ∈ [0.94, 1), 
the steady state x = 0 is locally (and globally) stable, while when 

| l |max > 1 it is locally unstable. In this latter case, the DGP is such that, 
in the absence of any shocks, xt would be attracted toward a limit cycle 
(as long as x0 ≠ 0). Figure 1 plots, as a function of the DGP | l |max (which 
is in turn a function of α), the average estimated | l |max for both the 
well- specified model and a misspecified model in which the nonlinear 
term is dropped. The first thing to notice is that the estimate of | l |max 
for the well- specified model is unbiased, as indicated by the fact that it 
lies directly on the 45° line. Next, note that the difference between the 
estimated values of | l |max for the well- specified and misspecified mod-
els provides an indication of the importance of including the nonlinear 
term. As one can see in the figure, the bias in estimating the misspeci-
fied model is very small when | l |max < 1 in the DGP. Thus, in this case, 
whether or not one includes the nonlinear term is virtually irrelevant 
for determining whether the steady state is locally stable. However, the 
same degree of nonlinearity becomes much more important when the 

| l |max in the DGP becomes greater than 1, as evidenced by the fact that 
the misspecified model continues to indicate that the zero steady state 
is stable (i.e., | l |max < 1 for this model), when it is in fact locally un-
stable in the DGP. One inference that can be drawn from this exercise is 
that, when estimates from a linear model yield a maximum eigenvalue 
that is close to 1 in modulus, this may be an indication that omitting 
nonlinear terms has made the steady state appear to be locally stable 
when in fact it is not. Moreover, the degree of nonlinearity in the DGP 
may be very modest, but may nevertheless be important for assessing 
local stability. We return to this issue below in the context of our em-
pirical results.

The above discussion suggests a simple protocol for exploring local 
stability. One can start by estimating a linear model for the variable of 
interest and examine its local stability properties. Then one can add 
nonlinear terms (e.g.,  higher- order polynomial terms) to the specifica-
tion, estimate it, and check the local stability properties of the result-
ing nonlinear model. If the addition of the nonlinear terms causes the 
largest eigenvalue of the linear approximation of the system to go from 
below 1 to above 1, this is an indication that the system may in fact be 
locally unstable. This is the procedure we will follow. In following such 
a procedure, it is generally important to include in the nonlinear speci-
fication terms that are at least of order three, since such terms are more 
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likely to capture distant forces that may favor stability and whose omis-
sion would be more likely to bias in favor of inferring local stability.

A. How to Interpret Local Instability

A common property of most modern macromodels is that fluctuations 
reflect the effects of exogenous shocks around a stable steady state. 
Macroeconomic models with unstable steady states are more of a rarity. 
While it is true that a Walrasian equilibrium model is unlikely to have 
an unstable steady state, models with strategic complementarities 
across agents can easily give rise to such configurations, even when the 
complementarities are not large enough to generate multiple equilibria. 
To see this, consider the following extremely simple environment de-
scribing the determination of an aggregate outcome. We have a collec-

Fig. 1. Potential pitfall in assessing local stability when the DGP is nonlinear
Notes: For each of 100 values of α evenly distributed in the interval [0.5,1.5], we simulated 
5,000 times a 1,000- period sample of the DGP in equation (3). From the resulting simu-
lated data, we estimated by OLS either the well- specified equation (3) or a misspecified 
equation that omits the cubic term in equation (3). For each model and each α, we then 
computed the average maximum modulus of the eigenvalues of the companion matrix to 
!A(L) = a − 0.6L − 0.3L2, which we denote | l |max. Figure plots, as a function of the DGP 

| l |max, the average estimated | l |max for the well-  and misspecified models.
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tion of n agents indexed by i who make a decision xit at each date t, with 
the average outcome being xt = n−1∑ ixit. Suppose that in the absence of 
any interactions across agents, their actions could be described by a 
stable decision rule of the form xit = !A(L)xit−1 + ´t, where the largest 
eigenvalue of A (where A is the companion matrix to !A(L) as defined 
above) is less than one. In this case, the dynamics for xt are given by the 
stable system xt = !A(L)xt−1 + ´t. Now suppose we modify this environ-
ment slightly to allow for strategic complements across agents, such 
that the decision rule of agent i now includes a term that reflects their 
beliefs about the average behavior of others. In particular, suppose

xit = !A(L)xit−1 + gEit(xt) + ´t, 0 < g < 1

where Eit(xt) reflects agent i’s expectation of others’ behavior,11 and the 
parameter γ governs the degree of strategic complementarity. The dy-
namics of xit now reflect the effects of both the stable  individual- level 
behavior, captured by !A(L), and the strategic complementarities across 
agents, captured by having 0 < γ < 1. Assuming a rational expectations, 
symmetric Nash equilibrium outcome, the dynamics for xt are then 
given by

xt =
!A(L)

1 − g
xt−1 + ´t.

What are the stability properties of xt in this case? If γ is sufficient small, 
then xt will remain stable. However, if γ is sufficiently large (while re-
maining below 1), then one may verify that the largest eigenvalue of the 
companion matrix for !A(L) / (1 − g) will be greater than 1, in which case 
the system will be unstable. Note also that if the largest eigenvalue of A 
is below but close to 1, then only a very small degree of strategic com-
plementarity will be enough to produce instability in the system. The 
above example illustrates that in environments where agents interact, 
and where these interactions take the form of strategic complementari-
ties, then the appearance of a nonstable steady state can arise quite eas-
ily. This gives rise to three possibilities: (1) the economy has more than 
one steady state and one or more of these other steady states is an attrac-
tor, (2) the economy has more than one steady state and all are unstable, 
or (3) the economy has only one steady state and therefore the economy 
cannot converge to a steady state. While we explore all three possibili-
ties in our empirical work, we show that the data favor the third one, so 
let us focus on this possibility here. If the economy has only one steady 
state and it is unstable, what will the dynamics of the system look like? 
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If the system is globally linear, then the economy must necessarily ex-
plode. However, it is unlikely that the assumption of linearity, which 
may be appropriate near the steady state, remains so as one moves far 
away from the steady state. For example, complementarity between in-
dividuals’ actions, which may be present near the steady state, is likely 
to give way to forces of strategic substitutability when one moves far 
away from the steady state. This is likely to arise since, if the economy is 
on an exploding path, eventually resource or nonnegativity constraints 
will become binding. Hence, when one considers global behavior in 
such environments, it is necessary to recognize that some countervailing 
forces are likely to appear and stop the system from exploding. Such 
alternative forces will be manifested as some sort of nonlinearity. If this 
is the case, then the local instability of the steady state will create dy-
namics that endogenously favor economic fluctuations, as the system 
will neither explode nor converge to its only steady state. This outcome 
can take the form of a limit cycle, wherein in the absence of shocks the 
economy would undergo a regular and predictable boom- and- bust pat-
tern. Alternatively, it can produce chaotic behavior, in which the econ-
omy will fluctuate in an irregular and seemingly unpredictable fashion 
even in the absence of shocks, and in which the deterministic dynamics 
would exhibit sensitivity to initial conditions, making forecasting very 
difficult. Note that, while chaos is an interesting theoretical possibility, 
as documented below and in contrast to the  limit- cycle case, we do not 
find any evidence to suggest that it may be empirically relevant.

Our goal in this paper will be to examine the time series behavior 
of several cyclical indicators of macroeconomic activity while allowing 
for nonlinearities. We will examine (a) whether these systems exhibit 
unique or multiple steady states, (b) whether the implied steady states 
are locally stable, and (c) if the dynamics exhibit limit cycles or chaotic 
behavior. In principle, the empirical exercise we perform is straightfor-
ward. We begin by estimating univariate processes allowing for nonlin-
ear forces. We then examine whether the implied dynamics are stable or 
explosive near the steady state(s) by looking at the root structure of the 
local linear approximation. Finally, we examine the behavior of the vari-
able if we start it away from the steady state, while shutting down the 
effects of any stochastic terms. In particular, if we find that a variable 
exhibits a unique steady state and local instability, we want to examine 
whether it then converges to cyclical behavior. The main difficulty with 
this procedure is determining the class of nonlinear models to consider, 
as nonlinearities can take on many forms.
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B. Baseline Univariate Model

Our approach to exploring local stability and possible endogenous cy-
clical behavior will be to estimate univariate models of the form

 xt = a0 + !A(L)xt−1 + F(xt−1, xt−2,…) + ´t, (4)

where xt is a cyclical variable of interest, and F(⋅) is a multivariate poly-
nomial function with no constant or linear terms.13 In general, we would 
like to allow all the lags of x that appear in !A(L)xt−1 to potentially enter 
nonlinearly through F(⋅). As we have discussed, we also wish to allow F 
to be of at least order three in order to avoid potentially important  
biases in the estimation of !A(L). When F(⋅) is of minimum order three, 
however, the number of terms it contains grows very fast with the num-
ber of lags of x. For example, if F is a  third- order polynomial in three 
lags of x, then with no further restrictions the resulting regression will 
feature 16 nonlinear terms, while adding a fourth lag would add an-
other 15 terms on top of this, and so on. Since we would like to allow 
more distant lags to enter the regression without simultaneously hav-
ing an explosion of coefficients to estimate, we impose the following 
two restrictions: (a) F is a polynomial of order three, and (b)  lags of  
x beyond the second enter (4) only through an accumulation term 
Xt−1 ≡ d∑ j=0

∞ (1 − d) jxt−1− j. Under these restrictions, we can equivalently 
write (4) as

 xt = a0 + a1xt–1 + a2xt–2 + a3Xt + F(xt–1, xt–2, Xt–1) + εt (5)

where F(⋅) is a multivariate polynomial containing  second-  and 
 third- order terms in its arguments.14 There are two important things to 
note about the econometric specification (5). First, it embeds the stan-
dard AR(2) process, which is known to be able to capture well many of 
the dynamics of macroeconomic variables. Second, it allows for more 
distant lags to play a role (through Xt–1) without requiring the estima-
tion of too many extra parameters. We should emphasize that our inclu-
sion of an accumulation term of this form is motivated by the class of 
models presented in Beaudry et al. (2015b), where the emergence of 
limit cycles is shown to be a possibility. See appendix for more details.

Handling Low- Frequency Movements

The specification we laid out in equation (5) is hopefully a sufficiently 
flexible way to allow us to offer new insight regarding the stability and 
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cyclical properties of major macro aggregates. One remaining question 
is how to treat very low- frequency movements in the variable xt. It is 
well known that most macroeconomic aggregates (even labor market 
variables) exhibit important low- frequency movements that are not 
generally thought to be related to the business cycle. For example, a 
variable such as total hours worked per capita, which according to 
many macro models should be stationary, often exhibits important low- 
frequency movements that are most often attributed to demographics 
and social change. We would like to remove such movements from our 
data, as they are likely to confound the cyclical properties we are inter-
ested in. In particular, in what follows we will interpret the framework 
we laid out above as modeling the cyclical element of a  cyclical- trend 
unobserved component model. That is, we want to interpret the ob-
served data as having been generated by a process of the form

xtO = xt + xtT,

where xtO is the observed variable, xt is the unobserved cyclical compo-
nent of interest, xtT  is a latent low- frequency trend, xt and xtT  are or-
thogonal series, and the process for xtT  can be written

 xtT =
−v

v

∫ [a(v) cos(vt) + b(v) sin(vt)]dv, v ≤ p. (6)

Here, a(v) and b(v) together determine the phase and amplitude associ-
ated with trend fluctuations of frequency v , and v  is the maximum 
frequency associated with trend fluctuations.

Within this framework, in order to implement our estimation of an 
equation such as (5) on the cyclical component of an observed macro-
economic aggregate xtO, it is necessary for us to take a stance on how to 
remove any low- frequency movements in the data that we believe are 
unrelated to  business- cycle behavior; that is, on how to remove xtT . In 
most of our exploration, we will do this simply using a high- pass filter 
that removes fluctuations with periods longer than 20 years. With quar-
terly data, this corresponds to setting v = 2p / 80 in equation (6), and 
making the additional identifying assumption that, not only are trend 
fluctuations made up entirely of frequencies below v  (as imposed by 
equation [6]), but these low frequencies are only associated with the 
trend component; that is, we also assume that the cyclical component xt 
is associated only with frequencies above v .15 We will include in our 
analysis a Monte Carlo evaluation of the potential biases in this ap-
proach to detect local instability and limit cycles in the extracted cyclical 
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component. For robustness, we will also report results obtained using 
other detrending methods.

C. Three Embedded Models

Expanding equation (5), we get the following expression for the evolu-
tion of xt, which we refer to as the “full” model:

 

xt = b0 + bxxt−1 + b ′x xt−2 + bXXt−1

+ b
x2xt−1

2 + b ′x 2xt−2
2 + b

X2Xt−1
2

+ bx ′x xt−1xt−2 + bxXxt−1Xt−1 + b ′x Xxt−2Xt−1

+ b
x3xt−1

3 + b ′x 3xt−2
3 + b

X3Xt−1
3

+ b
x2 ′x xt−1

2 xt−2 + b
x2X
xt−1

2 Xt−1

+ b ′x 2X
xt−2

2 Xt−1 + b
x ′x 2xt−1xt−2

2

+ b
xX2xt−1Xt−1

2 + b ′x X2xt−2Xt−1
2

+ bx ′x Xxt−1xt−2Xt−1 + ´t.

 (7)

This full model (7) allows for a rich nonlinear departure from the lin-
ear model. However, the drawback of such a specification is that it in-
volves 20 parameters, making some properties hard to illustrate. For 
this reason, we will consider at the other extreme a very parsimonious 
version of equation (5), which consists of the inclusion of only one non-
linear term. We choose this one nonlinear term to be a cubic term in xt–1. 
This choice, while somewhat arbitrary, is made for two reasons. First, 
from an intuitive standpoint, including odd- order nonlinear terms—of 
which the third is the lowest order—allows for a symmetric treatment 
of large positive and negative deviations from the steady state. Second, 
if there is only to be a single nonlinear term, having that term be solely 
in xt–1 seems to us to be the simplest choice. Our “minimal” model is 
therefore given by

 xt = b0 + bxxt−1 + b ′x xt−2 + bXXt−1 + b
x3xt−1

3 + ´t. (8)

As we shall see, we get very similar results based on either the minimal 
model or the full model, but the minimal model allows for simpler il-
lustrations.

Finally, we will also consider an “intermediate” model that lies be-
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tween these two extremes. One possibility in order to find the best in-
termediate specification is, for each variable under study, to start from 
the full model and sequentially remove insignificant variables. As this 
procedure is somewhat arbitrary, we instead choose as our intermedi-
ate model the case where we keep most  third- order terms from the full 
model, while eliminating all  second- order terms. This has the feature of 
significantly reducing the number of parameters, while still allowing for 
relatively rich nonlinearities. In particular, of the seven  third- order terms 
in equation (7), we keep the three cubic terms and the two  cross- terms 
involving xt–1 and Xt–1, so that our intermediate model becomes

 

xt = b0 + bxxt−1 + b ′x xt−2 + bXXt−1

+ b
x3xt−1

3 + b ′x 3xt−2
3 + b

X3Xt−1
3

+ b
x2X
xt−1

2 Xt−1 + b
xX2xt−1Xt−1

2 + ´t.

 (9)

Our three models—full, intermediate, and minimal—together offer a 
tractable nonlinear framework for examining whether certain macro-
economic variables may exhibit local instability and limit cycles. We 
will also compare the behavior of these nonlinear models with two 
specifications that do not feature any nonlinear terms: the “linear” 
model, given by

 xt = b0 + bxxt−1 + b ′x xt−2 + bXXt−1 + ´t, (10)

and a simple AR(2) model, 

 xt = b0 + bxxt−1 + b ′x xt−2 + ´t. (11)

D. Estimation with Total Hours

Data Treatment and Estimation Results

The motivation we used to derive our  reduced- form model is one based 
on a cyclical indicator, such as hours worked per capita. Accordingly, 
the first measure we examine is the (log of) BLS total hours worked, 
deflated by total population. The mechanisms behind our motivating 
model were not meant to explain low- frequency fluctuations such as 
those related to demographic and sociological change (e.g., aging, fe-
male labor market participation, etc.). As can be seen in panel (a) of 
figure 2, total hours (gray line) has exhibited important low- frequency 
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Fig. 2. Trend and cycle (high- pass filter, 80 quarters), total hours
Notes: Total hours are measured as the log of BLS total economy hours worked, deflated 
by total population. The trend of that series is obtained by removing from the level series 
its filtered component, where the filter is an 80- quarter high- pass filter, over the sample 
1948:Q1–2015:Q2. The cyclical component is expressed in percentage deviation from the 
level series.
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492 Beaudry, Galizia, and Portier

movements over the last 50 years. For this reason, we begin by filter-
ing the data in order to remove these movements. We do this by us-
ing a (linear) high- pass filter that retains only fluctuations associated 
with periods of less than 20 years.16 The trend (black line) and its fil-
tered component are displayed in panels (a) and (b), respectively, of  
figure 2.

Once we have a series for x = h (filtered hours), we then need to con-
struct the accumulated hours series analogous to Xt to above, denoted 
Ht. To construct this series, we truncate the accumulation at N quarters, 
so that Ht = d∑ j=0

N −1(1 − d) jht− j. We set N = 40 so that, for example, obser-
vations of h from 1950:Q2 to 1960:Q1 are used to compute H1960Q1. We 
assume for now that δ = 0.05. Later we show that our results are robust 
to different values of δ.

For each of our two linear and three nonlinear models, OLS parame-
ter estimates obtained using our total hours series are displayed in 
table 1, with t- statistics in parentheses. One can verify that in the non-
linear models there is always at least one significant nonlinear term. 
More informative are the Wald tests (see table 2) that compare the fit of 
the different models. For example, when testing the AR(2) model 
against the full model, we test the joint nullity of all the coefficients ex-
cept βh and b ′h  (the coefficients on ht–1 and ht–2, respectively) in the full 
model. The first row of table 2 shows that we reject the simple linear 
AR(2) model against all alternatives. The second row reaches the same 
conclusion for the linear model. The third row shows that, at a 1% level 
of confidence, the minimal model is not rejected against any of the non-
linear alternatives. We first discuss the results obtained with this mini-
mal model, since it is easiest to understand and illustrate. We will show 
later that results are mostly the same with the intermediate and full 
models.

Model Selection Using LASSO

An alternative way of selecting the model specification is to use statis-
tical methods developed in the data- mining literature. One particular 
method, the LASSO (Least Absolute Shrinkage and Selection Operator), 
allows for both model selection and shrinkage. The method, proposed 
by Tibshirani (1996), consists of minimizing the residual sum of squares 
of the full model subject to the restriction that the sum of the absolute 
values of the coefficients be less than a constant. Because of the nature 
of this constraint, it tends to produce some coefficients that are exactly 
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Table 1
Estimates of Various Models, Total Hours

Value

Variable   AR(2)   Linear   Minimal   Intermediate   Full

Constant –0.00 –0.01 –0.02 –0.01 –0.07
(–0.02) (–0.24) (–0.53) (–0.29) (–0.85)

ht–1 1.42 1.31 1.39 1.28 1.49
(23.75) (20.80) (19.73) (12.70) (10.02)

ht−1
2 — — — — –0.10

(—) (—) (—) (—) (–1.51)
ht−1

3 — — –0.01 –3e- 03 –0.09
(—) (—) (–2.39) (–0.76) (–1.85)

ht–2 –0.48 –0.34 –0.34 –0.24 –0.44
(–8.05) (–4.98) (–2.43) (–5.12) (–2.75)

ht−2
2 — — — — –0.06

(—) (—) (—) (—) (–0.76)
ht−2

3 — — — –4e- 03 0.11
(—) (—) (—) (–0.83) (1.38)

Ht–1 — –0.25 –0.27 –0.03 S0.23
(—) (–4.11) (–4.38) (–0.20) (1.09)

Ht−1
2 — — — — 0.25

(—) (—) (—) (—) (2.03)
Ht−1

3 — — — –0.27 –0.40
(—) (—) (—) (–2.45) (–2.10)

ht–1ht–2 — — — — 0.17
(—) (—) (—) (—) (1.15)

ht–1Ht–1 — — — — 0.25
(—) (—) (—) (—) (1.89)

ht–2Ht–1 — — — — –0.28
(—) (—) (—) (—) (–1.88)

ht−1
2 ht−2 — — — — 0.27

(—) (—) (—) (—) (1.57)
ht−1

2 Ht−1 — — — 6e- 03 –0.32
(—) (—) (—) (0.42) (–2.08)

ht−2
2 Ht−1 — — — — –0.30

(—) (—) (—) (—) (–1.46)
ht−1ht−2

2 — — — — –0.48
(—) (—) (—) (—) (–2.40)

ht−1Ht−1
2 — — — 0.04 –0.37

(—) (—) (—) (0.87) (–1.64)
ht−2Ht−1

2 — — — — 0.47
(—) (—) (—) (—) (1.79)

ht–1ht–2Ht–1 — — — — 0.77
   (—)   (—)   (—)   (—)   (2.25)

Note: The total hours series has been filtered with an 80- quarter, high- pass filter over 
the sample 1948:Q1–2015:Q2. Estimation is then done over the sample 1960:Q1–2014:Q4.
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494 Beaudry, Galizia, and Portier

zero, and hence act as a  model- selection device. The value of the con-
stant in the constraint is chosen to minimize the Akaike Information 
Criterion. The estimated equation is given by

 

xt = −0.07 + 1.3xt−1 − 0.23xt−2 − 0.03xt−1
2 + 0.21Xt−1

2

+ 0.04xt−1xt−2 + 0.29xt−1Xt−1 − 0.30xt−2Xt−1

− 0.01xt−1
3 − 0.21Xt−1

3 − 0.06xt−2
2 Xt−1 + 0.03xt−1Xt−1

2

+ 0.05xt−1xt−2Xt−1 + ´t.

 (12)

One can check that only 12 of the 18 variables of the full model are pres-
ent in equation (12), the others being assigned a coefficient of zero. We 
will explore the robustness of the results by comparing results obtained 
with minimal, intermediate, full, and LASSO models.

Local Instability and Limit Cycles

For the sake of clarity, let us write down the estimated AR(2), linear, and 
minimal models after shutting down the stochastic component:

ht = −0.00 + 1.42ht−1 − 0.48ht−2,

ht = −0.01 + 1.31ht−1 − 0.34ht−2 − 0.25Ht−1,

ht = −0.02 + 1.39ht−1 − 0.34ht−2 − 0.27Ht−1 − 0.01ht−1
3 .

⎧

⎨
⎪

⎩
⎪

Note that, even though our minimal model is nonlinear, it is easy to 
check that it has only one steady state at h = –0.09. In order to examine 
the local stability of each of these three equations, we compute the larg-

Table 2
Wald Test for the Different Models, Total Hours

H1

H0  
Linear  

(%)  
Minimal  

(%)  
Intermediate  

(%)  
Full  
(%)

AR(2) 0.006 0.002 0.004 0.003
Linear — 1.788 1.544 0.343
Minimal — — 7.63 1.20
Intermediate   —   —   —   2.81 

Notes: The five models correspond to equations (11), (10), (8), 
(9), and (7). Wald test corresponds to the test of joint nullity of 
the coefficients of those variables that are in H1 and not in H0.
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est eigenvalue of each system when linearized around its steady state. 
For the minimal model, this linear approximation is simply17

ht = 1.39ht−1 − 0.34ht−2 − 0.27Ht−1.

Maximum eigenvalues are displayed in table 3.
For the AR(2) model, the maximum eigenvalue is 0.86.18 For the linear 

model, it is higher (0.96), but still less than 1. The steady states implied 
by the point estimates of the AR(2) and linear models therefore indicate 
local stability, which is not surprising. For the nonlinear minimal model, 
on the other hand, the maximum eigenvalue is 1.01, so that the steady 
state is locally unstable. This may seem to conflict with the visual im-
pression given by the data (figure 2, panel [b]) that the economy does 
not explode. In fact, it is precisely the  third- order term ht−1

3  that prevents 
explosion, since it enters negatively in the estimated equation. The 
steady state is thus locally unstable, but as h moves away from the 
steady state, the term h3 acts as a centripetal force that pushes the econ-
omy back toward the steady state if it strays too far. As a result, the 
economy will oscillate without explosion and without convergence to a 
fixed point. This can be seen by using the minimal model to construct a 
deterministic forecasted path for h, conditional on information at date 
T0. Formally, this deterministic forecast is computed as:

!hT0
= hT0

,

!hT0−1 = hT0−1,

!HT0−1 = HT0−1,

!ht = b̂0 + b̂h
!ht−1 + b̂ ′h

!ht−2 + b̂H
!Ht−1 + b̂

h3
!ht−1

3 ∀ t > T0,

!Ht = (1 − d) !Ht−1 + d !ht    ∀ t ≥ T0.

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

Table 3
Some Statistics for the Different Models, Total Hours

   AR(2)   Linear   Minimal   Intermediate   Full

R2 0.94 0.94 0.94 0.94 0.95
Adj. R2 0.94 0.94 0.94 0.94 0.95
DW 2.22 2.09 2.12 2.09 2.09
Max eig. modulus  0.86   0.96   1.01   1.01   {1.02,1.2,1.03}

Notes: The five models correspond to equations (11), (10), (8), (9), and (7). Adj. R2 is the 
adjusted R2. DW stands for the  Durbin- Watson statistics for the test of autocorrelation 
of the residuals. DW = 2 corresponds to no autocorrelation. The last line gives the value  
of the maximum eigenvalue for the local dynamics of each model in the neighborhood of 
the existing steady states.
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We forecast h over 1,000 periods with the estimated model. We start 
(arbitrarily) from the first trough of the sample (i.e., 1961:Q3) and plot 
the forecasted path in the model state space (ht, ht–1, Ht). As we can see 
in panel (a) of figure 3, the trajectory is quickly attracted to a limit cycle. 
Figure 4 shows that this convergence holds more generally: starting 
from two initial conditions—one inside the limit cycle and one out-
side—the system converges to the limit cycle, suggesting that it is in-
deed attractive. Note that, as h is highly autocorrelated, there is little 
loss of information if one projects the limit cycle onto the (ht, Ht) plane 
(panel [b] of figure 3) instead, and we will often use that representation 
of the limit cycle in what follows.

It is quite interesting that such a simple specification, which was mo-
tivated from our previous theoretical analysis (see Beaudry et al. 2015b), 
displays a limit cycle. We will document later using Monte Carlo meth-
ods that this result is unlikely to be an artifact of our data treatment. Be-
fore exploring further the properties of the minimal model, it is useful 
to show that we obtain similar results with the other nonlinear models. 
Table 3 shows that the largest eigenvalue is also greater than 1 for the 
intermediate and full models. As shown in figure 5, these two models 
(as well as the LASSO model) also generate limit cycles, with all specifi-
cations producing cycles of similar amplitudes for total hours.19

Let us now focus on the minimal model and look at the size and 
frequency of the limit cycle. As illustrated in figure 6, the determinis-
tic forecast for the minimal model displays a cycle whose frequency 
and amplitude is close to the ones observed in the data. Figure 6 also 
displays 95% confidence bands around the deterministic forecast, and 
shows that after 60 quarters, the confidence bands have the same am-
plitude as the deterministic cycle. Panel (a) of figure 7 compares the de-
terministic forecast of the minimal model to the AR(2) and linear model, 
while panel (b) compares the deterministic forecast of the intermediate, 
full, and LASSO models.

Other Labor Market Variables

We now explore the robustness of the results we obtained using total 
hours to using other labor market variables instead. In particular, we 
examine the behavior implied by estimating our minimal model using, 
sequentially, nonfarm business hours, the job- finding rate, and the rate 
of unemployment. For each of these variables, we report in figure 8 the 
deterministic forecast path in (xt, Xt)- space, as well as xt over time, 
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Fig. 3. The limit cycle in the minimal model, total hours
Note: This corresponds to the deterministic simulation of the minimal model (8), starting 
in 1961:Q3. The model has been estimated from 1960 to 2014 using 80- quarter, high- pass- 
filtered total hours.
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Fig. 4. Convergence to the limit cycle in the minimal model, total hours
Notes: This corresponds to the deterministic simulation of the minimal model (8), starting 
from two points arbitrarily chosen inside and outside the limit cycle. Those two points 
are, respectively, (h0,h–1,H–1) = (0.1,0.1,0.1) and (h0,h–1,H–1) = (6,4,10). The models have been 
estimated from 1960 to 2014 using 80- quarter, high- pass- filtered total hours. For graphical 
reasons, the first 13 points of each path are not shown.

Fig. 5. The limit cycle in the four models in (ht, Ht)- space, total hours
Note: This corresponds to the deterministic simulation of the minimal (8), intermediate 
(9), LASSO (12), and full (7) models, starting (arbitrarily) in 1961:Q3. The model has been 
estimated from 1960 to 2014 using 80- quarter, high- pass- filtered total hours.
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where x is the variable under consideration and X its accumulated 
level (defined as before by Xt ≡ d∑ i=0

∞ (1 − d)ixt− i). Panels (a) and (b) of 
figure  8 correspond to the forecasted paths for nonfarm business 
hours, panels (c) and (d) are those associated with the job- finding rate, 
and finally panels (e) and (f) correspond to the rate of unemployment. 
In all three cases, we start the forecast from 1961:Q3. As is clear from 
these figures, a limit cycle appears in all three cases, and these cycles 
have durations close to nine years, with amplitudes similar to the ac-
tual data.

How Significant Are Limit Cycles?

Up to now, we have checked for the existence of limit cycles using only 
the models’ point estimates. Beyond the either / or results implied by 
these point estimates, it is of interest to use the sampling variability 
to quantify how strongly the data support the presence of instability 
and limit cycles. To do so, we derive estimated parameter distribu-

Fig. 6. Forecasted path as of 1961:Q3 with the minimal model, total hours
Notes: The dark gray line labeled “Forecasted” is the deterministic simulation of the mini-
mal (8) model, starting (arbitrarily) in 1961:Q3, and the light gray line represents observed 
filtered hours. The gray area represents the 95% confidence band for the deterministic 
forecast, as obtained from 10,000 Monte Carlo simulations using draws from the posterior 
distribution over the model parameters.
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Fig. 7. The limit cycle in the four models, time series of ht, total hours
Notes: This corresponds to the deterministic simulation of the minimal (8), intermediate 
(9), LASSO (12), and full (7) models, starting (arbitrarily) in 1961:Q3. The model has been 
estimated from 1960 to 2014 using 80- quarter, high- pass- filtered total hours.
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Fig. 8. The limit cycle in the minimal model, other labor market variables
Notes: Figure plots deterministic simulation of minimal model (8) starting in 1961:Q3. 
Model was estimated from 1960 to 2014 (–2007 for job- finding rate) using 80- quarter, 
high- pass- filtered series of nonfarm business hours, job- finding rate (from Shimer 2012), 
and unemployment rate. P and U stand for “cumulated” rates, constructed in the same 
way as Xt above.
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502 Beaudry, Galizia, and Portier

tions for the minimal, intermediate, and full models using a bootstrap 
procedure. For each bootstrapped data set, we check for the existence 
of a limit cycle, which we define as meeting the following conditions: 
(a) starting in the simulation period corresponding to 1961:Q3,20 the de-
terministic simulation of the nonlinear model estimated on this data set 
converges to a limit cycle; and (b) the Wald test rejects the linear model 
against the nonlinear one at 5%. Results are displayed in table 4. As can 
be seen from the table, the detection of limit cycles ranges mainly be-
tween 50 and 78%. This indicates that the null hypothesis of the absence 
of limit cycles in the data cannot be rejected at conventional levels of 
significance. Nonetheless, a person with a diffuse prior would in most 
cases infer that limit cycles are more likely than not.

Next, rather than focusing on our holistic definition of a limit cycle, 
we consider how strong the results are with regard specifically to the lo-
cal instability that we have identified. To this end, we have computed—
for the linear and minimal models estimated on total hours—the boot-
strap distribution of the maximum eigenvalue. For the minimal model, 
this eigenvalue is computed for the linear approximation at the steady 
state.21 Figure 9 plots the PDF for the bootstrap distributions. As can be 
seen, the distribution is almost entirely below one for the linear model. 
In contrast, allowing for a single cubic term in the estimation shifts this 
distribution significantly to the right, with 79% of the mass now being 
concentrated above 1. Again, this pattern is insufficient to reject the null 
hypothesis of stability at conventional levels of significance. Nonethe-

Table 4
Frequency of Limit Cycles for Labor Market Variables

  
Minimal  

(%)  
Intermediate  

(%)  
Full  
(%)

Total hours 74 73 78
Nonfarm bus. hours 70 55 70
Job- finding rate 76 69 59
Unemployment rate  60   32   50*

Notes: Bootstrap method used to generate 1,000 replications of the 
minimal, intermediate, and full model estimates for each labor mar-
ket variable. For example, first cell indicates that a limit cycle was 
found in 74% of replications of minimal model. Data are always de-
trended with 80- quarter, high- pass filter before estimation. See ap-
pendix for details of samples and variable definitions. A * indicates 
that in more than half of replications, simulation was explosive. 
In such cases, we redrew bootstrap innovations until we obtained 
1,000 nonexplosive replications.
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less, the results do clearly suggest that local instability is a relevant pos-
sibility.

Finally, as one further check on the strength of our results, we attempt 
to answer the following question. Suppose the DGP is indeed stable 
and linear. Accounting for parameter uncertainty, how likely are we to 
erroneously conclude that the steady state is unstable simply by allow-
ing for nonlinearities in the estimation? To answer this question, for to-
tal hours we have computed a bootstrap distribution for the maximum 
eigenvalue of each nonlinear model estimated on data generated by ei-
ther the AR(2) or linear model, where we account for uncertainty in the 
parameters of the latter models. Table 5 reports instability p- values from 
these bootstrap distributions associated with the actual observed maxi-
mum eigenvalues (i.e., those reported in table 3). The results suggest 
that, accounting for sampling variability, we are unlikely to see the mag-
nitude of instability we have observed in the data for the nonlinear mod-
els if the true DGP is one of the linear models. For example, if the true 
DGP were the linear model, we would obtain maximum eigenvalues  

Fig. 9. Maximum eigenvalue in the linear and minimal model, total hours
Notes: Figure plots the estimated distribution of maximum eigenvalue for the linear and 
minimal model estimated on total hours. The densities are estimated using 1,000 boot-
strap replications of each model. The models have been estimated from 1960 to 2014 using 
80- quarter, high- pass- filtered series of total hours.
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for the intermediate and full models at least as great as the ones we ob-
served in the data less than 15% of the time, and less than 2% of the time  
for the minimal model.

Multiplicity of Steady States

Since we are examining dynamics in a nonlinear framework, we need 
to recognize the potential for a multiplicity of attractors in the system. 
First, let us note that all the estimated equations are backward looking, 
so that there is (trivially) never indeterminacy in the solution to our 
equations.22 In contrast, we do need to check for the existence of mul-
tiple steady states or multiple limit cycles for our estimated models. 
Consider first the case of multiple steady states, and focus on the mini-
mal model when shocks are turned off:

ht = b0 + bhht−1 + b ′h ht−2 + bHHt−1 + b
h3ht−1

3 ,

Ht = (1 − d)Ht−1 + dht.

Estimation typically gives β0 very close to zero, βh larger than one, b ′h  
and bH negative, and b

h3 negative and small. Assume for simplicity that 
β0 is exactly zero, such that h = 0 is a steady state. Nonzero steady states 
of the minimal model, if they exist, are the two opposite real numbers h  
and −h, with23

Table 5
p- Values for Maximum Eigenvalues When DGP Is 
Linear / Stable, Total Hours

Estimated Model

DGP  
Minimal  

(%)  
Intermediate  

(%)  
Full  
(%)

AR(2) 0.08 4.63 9.06
Linear   1.91   14.13   13.91

Notes: In this table, the DGP is either the (stable) 
AR(2) or linear model, with parameters drawn from a 
bootstrapped distribution. For each of 10,000 param-
eter draws, a new data set was generated (again via 
bootstrap), and the nonlinear models were estimated 
on this data, yielding a distribution for the maximum 
eigenvalue for each nonlinear model when the DGP is 
linear and stable. Table reports instability p- values—
that is, the probability for maximum eigenvalues of 
nonlinear models estimated on actual data (see table 
3) to be larger than one in modulus.
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h = 1 − bh − b ′h − bH

b
h3

,

Restricting to the case where b
h3 < 0, we have multiplicity of steady 

states if and only if

 bh + b ′h + bH > 1. (13)

Therefore, although the model is nonlinear, it can generically be in a 
parameter configuration with a unique steady state.

Note that, as βH approaches zero, the condition for local instability of 
the zero steady state is,

 bh + b ′h > 1. (14)

Thus, for βH close to zero, equations (13) and (14) coincide: the occur-
rence of limit cycles, which requires local instability, necessarily implies 
multiplicity of steady states. However, when the economy has a longer 
memory (i.e., βH is negative but not arbitrarily close to zero), the two 
conditions no longer coincide, and in particular it is possible for the 
steady state to be both unique and locally unstable. This is typically 
what the data will suggest in the minimal model.

In the case of multiplicity, the question is whether the nonzero steady 
states are stable or unstable when the zero steady state is unstable. Tak-
ing a  first- order Taylor expansion of equation (8) around , we have the 
following dynamics (omitting constant terms):

 ht = (bh + 3h 2b
h3

bh

! "### $###
)ht−1 + b ′h ht−2 + bHHt−1. (15)

Note that the same equation holds for the local dynamics around −h. As 
we are looking at situations where b

h3 < 0, we will have bh < bh, such 
that it is possible that the two nonzero steady states are stable when the 
zero steady state is unstable. In such a case, although there exists a limit 
cycle in the neighborhood of zero, it would be possible to have trajecto-
ries that would start close (but not arbitrarily close) to zero and con-
verge to h  or −h. The same argument can also be made for the interme-
diate and full models. The occurrence of additional, attractive steady 
states depends ultimately on the parameters of the model. Our findings 
suggest, however, that such a situation is unlikely to be relevant. In 
particular, given the coefficients as estimated on total hours, the mini-
mal and intermediate models both feature unique steady states. More-
over, while there are three steady states for the full model (located at h = 
–0.77, 0.22, and 1.23), all three of these steady states are locally unstable, 
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which implies that the system cannot converge to a steady state in any 
of our models estimated on total hours.

Note that, for the full model, it is in principle possible that two or 
even all three of the steady states could be surrounded by distinct at-
tractive limit cycles. It is not possible to prove analytically that this is 
not the case, but it can be checked numerically. Figure 10 displays (in (ht, 
Ht)- space) four deterministic forecasts from the full model: two starting 
near the intermediate (h = 0.22) steady state, and one each starting near 
the high and low steady states. Steady states are indicated by stars in 
the figure. One observes that all trajectories apparently converge to the 
same closed orbit, suggesting that the existence of multiple attractive 
limit cycles is unlikely.

The Power of Our Limit- Cycle- Detection Procedure

One may worry that our procedure, especially our detrending proce-
dure, might generate spurious limit cycles even if the DGP is actually 

Fig. 10. Convergence to the limit cycle from the neighborhood of each of the three 
steady states, full model, total hours.
Notes: Figure shows deterministic forecasts starting from the neighborhoods of each of 
the three steady states (represented by stars). All four trajectories converge to the same 
limit cycle. The models have been estimated from 1960 to 2014 using 80- quarter, high- 
pass- filtered total hours.

This content downloaded from 134.117.121.148 on January 11, 2018 13:07:55 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Is the Macroeconomy Locally Unstable and Why Should We Care? 507

locally stable, or alternatively that it may fail to detect a limit cycle 
when there is indeed one. We investigate these issues here using Monte 
Carlo analysis. First, we check that we do not spuriously find limit 
cycles when there are none present. To do so, we first filter (logs of) 
total hours with an 80- quarter, high- pass filter, so that

htL = htT + ht

where htL stands for levels, htT for the trend and where ht is the cyclical 
component. We then estimate an AR(2) on the filtered data. This AR(2), 
which is the one displayed in table 1, will serve as the DGP. We then 
simulate the estimated (stable) AR(2) to obtain an artificial cyclical se-
ries ĥt, then add it to the actual trend series htT to generate an artificial 
level series

ĥtL = htT + ĥt

By construction, these simulated level series do not feature limit cycles. 
We may then apply our  limit- cycle- detection procedure to these simu-
lated series in order to verify that it does not spuriously detect limit 
cycles where there are none. That is, we treat each simulated level series 
in the same way we have treated the actual level series: first filter, then 
estimate the minimal, intermediate, and full models, then check for the 
existence of a limit cycle. For each model and simulation, we check for 
the existence of a significant limit cycle, which we define as meeting the 
following conditions: (a) starting in 1961:Q3,24 the deterministic simula-
tion of the model converges to a limit cycle; and (b) the Wald test rejects 
the linear model against the nonlinear one at 5%. We perform 10,000 
simulations, and report the results in the first row of table 6. The three 
models spuriously detect limit cycles less than 5% of the time, suggest-
ing that our procedure is highly unlikely to detect a limit cycle if one 
does not exist in the DGP. The second row of table 6 shows similar re-
sults for the case where the DGP is the estimated linear model instead 
of the AR(2).25

Next, we test for the possibility of missing a limit cycle with our pro-
cedure when it does exist in the data. In order to do so, we take the esti-
mated minimal, intermediate, or full model as the DGP and follow the 
same procedure as above. The results are displayed in the bottom three 
rows of table 6, and show that limit cycles are relatively hard to detect 
using our procedure. Typically, when the estimated model is well speci-
fied (meaning that it has the same form as the DGP), our procedure 
detects limit cycles about half of the time.
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From these Monte Carlo simulations, we conclude that it is unlikely 
that we will spuriously detect limit cycles, and that correctly detecting 
a limit cycle when one is present occurs at best 58% of the time.

Robustness

Here we briefly discuss the robustness of our main results. We maintain 
focus on the case where our measure of activity is total hours per capita. 
We begin by examining the robustness of our results with respect to our 
choice of δ in the computation of H and to our detrending procedure. 
Recall that, in order to construct the cumulated series H, we need to 
make a choice for the value of δ. Table 7 shows that a limit cycle is de-
tected generically for the minimal model, as long as δ is not too large for 
the intermediate and full models, and as long as δ is also not too small 
in the Intermediate model.

Next, table 8 considers filters other than the 80- quarter, high- pass one 
used so far, and also considers the model estimated with the LASSO 
method. Let us first note that the high- pass filter is a linear filter and 
therefore should not be spuriously introducing nonlinearities, so that 
in general we should not expect to find cycles where there are none 
simply by choosing a particular parameter for the filter. On the other 
hand, if there exists a limit cycle in the data but the filter parameter 
we choose removes the frequencies associated with that cycle, our pro-
cedure would in general fail to identify this cycle. Further, given the 

Table 6
Percentage of Limit Cycle Detection in Monte- Carlo Simu-
lations Simulated Hours

Estimated Model

DGP  
Minimal  

(%)  
Intermediate  

(%)  
Full  
(%)

AR(2) 1.9 2.5 2.3
Linear 5.8 4.5 3.3
Minimal 54 34 20
Intermediate 43 51 40
Full   57   43   58

Note: In this table, the DGP is alternatively the estimated 
AR(2), linear, minimal, intermediate, or full model. The 
models have been estimated from 1960 to 2014 using 
80- quarter, high- pass- filtered total hours, and are then simu-
lated 10,000 times.
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Table 7
Robustness to δ, Total Hours

  
Minimal  

(%)  
Intermediate  

(%)  
Full  
(%)

δ = .001 LC (58) –(31) LC (89)
δ = .01 LC (59) –(40) LC (85)
δ = .1 LC (76) LC (67) LC (66)
δ = .2   LC (40)   –(40)   –(40)

Notes: In this table, we estimate the minimal, interme-
diate, and full models under various values of δ. “LC” 
means that the estimated model displays a limit cycle. The 
number in parenthesis indicates the fraction of the 1,000 
bootstrap replications for which we found a limit cycle 
with the linear model being rejected at 5% against the 
nonlinear one. All the models have been estimated from 
1960–2014 using 80- quarter, high- pass- filtered total hours.

Table 8
Robustness to Detrending, Total Hours

  
Minimal  

(%)  
Intermediate  

(%)  
Full  
(%)

High- pass 100 LC (58) LC (35) LC (72)
High- pass 90 LC (78) LC (72) LC (68)
High- pass 70 LC (80) LC (80) LC (80)
High- pass 60 LC (57) LC (51) LC (82)
High- pass 50 –(41) LC (38) –(67)
Band- pass(6,3,2) –(12) –(41) –(37)
Hodrick- Prescott (λ = 1600) –(28) –(30) –(20)
Polynomial trend (3rd- order) –(18) LC (29) LC (75)
Polynomial trend (4th- order) –(19) LC (30) LC (76)
Polynomial trend (5th- order) –(53) LC (49) LC (76)
No detrending   –(.1)   –(21)   –(40)

Notes: In this table, we estimate the minimal (8), intermediate (9), and full (7) models us-
ing various detrending methods. “LC” means that the estimated model displays a limit 
cycle. The number in parenthesis indicates the fraction of the 1,000 bootstrap replications 
for which we found a limit cycle with the linear model being rejected at 5% against the 
nonlinear one. All the models have been estimated from 1960 to 2014 using total hours.
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strong implicit restrictions imposed on the data when estimating our 
three models—which are strongest in the minimal model and weakest 
in the full model—we should in general expect to find that our choice 
of filter affects our ability to identify limit cycles even if they exist in 
the data, and that this sensitivity to the filter should be strongest in the 
minimal model and weakest in the full model. The results presented in 
table 8 largely support these predictions. In particular, we report results 
using different high- pass filters from 100 to 50 quarters, as well as for 
commonly used band- pass (6,32) and  Hodrick- Prescott (λ = 1600) fil-
ters. We also report results for when we detrend using polynomial time 
trends of order three, four, and five.

Three conclusions emerge from the table. First, the detrending pro-
cedures that remove only the lowest frequencies (i.e., the 60 quarters 
or more high- pass filters and the polynomial time trends) are gener-
ally associated with limit cycles, while the procedures that also re-
move the middle range of frequencies (i.e., the band- pass [6,32] and 
 Hodrick- Prescott [λ = 1600] filters) are not. Given the considerations 
discussed above, this is consistent with the view that the data features 
a  medium- frequency limit cycle, and that two of the most commonly 
used filters in the  business- cycle literature remove those frequencies 
by design. This in turn suggests the need to focus on fluctuations that 
are longer than traditionally thought to be associated with business  
cycles.

Second, the minimal model is quite sensitive to the choice of filter, 
with no clear pattern to this sensitivity, while the intermediate and full 
models are relatively insensitive. This is consistent with the view that 
it may be the strong model restrictions underlying the minimal model 
that drive much of its observed sensitivity to the filter (as opposed to 
spurious patterns generated by the filter itself). In particular, the fact 
that the more flexible specifications typically support the existence of 
a  medium- frequency limit cycle, while the very restrictive specification 
may or may not depending on the filter used, is supportive of the hy-
pothesis that a  medium- frequency limit cycle is present in the data but 
the minimal model is too restrictive to detect it consistently. Finally, 
note that limit cycles are at best only found 40% of the time when we 
do not filter the data.

E. Behavior in Other Countries

Here we extend our exploration of macroeconomic dynamics using 
data on the unemployment rate in other countries.26 These results are 
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presented in table 9. We estimate our three models for 11 countries. As 
can be seen in the table, we find some evidence of limit cycles in about 
half of the countries. Although this is somewhat low, interestingly this 
ratio is similar to the detection rate we have found in our Monte Carlo 
exercise. Looking closely at each country makes it clear why we do find 
limit cycles in some and not in others. As an example, let us consider 
Switzerland and the Netherlands. Data and deterministic forecasts for 
these two countries are displayed in figure 11.

Switzerland and the Netherlands both have marked low- frequency 
dynamics. In the case of Switzerland (figure 11, panels [a] and [c]), there 
appears to have been a change of regime around 1990; there was al-
most zero unemployment in the 1970s and 1980s, but a 3.5% average 
since 1990. Besides this low- frequency variation, what emerges from 
figure 11, panel (c), is the big recession of 1991–1993, and the progres-
sive recovery from 1993 to 2000. Instead of a relatively regular cycle, 
as we have observed in the United States, we see one big cycle and 
four smaller ones, which is a pattern that cannot be easily captured 
by our  reduced- form models. Hence, the minimal model estimated on 
this data does not exhibit a limit cycle, and the dynamics of forecasted 

Table 9
Limit Cycles in Other Countries

Unemployment rate 
Minimal  

(%)  
Intermediate  

(%)  
Full  
(%)

Australia –(.7) –(2) –(11)*
Austria LC (98) –(38) LC (76)
Canada –(11) –(22) –(11)
Denmark –(12) LC (45) LC (88)
France –(3) –(26) LC (52)*
Germany LC (79) –(49) LC (88)
Japan –(7) –(33) –(50)
Netherlands LC (62) LC (78) –(94)
Sweden LC (65) –(64) LC (66)
Switzerland –(16)* –(52) –(27) 
United Kingdom   –(4)   –(3)   LC (78)

Notes: In this table, we estimate the minimal (8), intermediate (9), and full (7) mod-
els, considering various labor market variables. “LC” means that the estimated 
model displays a limit cycle. The number in parenthesis indicates the fraction of 
the 1,000 bootstrap replications for which we found a limit cycle with the linear 
model being rejected at 5% against the nonlinear one. Data are always detrended 
with an 80- quarter, high- pass filter before estimation. See appendix for details of 
samples and variable definitions. A star (*) indicates that in more than half of the 
replications, the simulation with bootstrap innovations was explosive, so that the 
pseudodata sample could not be used for estimation. In this case, we have drawn 
again bootstrap innovations until we obtained 1,000 nonexplosive replications.
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unemployment as of 1975 are not very different from the ones obtained 
with an AR(2) model.27 Things are very different for the Netherlands 
(figure 11, panels [b] and [d]). The low- frequency dynamics feature a 
marked increase from the early 1970s to the late 1980s, followed by a 
prolonged decline through to early in the first decade of the  twenty- first 
century. The key determinants of those trend movements are the first 
and second oil shocks, followed by important labor market reforms 
in the 1990s. Fluctuations around this trend, however, have been very 
regular—and in particular we do not observe one big cycle dwarfing 
the others, as was the case for Switzerland—and thus the estimated 
minimal model features a limit cycle.

Fig. 11. Unemployment dynamics in Switzerland and the Netherlands
Notes: Unemployment rate is observed over the sample 1970:Q1–2014:Q4. Unemploy-
ment rate is measured as “Registered Unemployment Rate” for Switzerland and as “Har-
monized Unemployment Rate: All Persons” for the Netherlands. The H series is con-
structed assuming N = 20, so that estimation starts in 1975:Q2. The trend of these series is 
obtained by removing from the level series its filtered component, where the filter is an 
80- quarter, high- pass filter. The cyclical component is expressed in percentage deviation 
from the level series. Deterministic forecasts are done starting from 1975:Q1, with the 
estimated AR(2) (11) and minimal (8) models.
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F. Quantity Variables

Difficulties

We now turn to the estimation of our nonlinear  reduced- form equation 
using quantity variables. Before performing this exercise, we want to 
highlight the added difficulties associated with quantity variables. To 
this end, consider the simple case in which output is given by yt = θt + 
ht, where θ is TFP, and in which hours follows as before a process of the 
type

 ht = a0 + a1ht−1 + a2ht−2 + a3Ht + F(ht−1, ht−2, Ht−1) + ´t. (16)

In such a case, the dynamic equation for output y is given by

 

yt = a0 + a1yt−1 + a2yt−1 + a3∑ j=1
∞ (1 − d) j−1(yt− j − ut− j) + ´t

+ F(yt−1 − ut−1, yt−2 − ut−2,∑ j=1
∞ (1 − d) j−1(yt− j − ut− j))

+ ut − a1ut−1 − a2ut−2 − a3 + ´t.

 (17)

If we had a good measure of θt, then the estimation of equation (17) 
would not be any more difficult than our estimation of equation (16) 
using hours worked. However, in the absence of a good measure of θ, 
the estimation of equation (17) becomes difficult. Simply using a fil-
tered measure of yt as a representation of yt – θt is unlikely to perform 
well. This can be seen in practice by running a Monte Carlo experiment 
as follows. We take our estimates of the minimal, intermediate, or full 
model obtained when run on the 80- quarter, high- pass- filtered total 
hours series. As shown previously, all three of these estimated mod-
els feature a limit cycle. We then use this estimated model to create 
an artificial cyclical series of hours, to which we add the log of labor 
productivity taken from the data. This gives us a log- level series for 
artificial output. We then treat this level series in the same way we will 
treat the actual level series of output: filter, estimate the minimal, inter-
mediate, and full models, then check for the occurrence of a significant 
limit cycle. We perform 10,000 simulations, and report in table 10 the 
percentage of simulations for which a limit cycle is (correctly) detected. 
The three models hardly detect limit cycles in these simulated output 
series, even if by construction they contain limit cycle forces. Detection 
rates are around 15% when the estimated model embeds these DGP 
specifications. Despite this low detection rate, we nonetheless proceed 
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and examine whether our procedure detects limit cycle in the actual 
quantity data. As we will see, the detection rate is much lower when 
using quantity variables than when using labor market variables—as 
could be expected given the Monte Carlo exercise.

Estimation Results

We estimate the three models (7), (8), and (9) on output, total consump-
tion, durable goods expenditures, fixed investment, various compo-
nents of investment, and the capacity utilization rate. Each of these 
variables is again first detrended using an 80- quarter, high- pass filter. 
Estimation results are summarized in table 11. While we do not find 
much evidence of limit cycles using the minimal model, interestingly,  
we find in the full model limit cycles detected at a frequency of over 
50% using all variables except equipment investment.

III. Should We Care?

The previous section explored whether cyclical movements in macro-
economic variables exhibited characteristics suggestive of local insta-
bility and limit cycles. In this section, we examine whether one should 
care about identifying / differentiating such a possibility. There are at 
least two potential reasons why one might care. First, it is possible 
that it could lead to improved forecasting ability. Second, it is possible 
that policy changes could have differing effects on stable and locally 
unstable  limit- cycle models. Our explorations suggest that, for fore-
casting purposes, differentiating between the two cases is likely of 

Table 10
Percentage of Limit- Cycle Detection in Monte Carlo Simulations, 
Simulated Output

Estimated Model

DGP  
Minimal  

(%)  
Intermediate  

(%)  
Full  
(%)

Minimal 14 13 5
Intermediate 12 15 6
Full   12   11   11

Note: In this table, the DGP is alternatively the estimated minimal, 
intermediate, and full models. The models have been estimated from 
1960 to 2014 using 80- quarter, high- pass- filtered total hours, and are 
then simulated 10,000 times.
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 second- order importance. This is most easily observed by recogniz-
ing that the variance of the one- step- ahead forecast error for the linear 
model is almost identical to that for any of the nonlinear models. How-
ever, as we argue in this section, we believe that, for policy purposes, 
identifying whether macroeconomic dynamics may contain limit cycles 
forces can be of  first- order importance. In particular, we discuss how a 
policy aimed at countering the effects of shocks can lead to very differ-
ent outcomes depending on whether the model exhibits limit cycles, 
even though the two models are similar in terms of standard forecast  
performance.

A. Theoretical Results

The goal of stabilization policy is to reduce inefficient macroeconomic 
volatility. In practice, this is often equated to the goal of reducing the cy-
clical volatility of output and employment. One stabilization approach 
is to direct policy toward countering or nullifying the impact of certain 
exogenous forces hitting the economy. In linear models, such a strategy 
will generally be effective, as a reduction in the variance of exogenous 

Table 11
Existence of a Limit Cycle for Quantity Variables

  
Minimal  

(%)  
Intermediate  

(%)  
Full  
(%)

Output –(11) LC (60) –(53)
Nonfarm bus. output — (20) LC (64) –(54)
Consumption –(3) LC (84) LC (85)
Fixed investment –(28) –(12) LC (54)*
Structures LC (80) LC (84) LC (75)
Durables –(32) LC (75) LC (85)
Residential –(15) LC (34) –(62)*
Equipment –(19) –(14) –(27)
Utilization   LC (86)   LC (80)   LC (53)*

Notes: In this table, we estimate the minimal, intermediate, and full models, con-
sidering various goods market variables. “LC” means that the estimated model 
displays a limit cycle. The number in parenthesis indicates the fraction of the 1,000 
bootstrap replications for which we found a limit cycle with the linear model be-
ing rejected at 5% against the nonlinear one. Data are always detrended with an 
80- quarter, high- pass filter before estimation. See appendix for details of samples 
and variable definitions. A star (*) indicates that in more than half of the replications 
the simulation with bootstrap innovations was explosive, so that the  pseudo- data 
sample could not be used for estimation. In this case, we have drawn again boot-
strap innovations until we obtained 1,000 nonexplosive replications.
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shocks translates directly in to a reduction in the variance of endog-
enous variables. However, in an environment where  limit- cycle forces 
may be present, this strategy may no longer be effective. In particu-
lar, in this section we will show that when  limit- cycle forces are pres-
ent, (a) a reduction in the variance of shocks may actually increase the 
variance of endogenous variables; (b) even if reducing the variance of 
shocks reduces the variance of the outcomes, the relationship between 
the shock variance and outcome variance is likely to be quite weak; 
and (c) the principal effect of reducing the shock variance is likely to 
dampen  higher- frequency movements while accentuating longer cycli-
cal movements (whereas such a change in the shape of the spectrum 
would not arise in a linear model).

In order to look at these issues, we will focus again on a univariate 
setup.28 For example, consider an environment where the dynamics of 
a state variable of interest xt may we written as

xt = F(xt−1, xt−2,…) + ´t,

where εt is an exogenous shock with variance s´
2. If the function F(⋅) is 

linear and is such that x is stationary,29 then the variance of x will be 
strictly increasing in the variance of ε. However, if the function F(⋅) is 
nonlinear, then the link between the variance of x,30 denoted sx

2 , and 
the variance of ε may be much more complicated. In particular, even in 
the case where F(⋅) is such that sx

2 exists and is finite, sx
2 will not neces-

sarily be an increasing function of s´
2 . More to the point, when F(⋅) is 

such that the deterministic system xt = F(xt−1, xt−2,…) admits a limit 
cycle, then sx

2 will often be decreasing in s´
2 over some range. To illus-

trate this point, consider an order three data- generating process similar 
to those we have estimated in section II, but in which we remove both 
the accumulation and the second autoregressive terms for analytical 
tractability:

 xt = −bxxt−1 + b
x3xt−1

3 + ´t, (18)

Under the restrictions

 1 < βx < 2, (51)

and 

 b
x3 = 1 + bx, (52)

one may verify that when s´
2 = 0 the system (18) possesses a limit cycle 

of period two31 in which x alternates between x  and −x, where 
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x ≡ bx − 1 / b
x3 . Moreover, this two- cycle attracts all orbits for which 

0 < |x0 | < 1. Now consider an increase in s´
2. How does this affect the 

variance of x? Proposition 1 indicates that an increase in s´
2 can lead to 

a decrease in sx
2.

Proposition 1. If the random variable xt evolves according to equation 
(18) with restrictions 51 and 52, then the variance of xt will be decreasing in 
s´

2 when s´
2 is sufficiently small.

Proof. See appendix.
The intuition for Proposition 1 reflects the nature of the nonlinear 

forces generating the limit cycle. Near the limit cycle, a shock that 
moves x outside of the cycle (i.e., so that |xt | > x) is countered by stron-
ger forces pushing it back toward the cycle than is a shock that moves x 
inside the cycle (i.e., so that |xt | < x). Hence, shocks that move x inward 
are more persistent, and therefore, on average, for s´

2 sufficiently small 
the system spends more time inside the cycle than outside of it. This 
effect causes the overall variance of x to be decreasing in s´

2. Although 
the scope of Proposition 1 is quite limited, since it covers only a small 
class of data- generating processes that support limit cycles, it neverthe-
less makes clear that the relationship between shock variance and out-
put variance can be negative when the underlying data- generating pro-
cess admits a limit cycle.

B. Illustrating the Effects of Changes in Shock Variance

Proposition 1 suggests that, in models featuring limit cycles, there may 
be a more complicated relationship between shock variance and out-
come variance than the simple positive one usually encountered in 
stable models. To follow up on this, we have explored numerically 
whether this feature may arise in the richer environments of the pre-
vious section. In all cases we found that, for small values of s´

2, an in-
crease in the shock variance has either a small but noticeable negative 
effect or no discernible effect at all on the variance of h, while for larger 
values the effect is positive but substantially weaker than in a linear 
environment. In this sense, a robust take- away appears to be that, in 
environments that support limit cycles of the size we believe may be in 
macroeconomic data, the link between shock variance and outcome 
variance is likely to be very muted relative to its linear counterpart. To 
illustrate this, in panel (a) of figure 12 we plot the relationship between  
σε and σh for the intermediate and the linear models as estimated on 
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Fig. 12. Relationship between σh and σε

Notes: For each model, we derive parameter distributions by bootstrapping with 1,000 
replications. Then, for each value of σε, we simulate Ttot = Tbrn + T periods of data, with Tbrn 
= 1,000 and T = 100,000. After discarding the first Tbrn periods of data, we compute sh

2 as 
the time average T−1 ∑(ht − mh)2 , where mh = T−1∑ht. For the sake of clarity, we report only 
the point estimates in panel (a). In panel (b), we report the bootstrap distribution of the 
slope of σh(σε), evaluated for the observed level σε ≈ 0.6, for the intermediate model. For 
the linear one, we report the slope at the point estimates for the parameters. For both 
models, the slope is computed as [sh(0.7) − sh(0.5)] / 0.2.
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total hours worked per capita.32 As was shown in the previous section, 
in the absence of shocks the intermediate model exhibits limit cycles. 
On the contrary, the estimated linear model has a stable steady state, so 
that when σε = 0 we have σh = 0.

The are two notable features that emerge from panel (a) of figure 12. 
The first is that, as in the simple example of Proposition 1, the relation-
ship between σε and σh is actually negative for low values of σε. Let 
us stress again, however, that this is not the pattern we think is most 
relevant. The second—and, we believe, more important—feature that 
emerges from the figure is the extent to which the relationship between 
σε and σh is much weaker in the case of the nonlinear model as com-
pared to the linear model. For example, increasing σε from 0.1 to 0.5 
causes σh to increase by 400% in the linear model, while it increases by 
only 62% in the intermediate model. The fact that the plotted relation-
ship has a nonzero intercept for the  limit- cycle model is not surprising, 
but the fact that the slope of this relationship is so much weaker on 
average is telling. This result is further documented in panel (b) of the 
same figure. Taking into account sample uncertainty, we plot the boot-
strap distribution of the slope of σh(σε), evaluated for the observed level 
σε ≈ 0.6, together with the  slope- point estimate for the linear model. 
This panel shows that the slope is lower in the intermediate model at 
any level of significance. This pattern suggests that stabilization policy 
aimed at mitigating the effects of shocks may be of more limited value 
than suggested by estimation of the linear model. The goal of stabi-
lization policy in such a case may instead be to focus on identifying 
and mitigating the underlying forces that generate and sustain limit  
cycles.33

To further emphasize how changes in input volatility affect outcome 
behavior in models with or without limit cycles, in Figure 13 we plot 
the spectrum of the outcome variable h for several different values of 
σε. Panel (a) shows spectra for the intermediate nonlinear specification, 
while panel (b) shows spectra for the linear one.

For the linear model, panel (b) illustrates that the effect of changing 
the volatility of ε is very simple: a fall (rise) in σε decreases (increases) 
the spectrum substantially and uniformly. In contrast, as shown in 
panel (a), the effect of changing σε in the model that features a limit 
cycle is primarily to change the shape of the spectrum. In particular, a 
fall in σε decreases the importance of higher frequencies and accentu-
ates the importance of lower frequencies, while a rise in σε does the 
reverse. For example, as we can see in the figure, when we reduce σε by 
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Fig. 13. Spectrum of h
Notes: For each model and each value of σε, we simulate 100,000 data sets, each of length 
Ttot = Tbrn + T quarters, with Tbrn = 50,000 and T = 1,000. For each simulated data set, we 
obtain the spectrum of h after discarding the first Tbrn periods, then average the result 
across all data sets.
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a third, from 0.84 (dotted line) to 0.56 (solid line)—where the latter is 
the value estimated for the data—the spectrum at periodicities below 
40 quarters decreases substantially, while the importance of periodici-
ties above 40 quarters increases substantially. Such observations are in-
teresting, as they provide a potentially different perspective on how a 
reduction in shock volatility—such as is often thought to have arisen 
during the period of the great moderation—can affect the economy. If 
the underlying system exhibits limit cycles, a great moderation in input 
volatility would result in a less volatile economy in the short term, but 
would tend to increase the importance of the  lower- frequency move-
ments associated with cycles lasting around 10 years.

In summary, much of the focus of traditional macroeconomic stabili-
zation policy is based on the view that fluctuations are primarily driven 
by shocks. If instead  limit- cycle forces play an important part in gen-
erating fluctuations, this warrants a rethinking of how best to conduct 
policy. In particular, in this section we have emphasized that aiming to 
counter or to nullify shocks to the macroeconomy is likely to be much 
less effective at reducing economic volatility if limit cycles are pres-
ent.34 Such policies may somewhat reduce volatility, but the main ef-
fect may be to simply change the frequency at which fluctuations arise, 
with  higher- frequency movements being dampened by the policy at 
the cost of amplifying  lower- frequency movements. As a consequence, 
in such a case it could be best to de- emphasize a framework focused 
on countering shocks and move toward a stabilization framework that 
aims to reduce the forces that may be causing the limit cycles. For ex-
ample, in our previous work (Beaudry et al. 2015b), we have empha-
sized the role of strategic complements in producing limit cycles. An 
effective stabilization policy in such a situation is one that reduces these 
complementarities. If the complementarity is related to precautionary 
saving associated with unemployment risk as in Beaudry et al. (2015a, 
2015b), then policy should focus on mitigating the effect of unemploy-
ment risk on individuals by offering better unemployment insurance. 
Policies aimed at countering shocks in such an environment will not, in 
general, be hitting the important margins.

IV. Conclusion

The first aim of this paper has been to examine whether fluctuations 
in macroeconomic aggregates may be best described as reflecting the 
effects of shocks to an otherwise stable system, or whether such fluctua-
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tions may instead—to a large extent—reflect an underlying instability 
in the macroeconomy that repeatedly gives rise to sustained boom and 
bust phenomena. To examine this question, we have proposed a simple 
nonlinear time- series framework that has the potential to capture in-
stability and  limit- cycle behavior if it is present in the data. The frame-
work we adopted was motivated by previous work that emphasized 
the role of strategic complementarities in creating local instability in 
environments with accumulated goods. We first focused on the behav-
ior of labor market variables, and especially the behavior of total hours 
worked per capita, and found intriguing evidence in favor of the view 
that the macroeconomy may be locally unstable and produce  limit- cycle 
forces. For example, we found that aggregate labor market variables 
often indicate the presence of forces that favor recurrent business 
cycles with a duration of close to nine years and an amplitude of 4–5%. 
When looking at aggregate output measures, we found less robust  
evidence.

One of the main challenges in this endeavor was to find a powerful 
tool for identifying local instability if it is present. As we showed using 
Monte Carlo methods, the approach we adopted is not very powerful, 
and this is especially true when looking at output measures. This sug-
gests that it would be fruitful in future work to develop a more pow-
erful method. Given this difficulty, it is interesting that we have been 
able to find as much evidence supporting the notion of local instability 
and limit cycles as we have. Moreover, even when we have not found 
local instability, we have almost always found that the system is very 
close to being unstable.35 This suggests to us that the macroeconomy 
should be viewed as either locally unstable or very close to being locally  
unstable.

In the second section of the paper, we have briefly examined what 
the presence of local instability and  limit- cycle forces could imply in 
terms of stabilization policy. Our main observation on this front is that 
stabilization policy aimed at countering the shocks hitting the economy 
may turn out to be very ineffective at stabilizing the economy. In par-
ticular, we have shown that a reduction in shock variances may have 
little effect on overall macroeconomic volatility if the economy is lo-
cally unstable. Since this analysis was performed using a  reduced- form 
model, more structural analysis is necessary before coming to clear 
policy implications, but we nevertheless believe that these insights are 
highly suggestive of why the presence of local instability may matter 
for policy.
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Appendix

Motivation for Baseline Specification

Consider the following  demand- driven macroeconomic environment 
with two aggregate variables: per capita output denoted yt, and per cap-
ita capital denoted kt. These variables are the result of  individual- level 
decisions by agents i = 1 to n, with n large. The capital stock of each 
agent i accumulates according to a standard accumulation equation, 
with depreciation rate δ, where we assume that a fixed fraction γ of 
agent i’s purchases today, denoted yit, contributes to his capital stock 
tomorrow as follows:

kit+1 = (1 − d)kit + gyit, 0 < g < 1 − d.

For ease of discussion, we want to think of agent i’s capital stock as his 
holding of durable goods (including possibly housing) for which he 
receives utility directly. Output in this economy is assumed to be 
 demand- determined, so that per capita output is simply the average of 
the  individual- level purchases, that is, yt = n−1∑ i yit. This implies that 
the per capita capital stock, kt ≡ n−1∑ i kit, accumulates according to

 kt+1 = (1 − d)kt + gyt. (A1)

To begin, consider the case where individual output demands are al-
lowed to be affected by only three forces as follows:

 yit = a0 − a1kit + a2yit−1 + ´it. (A2)

In equation (A2), output demand is allowed to be affected by the 
agent’s holding of consumer capital. In particular, let us focus on the 
case where α1 > 0, which implies that more consumer capital leads to 
less desire for new purchases, as would be the case, for example, in 
the presence of diminishing marginal utility. Output demand is also al-
lowed to exhibit inertia through α2 ≥ 0, where this force may reflect, for 
example, habit or adjustment costs. Finally, we allow a random idiosyn-
cratic term εit, which may be correlated across agents but is i.i.d. across 
time. A decision rule of the form given in equation (A2) can be derived 
from  individual- level optimization, in which case the coefficients α1 
and α2 will typically be smaller than 1. Aggregating equation (A2), we 
may obtain

 yt = a0 − a1kt + a2yt−1 + ´t, (A3)
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where ´t ≡ n−1∑ i´it. Under the assumption that α1 and α2 are smaller 
than 1, equations (A1) and (A3) form a simple stable linear dynamic sys-
tem. It is interesting to recognize that in this case if α2 and 1 – δ are close 
to 1, then the roots of this system can be very close to 1, while nonethe-
less staying stable. We take equations (A1) and (A3) as a simple represen-
tation of basic forces that could be driving macroeconomic fluctuations.

Now let us slightly extend the above system by introducing an ad-
ditional term in the determination of  individual- level demand. Here 
we want to add the possibility that agents’ expectations about other 
agents’ decisions may affect their own behavior. Such interaction ef-
fects can arise for many reasons. It is not our goal to take a stand on one 
particular reason here, but instead to argue that such interactions can 
drastically change the dynamics of the system, even if the effects remain 
small and close to linear. To capture such an effect, let us generalize the 
individual decision rule as follows:

 yit = a0 − a1kit + a2yit−1 + G(yite ) + ´it, (A4)

where yite  is agent i’s expectation about aggregate economic activity, and 
the function G(⋅) captures how this expectation affects his behavior. If ′G  
is positive, agents’  individual- level demands play the role of strategic 
complements, while if it is negative they play the role of strategic sub-
stitutes. Let us start with the extreme case where all agents base their 
expectations only on the past realization of yt, and that this expectation 
is simply backward looking with yite = yt−1. In this case, the aggregate 
determination of output is given by

 yt = a0 − a1kt + a2yt−1 + G(yt−1) + ´t. (A5)

How does the introduction of the strategic interaction term G(yt−1) affect 
the dynamic system? This depends on whether, near the steady state of 
the system, actions are strategic substitutes or complements. If they are 
strategic substitutes, then the system will tend to maintain stability and 
nothing very interesting is likely to happen. However, if they are strate-
gic complements, then the dynamics may change considerably. In par-
ticular, consider the case where α2 and 1 – δ are close to 1. Then one may 
show that even a small degree of strategic complementarity near the 
steady state can render the system locally unstable.36 In such a case, the 
global properties will depend on the nature of the nonlinearities in G(⋅). 
If the complementarities grow as the system moves away from its 
steady state, then it will tend to exhibit global instability, in which case 
the system will explode. In contrast, if the complementarities die out as 
the system moves away from the steady state, then the system will tend 
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to produce either a limit cycle or chaotic behavior. Again, all this can 
arise even if the system remains close to linear and complementarities 
are rather weak. For example, suppose that G takes the form G(y) = μ0 + 
μ1y + μ2y

3. Then equation (A5) can be rewritten in univariate form using 
equation (A1) to eliminate kt. Moreover, if we close the model by assum-
ing that yt = ht, where ht is hours worked per capita, then we can write 
the determination of hours as a univariate process in ht as

 
ht = a0 + m0 − a1g∑ j=1

∞ (1 − d) j−1ht− j

+  (a2 + m1)ht−1 + m2ht−1
3 + ´t.

 (A6)

Equation (A6) is a special case of the type of univariate time- series 
model we estimate in section II. We emphasize here the possibility of 
interpreting this model as one determining hours worked as opposed 
to determining output, as the formulation in terms of hours worked can 
be shown to be more robust allowing for fluctuations in productivity 
(see section II.F). Note also that equation (A6) features the presence of 
an accumulation term, which motivates our inclusion of such a term in 
our econometric specification.

Data

• US Population: Total Population: all ages including Armed Forces 
Overseas, obtained from the FRED database (POP) from 1952:Q1 to 
2015:Q2. Quarters from 1947:Q1 to 1952:Q1 are obtained from linear 
interpolation of the annual series of National Population obtained from 
US Census, where the levels have been adjusted so that the two series 
match in 1952:Q1.
• US total output, consumption, and the various investment types are 
obtained from the Bureau of Economic Analysis National Income and 
Product Accounts. Real quantities are computed as nominal quantities 
(table 1.1.5) over prices (table 1.1.4.). Sample is 1947:Q1–2015:Q2, and 
we do not use the observations of 2015.
• US nonfarm business output, nonfarm business hours, total hours 
and unemployment rate (16 years and over) are obtained from the Bu-
reau of Labor Statistics. Sample is 1947:Q1–2015:Q2 (1948:Q1–2015:Q2 
for total hours), and we do not use the observations of 2015.
• Capacity utilization: manufacturing (SIC), percent of capacity, quar-
terly, seasonally adjusted, obtained from the FRED database, (CUM-
FNS). Sample is 1948:Q1–2015Q3 and we do not use the observations 
of 2015.
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• The series of job- finding rate was constructed by Robert Shimer. For 
additional details, please see Shimer (2012). The data from June 1967 
and December 1975 were tabulated by Joe Ritter and made available by 
Hoyt Bleakley. Sample is 1948:Q1–2007:Q4.
• The various unemployment rates are obtained from the FRED data-
base, except for France:

• Australia: Unemployment Rate: ages 15 and over: all persons for 
Australia (LRUNTTTTAUQ156S), 1966:Q3–2014:Q4.
• Austria: Registered unemployment rate for Austria (LMUNRRT-
TATQ156S), 1955:Q1–2014:Q4.
• Canada: Harmonized unemployment rate: all persons for Canada 
(CANURHARMQDSMEI), 1956:Q1–2012:Q1.
• Denmark: Registered unemployment rate for Denmark 
(LMUNRRTTDKQ156S), 1970:Q1–2014:Q4.
• France: ILO unemployment rate, total, metropolitan France and 
overseas departments (001688527), Inséé Macro- economic database 
(BDM), 1975:Q1–2015:Q1.
• Germany: Registered unemployment rate for Germany 
(LMUNRRTTDEQ156S), 1969:Q1–2014:Q1.
• Japan: Harmonized unemployment rate: all persons for Japan 
(JPNURHARMQDSMEI), 1955:Q1–2012:Q1.
• Netherlands: Harmonized unemployment rate: all persons for 
Netherlands (NLDURHARMQDSMEI until 2012:Q1 and harmonized 
unemployment: total: all persons for the Netherlands LRHUTTTTN-
LQ156S) after 2012:Q1 (the  second- series level has been adjusted to 
match the first one in 2012:Q1), 1970:Q1–2014:Q4.
• Sweden: Harmonized unemployment rate: all persons for Sweden 
(SWEURHARMQDSMEI), 1970:Q1–2012:Q1.
• Switzerland: Registered unemployment rate for Switzerland 
(LMUNRRTTCHQ156S), 1970:Q1–2014:Q4.
• United Kingdom: Registered unemployment rate for the United 
Kingdom (LMUNRRTTGBQ156S), 1956:Q1–2012:Q1. 

Proof of Proposition 1

Assume that s´
2 is small, so that |x0 | is close to x . Without loss of gener-

ality, take x0 close to x ,37 and define

yt ≡ (−1)txt − x .

To understand yt, note that, since x0 is close to x  and s´
2 is small, we 

should have xt > 0 for t even and xt < 0 for t odd, that is, the sign of xt 

This content downloaded from 134.117.121.148 on January 11, 2018 13:07:55 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Is the Macroeconomy Locally Unstable and Why Should We Care? 527

should switch every period.38 Thus, |yt | captures the absolute deviation 
of xt from the nonstochastic sequence xt ≡ (−1)tx  (the two- cycle), while 
sgn(yt) captures the direction of that deviation relative to zero: if yt < 0 
then xt is “inside” the two- cycle (i.e., |xt | < x), while if yt > 0 then xt is 
“outside” the two- cycle (i.e., |xt | > x).

Next, it is straightforward to verify that

yt = (3 − 2bx)yt−1 − 3 (bx + 1)(bx − 1)yt−1
2 − (bx + 1)yt−1

3 + nt

where nt ≡ (−1)t´t ∼ i.i.d.N(0, s´
2). Since (3 − 2bx) ∈ (−1, 1), the fixed 

point of this system at yt = 0 is stable, and thus for s´
2 small we may re-

strict attention to the  second- order approximation to this system,

 yt ≈ (3 − 2bx)yt−1 − 3 (bx + 1)(bx − 1)yt−1
2 + nt  (A7)

yt is clearly stationary, so that we have

E[yt] ≈ (3 − 2bx)E[yt] − 3 (bx + 1)(bx − 1)E[yt2]

= − 3
2x
E[yt2].

For s´
2 > 0, we will have E[yt2] > 0, and thus E[yt] < 0. Since 

xt = (−1)t(yt + x), we may obtain

sx
2 = E[yt2] + 2xE[yt] + x2

≈ x2 − 2E[yt2]

where we have used the approximation from above to replace E[yt]. 
Thus, as s´

2 increases from zero, xt becomes less volatile, which com-
pletes the proof.

Endnotes

The authors thank the two discussants Laura Veldkamp and Ivan Werning, as well as 
Jonathan Parker for useful comments. For acknowledgments, sources of research support, 
and disclosure of the authors’ material financial relationships, if any, please see http://
www.nber.org/chapters/c13772.ack.

1. Although the idea of endogenous boom-and-bust cycles has a long tradition in the 
economics literature (Kalecki 1937; Kaldor 1940; Hicks 1950; Goodwin 1951), it is not 
present in most modern macromodels. Recent exceptions are Myerson (2012), Matsuyama 
(2013), Gu et al. (2013), and Beaudry, Galizia, and Portier (2015b).

2. In the 1980s, following Blanchard and Summers (1986), a branch of the literature 
explored the case of an exact unit root in unemployment series as an indication of hys-
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teresis. However, in practice, estimations gave persistent but stable dynamics, as pointed 
out by Blanchard and Summers (1986, p. 17, fn. 1): “We shall instead use ‘hysteresis’ more 
loosely to refer to the case where the degree of dependence on the past is very high, where 
the sum of coefficients is close but not necessarily equal to 1.”

3. A reader mainly interested in the theoretical rationale for local instability in macro-
economic models may want to consult Beaudry, Galizia, and Portier (2015b).

4. We discuss in section II.D the possibility of multiple steady states and its implications.
5. A deterministic dynamic system is considered sensitive to initial conditions when 

arbitrarily small differences in initial conditions can lead to significant differences 
in outcomes over time. In such a case, forecasting long-run outcomes is considered  
problematic.

6. For ease of exposition, we consider here processes without a constant term, which 
amounts to assuming that the steady state of the process is at zero. In our empirical exer-
cise below, we relax this assumption.

7. If !A(L) = a1 + a2L + " + anLn−1, then we define the associated n × n companion ma-
trix as follows: the first row is given by [a1, a2,… , an], the  lower-left (n – 1) × (n – 1) block 
is given by In–1, and the remaining entries are zero.

8. Throughout this paper, for the sake of brevity the term “largest eigenvalue” will be 
used to refer to the eigenvalue that has the largest modulus, and when we say that an 
eigenvalue is greater (less) than 1, unless otherwise indicated we mean that its modulus 
is greater (less) than 1.

9. Fundamentally, if the largest eigenvalue of A is greater than 1, then the system will 
tend to move away from the steady state (even if the variance of ε is very small), which 
causes  higher-order terms to become more relevant in the DGP. It is for precisely this 
reason that using an econometric specification containing only  first-order terms is more 
likely to yield misleading results in such a case than in the case where the largest eigen-
value of A is less than 1.

10. In particular, if b > (E[xt−1
2 ] / E[xt−1

4 ])(a − 1).
11. We assume for simplicity that n is large enough that agents ignore the effect of their 

own choice xi on x.
12. Since we will be examining behavior within a limited class of nonlinear models, 

one must be careful about which inferences can be made. For example, if we do not find 
evidence of local instability in this class, this does not imply that the macroeconomic 
environment is necessarily stable. However, if we do find that local instability and limit 
cycles appear in this limited class, it will provide some reason to question the consensus 
view that macroeconomic fluctuations reflect mainly the effects of shocks within an other-
wise stable system.

13. Even if the cyclical variables we consider generally have a zero mean, we never-
theless allow for a nonzero intercept in our baseline specifications. Results are robust to 
omitting the intercept.

14. Note that the F in equation (4) and the F in equation (5) are not technically the same 
functions.

15. This identification assumption is quite strong, but allows for a simple two-step ap-
proach to the data: first detrend, then estimate. We leave for future research the explora-
tion of decomposition methods that do not require this assumption.

16. We discuss the robustness of our result to the filter below. The quarterly series is 
filtered (80-quarter, high-pass filter) over the sample 1948:Q1–2015:Q2.

17. Note that the coefficient on ht–1 in this approximation is in fact different from the 
one reported above, though the two are equal to two decimal places.

18. Note that the maximum eigenvalue is not the autocorrelation coefficient because 
the process is an AR(2) not an AR(1).

19. Note that, except under very special circumstances that are unlikely to be encoun-
tered in our case, existence of and convergence to a limit cycle cannot be proven math-
ematically. As a result, throughout this paper we rely on numerical simulations to check 
for these properties.

20. One could repeat the deterministic simulation starting from all dates of the sample. 
This would make the convergence to a limit cycle unchanged or more frequent.
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21. We checked that this steady state was unique in each of our bootstrap replications.
22. This does not mean that microfounded models capable of generating limit cycles 

never feature indeterminacy.
23. This analysis can be extended to the intermediate model when β0 = 0. Nonzero 

steady states, if they exist, are the two opposite real numbers ±h with

h = 1 − bh − b ′h − bH

b
h3 + b ′h 3 + b

H3 + b
h2H

+ b
hH2

.

24. One could repeat the deterministic simulation starting from all dates of the sample. 
This would make the convergence to a limit cycle unchanged or more frequent.

25. When we set the threshold level to 1% in the Wald tests (instead of the estimated 
p-value), the test fails to reject the (spurious) existence of a limit cycle 0.9% (resp. 1.5%) of 
the time for the minimal model when the DGP is the AR(2) model (resp. the linear model), 
and 0.7% (resp. 1.3%) and 0.6% (reps. 8%) for the intermediate and full models.

26. See appendix for details about the source and time span of each of the series.
27. A similar pattern is found using the intermediate and full models (not shown in 

the figure).
28. In this section we will be discussing the effects of changes in shock variances on 

the variances of endogenous variables. Accordingly, results from this section need to be 
interpreted cautiously, given the potential for the Lucas Critique to apply.

29. That is, the roots of the polynomial 1 − F(l, l2,…) lie outside the unit circle.
30. With some abuse of terminology, we define the mean and variance of x by time 

averages rather than ensemble averages, that is, by mx ≡ plimT→∞(1 / T)∑t=1
T xt and 

sx
2 ≡ plimT→∞(1 / T)∑t=1

T (xt − mx)2, respectively, assuming these probability limits exist 
and are independent of the initial state x0. Thus, according to our definition, we will have 
sx

2 > 0 even in a nonstochastic environment as long as the system does not converge to a 
single point.

31. See May (1979).
32. Estimated parameters are given in table 1.
33. In our previous work (Beaudry et al. 2015b) we presented a structural model where 

limit cycles arose as the result of a complementarity in consumption decisions generated 
by imperfect unemployment insurance. In that framework, the policy prescription to help 
stabilize the economy would therefore be to reduce the complementarity in agents’ deci-
sions by improving consumption insurance through, for example, automatic stabilizers.

34. More precisely, a reduction in input volatility may have very little impact on the 
overall volatility of the system when the deterministic version of the system exhibits limit 
cycles.

35. For most cases we found the modulus of the largest eigenvalue of the estimated 
system to be very close to 1.

36. See Beaudry et al. (2015b) for details. One of the insights from this example is to 
show that the presence of strategic complementarities in demand is likely to create local 
instability.

37. It is straightforward to extend the following reasoning to the case where x0 is close 
to −x .

38. This stems from the fact that, with x0 close to x  and s´
2 small, the dynamic behavior 

of xt is dominated by the same forces that generate the two-cycle.
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